Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ltrniotaidvalN Structured version   Visualization version   GIF version

Theorem ltrniotaidvalN 40572
Description: Value of the unique translation specified by identity value. (Contributed by NM, 25-Aug-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
ltrniotaidval.b 𝐵 = (Base‘𝐾)
ltrniotaidval.l = (le‘𝐾)
ltrniotaidval.a 𝐴 = (Atoms‘𝐾)
ltrniotaidval.h 𝐻 = (LHyp‘𝐾)
ltrniotaidval.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
ltrniotaidval.f 𝐹 = (𝑓𝑇 (𝑓𝑃) = 𝑃)
Assertion
Ref Expression
ltrniotaidvalN (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝐹 = ( I ↾ 𝐵))
Distinct variable groups:   ,𝑓   𝐴,𝑓   𝑓,𝐻   𝑓,𝐾   𝑃,𝑓   𝑇,𝑓   𝑓,𝑊
Allowed substitution hints:   𝐵(𝑓)   𝐹(𝑓)

Proof of Theorem ltrniotaidvalN
StepHypRef Expression
1 ltrniotaidval.l . . . 4 = (le‘𝐾)
2 ltrniotaidval.a . . . 4 𝐴 = (Atoms‘𝐾)
3 ltrniotaidval.h . . . 4 𝐻 = (LHyp‘𝐾)
4 ltrniotaidval.t . . . 4 𝑇 = ((LTrn‘𝐾)‘𝑊)
5 ltrniotaidval.f . . . 4 𝐹 = (𝑓𝑇 (𝑓𝑃) = 𝑃)
61, 2, 3, 4, 5ltrniotaval 40570 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝐹𝑃) = 𝑃)
763anidm23 1423 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝐹𝑃) = 𝑃)
8 simpl 482 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
91, 2, 3, 4, 5ltrniotacl 40568 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝐹𝑇)
1093anidm23 1423 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝐹𝑇)
11 simpr 484 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
12 ltrniotaidval.b . . . 4 𝐵 = (Base‘𝐾)
1312, 1, 2, 3, 4ltrnideq 40164 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝐹 = ( I ↾ 𝐵) ↔ (𝐹𝑃) = 𝑃))
148, 10, 11, 13syl3anc 1373 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → (𝐹 = ( I ↾ 𝐵) ↔ (𝐹𝑃) = 𝑃))
157, 14mpbird 257 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊)) → 𝐹 = ( I ↾ 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109   class class class wbr 5092   I cid 5513  cres 5621  cfv 6482  crio 7305  Basecbs 17120  lecple 17168  Atomscatm 39252  HLchlt 39339  LHypclh 39973  LTrncltrn 40090
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-riotaBAD 38942
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-iin 4944  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-1st 7924  df-2nd 7925  df-undef 8206  df-map 8755  df-proset 18200  df-poset 18219  df-plt 18234  df-lub 18250  df-glb 18251  df-join 18252  df-meet 18253  df-p0 18329  df-p1 18330  df-lat 18338  df-clat 18405  df-oposet 39165  df-ol 39167  df-oml 39168  df-covers 39255  df-ats 39256  df-atl 39287  df-cvlat 39311  df-hlat 39340  df-llines 39487  df-lplanes 39488  df-lvols 39489  df-lines 39490  df-psubsp 39492  df-pmap 39493  df-padd 39785  df-lhyp 39977  df-laut 39978  df-ldil 40093  df-ltrn 40094  df-trl 40148
This theorem is referenced by:  dihpN  41325
  Copyright terms: Public domain W3C validator