HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  unopnorm Structured version   Visualization version   GIF version

Theorem unopnorm 31901
Description: A unitary operator is idempotent in the norm. (Contributed by NM, 25-Feb-2006.) (New usage is discouraged.)
Assertion
Ref Expression
unopnorm ((𝑇 ∈ UniOp ∧ 𝐴 ∈ ℋ) → (norm‘(𝑇𝐴)) = (norm𝐴))

Proof of Theorem unopnorm
StepHypRef Expression
1 unopf1o 31900 . . . . 5 (𝑇 ∈ UniOp → 𝑇: ℋ–1-1-onto→ ℋ)
2 f1of 6770 . . . . 5 (𝑇: ℋ–1-1-onto→ ℋ → 𝑇: ℋ⟶ ℋ)
31, 2syl 17 . . . 4 (𝑇 ∈ UniOp → 𝑇: ℋ⟶ ℋ)
43ffvelcdmda 7025 . . 3 ((𝑇 ∈ UniOp ∧ 𝐴 ∈ ℋ) → (𝑇𝐴) ∈ ℋ)
5 normcl 31109 . . 3 ((𝑇𝐴) ∈ ℋ → (norm‘(𝑇𝐴)) ∈ ℝ)
64, 5syl 17 . 2 ((𝑇 ∈ UniOp ∧ 𝐴 ∈ ℋ) → (norm‘(𝑇𝐴)) ∈ ℝ)
7 normcl 31109 . . 3 (𝐴 ∈ ℋ → (norm𝐴) ∈ ℝ)
87adantl 481 . 2 ((𝑇 ∈ UniOp ∧ 𝐴 ∈ ℋ) → (norm𝐴) ∈ ℝ)
9 normge0 31110 . . 3 ((𝑇𝐴) ∈ ℋ → 0 ≤ (norm‘(𝑇𝐴)))
104, 9syl 17 . 2 ((𝑇 ∈ UniOp ∧ 𝐴 ∈ ℋ) → 0 ≤ (norm‘(𝑇𝐴)))
11 normge0 31110 . . 3 (𝐴 ∈ ℋ → 0 ≤ (norm𝐴))
1211adantl 481 . 2 ((𝑇 ∈ UniOp ∧ 𝐴 ∈ ℋ) → 0 ≤ (norm𝐴))
13 unop 31899 . . . 4 ((𝑇 ∈ UniOp ∧ 𝐴 ∈ ℋ ∧ 𝐴 ∈ ℋ) → ((𝑇𝐴) ·ih (𝑇𝐴)) = (𝐴 ·ih 𝐴))
14133anidm23 1423 . . 3 ((𝑇 ∈ UniOp ∧ 𝐴 ∈ ℋ) → ((𝑇𝐴) ·ih (𝑇𝐴)) = (𝐴 ·ih 𝐴))
15 normsq 31118 . . . 4 ((𝑇𝐴) ∈ ℋ → ((norm‘(𝑇𝐴))↑2) = ((𝑇𝐴) ·ih (𝑇𝐴)))
164, 15syl 17 . . 3 ((𝑇 ∈ UniOp ∧ 𝐴 ∈ ℋ) → ((norm‘(𝑇𝐴))↑2) = ((𝑇𝐴) ·ih (𝑇𝐴)))
17 normsq 31118 . . . 4 (𝐴 ∈ ℋ → ((norm𝐴)↑2) = (𝐴 ·ih 𝐴))
1817adantl 481 . . 3 ((𝑇 ∈ UniOp ∧ 𝐴 ∈ ℋ) → ((norm𝐴)↑2) = (𝐴 ·ih 𝐴))
1914, 16, 183eqtr4d 2778 . 2 ((𝑇 ∈ UniOp ∧ 𝐴 ∈ ℋ) → ((norm‘(𝑇𝐴))↑2) = ((norm𝐴)↑2))
206, 8, 10, 12, 19sq11d 14169 1 ((𝑇 ∈ UniOp ∧ 𝐴 ∈ ℋ) → (norm‘(𝑇𝐴)) = (norm𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113   class class class wbr 5095  wf 6484  1-1-ontowf1o 6487  cfv 6488  (class class class)co 7354  cr 11014  0cc0 11015  cle 11156  2c2 12189  cexp 13972  chba 30903   ·ih csp 30906  normcno 30907  UniOpcuo 30933
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7676  ax-cnex 11071  ax-resscn 11072  ax-1cn 11073  ax-icn 11074  ax-addcl 11075  ax-addrcl 11076  ax-mulcl 11077  ax-mulrcl 11078  ax-mulcom 11079  ax-addass 11080  ax-mulass 11081  ax-distr 11082  ax-i2m1 11083  ax-1ne0 11084  ax-1rid 11085  ax-rnegex 11086  ax-rrecex 11087  ax-cnre 11088  ax-pre-lttri 11089  ax-pre-lttrn 11090  ax-pre-ltadd 11091  ax-pre-mulgt0 11092  ax-pre-sup 11093  ax-hilex 30983  ax-hfvadd 30984  ax-hvcom 30985  ax-hvass 30986  ax-hv0cl 30987  ax-hvaddid 30988  ax-hfvmul 30989  ax-hvmulid 30990  ax-hvdistr2 30993  ax-hvmul0 30994  ax-hfi 31063  ax-his1 31066  ax-his2 31067  ax-his3 31068  ax-his4 31069
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6255  df-ord 6316  df-on 6317  df-lim 6318  df-suc 6319  df-iota 6444  df-fun 6490  df-fn 6491  df-f 6492  df-f1 6493  df-fo 6494  df-f1o 6495  df-fv 6496  df-riota 7311  df-ov 7357  df-oprab 7358  df-mpo 7359  df-om 7805  df-2nd 7930  df-frecs 8219  df-wrecs 8250  df-recs 8299  df-rdg 8337  df-er 8630  df-en 8878  df-dom 8879  df-sdom 8880  df-sup 9335  df-pnf 11157  df-mnf 11158  df-xr 11159  df-ltxr 11160  df-le 11161  df-sub 11355  df-neg 11356  df-div 11784  df-nn 12135  df-2 12197  df-3 12198  df-n0 12391  df-z 12478  df-uz 12741  df-rp 12895  df-seq 13913  df-exp 13973  df-cj 15010  df-re 15011  df-im 15012  df-sqrt 15146  df-hnorm 30952  df-hvsub 30955  df-unop 31827
This theorem is referenced by:  elunop2  31997  nmopun  31998
  Copyright terms: Public domain W3C validator