Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ltrniotaidvalN Structured version   Visualization version   GIF version

Theorem ltrniotaidvalN 40692
Description: Value of the unique translation specified by identity value. (Contributed by NM, 25-Aug-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
ltrniotaidval.b 𝐵 = (Base‘𝐾)
ltrniotaidval.l = (le‘𝐾)
ltrniotaidval.a 𝐴 = (Atoms‘𝐾)
ltrniotaidval.h 𝐻 = (LHyp‘𝐾)
ltrniotaidval.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
ltrniotaidval.f 𝐹 = (𝑓𝑇 (𝑓𝑃) = 𝑃)
Assertion
Ref Expression
ltrniotaidvalN (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝐹 = ( I ↾ 𝐵))
Distinct variable groups:   ,𝑓   𝐴,𝑓   𝑓,𝐻   𝑓,𝐾   𝑃,𝑓   𝑇,𝑓   𝑓,𝑊
Allowed substitution hints:   𝐵(𝑓)   𝐹(𝑓)

Proof of Theorem ltrniotaidvalN
StepHypRef Expression
1 ltrniotaidval.l . . . 4 = (le‘𝐾)
2 ltrniotaidval.a . . . 4 𝐴 = (Atoms‘𝐾)
3 ltrniotaidval.h . . . 4 𝐻 = (LHyp‘𝐾)
4 ltrniotaidval.t . . . 4 𝑇 = ((LTrn‘𝐾)‘𝑊)
5 ltrniotaidval.f . . . 4 𝐹 = (𝑓𝑇 (𝑓𝑃) = 𝑃)
61, 2, 3, 4, 5ltrniotaval 40690 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝐹𝑃) = 𝑃)
763anidm23 1423 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝐹𝑃) = 𝑃)
8 simpl 482 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
91, 2, 3, 4, 5ltrniotacl 40688 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝐹𝑇)
1093anidm23 1423 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝐹𝑇)
11 simpr 484 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
12 ltrniotaidval.b . . . 4 𝐵 = (Base‘𝐾)
1312, 1, 2, 3, 4ltrnideq 40284 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝐹 = ( I ↾ 𝐵) ↔ (𝐹𝑃) = 𝑃))
148, 10, 11, 13syl3anc 1373 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝐹 = ( I ↾ 𝐵) ↔ (𝐹𝑃) = 𝑃))
157, 14mpbird 257 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝐹 = ( I ↾ 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111   class class class wbr 5089   I cid 5508  cres 5616  cfv 6481  crio 7302  Basecbs 17120  lecple 17168  Atomscatm 39372  HLchlt 39459  LHypclh 40093  LTrncltrn 40210
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-riotaBAD 39062
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-iin 4942  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-1st 7921  df-2nd 7922  df-undef 8203  df-map 8752  df-proset 18200  df-poset 18219  df-plt 18234  df-lub 18250  df-glb 18251  df-join 18252  df-meet 18253  df-p0 18329  df-p1 18330  df-lat 18338  df-clat 18405  df-oposet 39285  df-ol 39287  df-oml 39288  df-covers 39375  df-ats 39376  df-atl 39407  df-cvlat 39431  df-hlat 39460  df-llines 39607  df-lplanes 39608  df-lvols 39609  df-lines 39610  df-psubsp 39612  df-pmap 39613  df-padd 39905  df-lhyp 40097  df-laut 40098  df-ldil 40213  df-ltrn 40214  df-trl 40268
This theorem is referenced by:  dihpN  41445
  Copyright terms: Public domain W3C validator