![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > smadiadetlem2 | Structured version Visualization version GIF version |
Description: Lemma 2 for smadiadet 22559: The summands of the Leibniz' formula vanish for all permutations fixing the index of the row containing the 0's and the 1 to itself. (Contributed by AV, 31-Dec-2018.) |
Ref | Expression |
---|---|
marep01ma.a | โข ๐ด = (๐ Mat ๐ ) |
marep01ma.b | โข ๐ต = (Baseโ๐ด) |
marep01ma.r | โข ๐ โ CRing |
marep01ma.0 | โข 0 = (0gโ๐ ) |
marep01ma.1 | โข 1 = (1rโ๐ ) |
smadiadetlem.p | โข ๐ = (Baseโ(SymGrpโ๐)) |
smadiadetlem.g | โข ๐บ = (mulGrpโ๐ ) |
madetminlem.y | โข ๐ = (โคRHomโ๐ ) |
madetminlem.s | โข ๐ = (pmSgnโ๐) |
madetminlem.t | โข ยท = (.rโ๐ ) |
Ref | Expression |
---|---|
smadiadetlem2 | โข ((๐ โ ๐ต โง ๐พ โ ๐) โ (๐ ฮฃg (๐ โ (๐ โ {๐ โ ๐ โฃ (๐โ๐พ) = ๐พ}) โฆ (((๐ โ ๐)โ๐) ยท (๐บ ฮฃg (๐ โ ๐ โฆ (๐(๐ โ ๐, ๐ โ ๐ โฆ if(๐ = ๐พ, if(๐ = ๐พ, 1 , 0 ), (๐๐๐)))(๐โ๐))))))) = 0 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | marep01ma.a | . . 3 โข ๐ด = (๐ Mat ๐ ) | |
2 | marep01ma.b | . . 3 โข ๐ต = (Baseโ๐ด) | |
3 | marep01ma.r | . . 3 โข ๐ โ CRing | |
4 | marep01ma.0 | . . 3 โข 0 = (0gโ๐ ) | |
5 | marep01ma.1 | . . 3 โข 1 = (1rโ๐ ) | |
6 | smadiadetlem.p | . . 3 โข ๐ = (Baseโ(SymGrpโ๐)) | |
7 | smadiadetlem.g | . . 3 โข ๐บ = (mulGrpโ๐ ) | |
8 | madetminlem.y | . . 3 โข ๐ = (โคRHomโ๐ ) | |
9 | madetminlem.s | . . 3 โข ๐ = (pmSgnโ๐) | |
10 | madetminlem.t | . . 3 โข ยท = (.rโ๐ ) | |
11 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 | smadiadetlem1a 22552 | . 2 โข ((๐ โ ๐ต โง ๐พ โ ๐ โง ๐พ โ ๐) โ (๐ ฮฃg (๐ โ (๐ โ {๐ โ ๐ โฃ (๐โ๐พ) = ๐พ}) โฆ (((๐ โ ๐)โ๐) ยท (๐บ ฮฃg (๐ โ ๐ โฆ (๐(๐ โ ๐, ๐ โ ๐ โฆ if(๐ = ๐พ, if(๐ = ๐พ, 1 , 0 ), (๐๐๐)))(๐โ๐))))))) = 0 ) |
12 | 11 | 3anidm23 1419 | 1 โข ((๐ โ ๐ต โง ๐พ โ ๐) โ (๐ ฮฃg (๐ โ (๐ โ {๐ โ ๐ โฃ (๐โ๐พ) = ๐พ}) โฆ (((๐ โ ๐)โ๐) ยท (๐บ ฮฃg (๐ โ ๐ โฆ (๐(๐ โ ๐, ๐ โ ๐ โฆ if(๐ = ๐พ, if(๐ = ๐พ, 1 , 0 ), (๐๐๐)))(๐โ๐))))))) = 0 ) |
Colors of variables: wff setvar class |
Syntax hints: โ wi 4 โง wa 395 = wceq 1534 โ wcel 2099 {crab 3427 โ cdif 3941 ifcif 4524 โฆ cmpt 5225 โ ccom 5676 โcfv 6542 (class class class)co 7414 โ cmpo 7416 Basecbs 17171 .rcmulr 17225 0gc0g 17412 ฮฃg cgsu 17413 SymGrpcsymg 19312 pmSgncpsgn 19435 mulGrpcmgp 20065 1rcur 20112 CRingccrg 20165 โคRHomczrh 21412 Mat cmat 22294 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-rep 5279 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 ax-cnex 11186 ax-resscn 11187 ax-1cn 