Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ltrniotaidvalN Structured version   Visualization version   GIF version

Theorem ltrniotaidvalN 40577
Description: Value of the unique translation specified by identity value. (Contributed by NM, 25-Aug-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
ltrniotaidval.b 𝐵 = (Base‘𝐾)
ltrniotaidval.l = (le‘𝐾)
ltrniotaidval.a 𝐴 = (Atoms‘𝐾)
ltrniotaidval.h 𝐻 = (LHyp‘𝐾)
ltrniotaidval.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
ltrniotaidval.f 𝐹 = (𝑓𝑇 (𝑓𝑃) = 𝑃)
Assertion
Ref Expression
ltrniotaidvalN (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝐹 = ( I ↾ 𝐵))
Distinct variable groups:   ,𝑓   𝐴,𝑓   𝑓,𝐻   𝑓,𝐾   𝑃,𝑓   𝑇,𝑓   𝑓,𝑊
Allowed substitution hints:   𝐵(𝑓)   𝐹(𝑓)

Proof of Theorem ltrniotaidvalN
StepHypRef Expression
1 ltrniotaidval.l . . . 4 = (le‘𝐾)
2 ltrniotaidval.a . . . 4 𝐴 = (Atoms‘𝐾)
3 ltrniotaidval.h . . . 4 𝐻 = (LHyp‘𝐾)
4 ltrniotaidval.t . . . 4 𝑇 = ((LTrn‘𝐾)‘𝑊)
5 ltrniotaidval.f . . . 4 𝐹 = (𝑓𝑇 (𝑓𝑃) = 𝑃)
61, 2, 3, 4, 5ltrniotaval 40575 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝐹𝑃) = 𝑃)
763anidm23 1423 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝐹𝑃) = 𝑃)
8 simpl 482 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
91, 2, 3, 4, 5ltrniotacl 40573 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝐹𝑇)
1093anidm23 1423 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝐹𝑇)
11 simpr 484 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
12 ltrniotaidval.b . . . 4 𝐵 = (Base‘𝐾)
1312, 1, 2, 3, 4ltrnideq 40169 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝐹 = ( I ↾ 𝐵) ↔ (𝐹𝑃) = 𝑃))
148, 10, 11, 13syl3anc 1373 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝐹 = ( I ↾ 𝐵) ↔ (𝐹𝑃) = 𝑃))
157, 14mpbird 257 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝐹 = ( I ↾ 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109   class class class wbr 5107   I cid 5532  cres 5640  cfv 6511  crio 7343  Basecbs 17179  lecple 17227  Atomscatm 39256  HLchlt 39343  LHypclh 39978  LTrncltrn 40095
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-riotaBAD 38946
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-1st 7968  df-2nd 7969  df-undef 8252  df-map 8801  df-proset 18255  df-poset 18274  df-plt 18289  df-lub 18305  df-glb 18306  df-join 18307  df-meet 18308  df-p0 18384  df-p1 18385  df-lat 18391  df-clat 18458  df-oposet 39169  df-ol 39171  df-oml 39172  df-covers 39259  df-ats 39260  df-atl 39291  df-cvlat 39315  df-hlat 39344  df-llines 39492  df-lplanes 39493  df-lvols 39494  df-lines 39495  df-psubsp 39497  df-pmap 39498  df-padd 39790  df-lhyp 39982  df-laut 39983  df-ldil 40098  df-ltrn 40099  df-trl 40153
This theorem is referenced by:  dihpN  41330
  Copyright terms: Public domain W3C validator