Mathbox for Norm Megill < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ltrniotaidvalN Structured version   Visualization version   GIF version

Theorem ltrniotaidvalN 38181
 Description: Value of the unique translation specified by identity value. (Contributed by NM, 25-Aug-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
ltrniotaidval.b 𝐵 = (Base‘𝐾)
ltrniotaidval.l = (le‘𝐾)
ltrniotaidval.a 𝐴 = (Atoms‘𝐾)
ltrniotaidval.h 𝐻 = (LHyp‘𝐾)
ltrniotaidval.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
ltrniotaidval.f 𝐹 = (𝑓𝑇 (𝑓𝑃) = 𝑃)
Assertion
Ref Expression
ltrniotaidvalN (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝐹 = ( I ↾ 𝐵))
Distinct variable groups:   ,𝑓   𝐴,𝑓   𝑓,𝐻   𝑓,𝐾   𝑃,𝑓   𝑇,𝑓   𝑓,𝑊
Allowed substitution hints:   𝐵(𝑓)   𝐹(𝑓)

Proof of Theorem ltrniotaidvalN
StepHypRef Expression
1 ltrniotaidval.l . . . 4 = (le‘𝐾)
2 ltrniotaidval.a . . . 4 𝐴 = (Atoms‘𝐾)
3 ltrniotaidval.h . . . 4 𝐻 = (LHyp‘𝐾)
4 ltrniotaidval.t . . . 4 𝑇 = ((LTrn‘𝐾)‘𝑊)
5 ltrniotaidval.f . . . 4 𝐹 = (𝑓𝑇 (𝑓𝑃) = 𝑃)
61, 2, 3, 4, 5ltrniotaval 38179 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝐹𝑃) = 𝑃)
763anidm23 1418 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝐹𝑃) = 𝑃)
8 simpl 486 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
91, 2, 3, 4, 5ltrniotacl 38177 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝐹𝑇)
1093anidm23 1418 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝐹𝑇)
11 simpr 488 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
12 ltrniotaidval.b . . . 4 𝐵 = (Base‘𝐾)
1312, 1, 2, 3, 4ltrnideq 37773 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝐹 = ( I ↾ 𝐵) ↔ (𝐹𝑃) = 𝑃))
148, 10, 11, 13syl3anc 1368 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝐹 = ( I ↾ 𝐵) ↔ (𝐹𝑃) = 𝑃))
157, 14mpbird 260 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝐹 = ( I ↾ 𝐵))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 209   ∧ wa 399   = wceq 1538   ∈ wcel 2111   class class class wbr 5032   I cid 5429   ↾ cres 5526  ‘cfv 6335  ℩crio 7107  Basecbs 16541  lecple 16630  Atomscatm 36861  HLchlt 36948  LHypclh 37582  LTrncltrn 37699 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5156  ax-sep 5169  ax-nul 5176  ax-pow 5234  ax-pr 5298  ax-un 7459  ax-riotaBAD 36551 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-ral 3075  df-rex 3076  df-reu 3077  df-rmo 3078  df-rab 3079  df-v 3411  df-sbc 3697  df-csb 3806  df-dif 3861  df-un 3863  df-in 3865  df-ss 3875  df-nul 4226  df-if 4421  df-pw 4496  df-sn 4523  df-pr 4525  df-op 4529  df-uni 4799  df-iun 4885  df-iin 4886  df-br 5033  df-opab 5095  df-mpt 5113  df-id 5430  df-xp 5530  df-rel 5531  df-cnv 5532  df-co 5533  df-dm 5534  df-rn 5535  df-res 5536  df-ima 5537  df-iota 6294  df-fun 6337  df-fn 6338  df-f 6339  df-f1 6340  df-fo 6341  df-f1o 6342  df-fv 6343  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-1st 7693  df-2nd 7694  df-undef 7949  df-map 8418  df-proset 17604  df-poset 17622  df-plt 17634  df-lub 17650  df-glb 17651  df-join 17652  df-meet 17653  df-p0 17715  df-p1 17716  df-lat 17722  df-clat 17784  df-oposet 36774  df-ol 36776  df-oml 36777  df-covers 36864  df-ats 36865  df-atl 36896  df-cvlat 36920  df-hlat 36949  df-llines 37096  df-lplanes 37097  df-lvols 37098  df-lines 37099  df-psubsp 37101  df-pmap 37102  df-padd 37394  df-lhyp 37586  df-laut 37587  df-ldil 37702  df-ltrn 37703  df-trl 37757 This theorem is referenced by:  dihpN  38934
 Copyright terms: Public domain W3C validator