11188 ax-icn 11189 ax-addcl 11190 ax-addrcl 11191 ax-mulcl 11192 ax-mulrcl 11193 ax-mulcom 11194 ax-addass 11195 ax-mulass 11196 ax-distr 11197 ax-i2m1 11198 ax-1ne0 11199 ax-1rid 11200 ax-rnegex 11201 ax-rrecex 11202 ax-cnre 11203 ax-pre-lttri 11204 ax-pre-lttrn 11205 ax-pre-ltadd 11206 ax-pre-mulgt0 11207 ax-addf 11209 ax-mulf 11210 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-xor 1506 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-nel 3042 df-ral 3057 df-rex 3066 df-rmo 3371 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-tp 4629 df-op 4631 df-ot 4633 df-uni 4904 df-int 4945 df-iun 4993 df-iin 4994 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-se 5628 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-isom 6551 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-of 7679 df-om 7865 df-1st 7987 df-2nd 7988 df-supp 8160 df-tpos 8225 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-2o 8481 df-er 8718 df-map 8838 df-ixp 8908 df-en 8956 df-dom 8957 df-sdom 8958 df-fin 8959 df-fsupp 9378 df-sup 9457 df-oi 9525 df-card 9954 df-pnf 11272 df-mnf 11273 df-xr 11274 df-ltxr 11275 df-le 11276 df-sub 11468 df-neg 11469 df-div 11894 df-nn 12235 df-2 12297 df-3 12298 df-4 12299 df-5 12300 df-6 12301 df-7 12302 df-8 12303 df-9 12304 df-n0 12495 df-xnn0 12567 df-z 12581 df-dec 12700 df-uz 12845 df-rp 12999 df-fz 13509 df-fzo 13652 df-seq 13991 df-exp 14051 df-hash 14314 df-word 14489 df-lsw 14537 df-concat 14545 df-s1 14570 df-substr 14615 df-pfx 14645 df-splice 14724 df-reverse 14733 df-s2 14823 df-struct 17107 df-sets 17124 df-slot 17142 df-ndx 17154 df-base 17172 df-ress 17201 df-plusg 17237 df-mulr 17238 df-starv 17239 df-sca 17240 df-vsca 17241 df-ip 17242 df-tset 17243 df-ple 17244 df-ds 17246 df-unif 17247 df-hom 17248 df-cco 17249 df-0g 17414 df-gsum 17415 df-prds 17420 df-pws 17422 df-mre 17557 df-mrc 17558 df-acs 17560 df-mgm 18591 df-sgrp 18670 df-mnd 18686 df-mhm 18731 df-submnd 18732 df-efmnd 18812 df-grp 18884 df-minusg 18885 df-mulg 19015 df-subg 19069 df-ghm 19159 df-gim 19204 df-cntz 19259 df-oppg 19288 df-symg 19313 df-pmtr 19388 df-psgn 19437 df-cmn 19728 df-abl 19729 df-mgp 20066 df-rng 20084 df-ur 20113 df-ring 20166 df-cring 20167 df-rhm 20400 df-subrng 20472 df-subrg 20497 df-sra 21047 df-rgmod 21048 df-cnfld 21267 df-zring 21360 df-zrh 21416 df-dsmm 21653 df-frlm 21668 df-mat 22295 |
This theorem is referenced by: smadiadet 22559 |
Copyright terms: Public domain | W3C validator |