Users' Mathboxes Mathbox for Jeff Hoffman < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nndivlub Structured version   Visualization version   GIF version

Theorem nndivlub 35647
Description: A factor of a positive integer cannot exceed it. (Contributed by Jeff Hoffman, 17-Jun-2008.)
Assertion
Ref Expression
nndivlub ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ((𝐴 / 𝐵) ∈ ℕ → 𝐵𝐴))

Proof of Theorem nndivlub
StepHypRef Expression
1 nnre 12224 . . 3 (𝐵 ∈ ℕ → 𝐵 ∈ ℝ)
2 nngt0 12248 . . 3 (𝐵 ∈ ℕ → 0 < 𝐵)
31, 2jca 511 . 2 (𝐵 ∈ ℕ → (𝐵 ∈ ℝ ∧ 0 < 𝐵))
4 nnre 12224 . . 3 (𝐴 ∈ ℕ → 𝐴 ∈ ℝ)
5 nngt0 12248 . . 3 (𝐴 ∈ ℕ → 0 < 𝐴)
64, 5jca 511 . 2 (𝐴 ∈ ℕ → (𝐴 ∈ ℝ ∧ 0 < 𝐴))
7 nnge1 12245 . . 3 ((𝐴 / 𝐵) ∈ ℕ → 1 ≤ (𝐴 / 𝐵))
8 lediv2 12109 . . . . 5 (((𝐵 ∈ ℝ ∧ 0 < 𝐵) ∧ (𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) → (𝐵𝐴 ↔ (𝐴 / 𝐴) ≤ (𝐴 / 𝐵)))
983anidm23 1420 . . . 4 (((𝐵 ∈ ℝ ∧ 0 < 𝐵) ∧ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) → (𝐵𝐴 ↔ (𝐴 / 𝐴) ≤ (𝐴 / 𝐵)))
10 recn 11203 . . . . . . 7 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
1110adantr 480 . . . . . 6 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 𝐴 ∈ ℂ)
12 gt0ne0 11684 . . . . . 6 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 𝐴 ≠ 0)
13 divid 11906 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (𝐴 / 𝐴) = 1)
1413breq1d 5158 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ((𝐴 / 𝐴) ≤ (𝐴 / 𝐵) ↔ 1 ≤ (𝐴 / 𝐵)))
1511, 12, 14syl2anc 583 . . . . 5 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → ((𝐴 / 𝐴) ≤ (𝐴 / 𝐵) ↔ 1 ≤ (𝐴 / 𝐵)))
1615adantl 481 . . . 4 (((𝐵 ∈ ℝ ∧ 0 < 𝐵) ∧ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) → ((𝐴 / 𝐴) ≤ (𝐴 / 𝐵) ↔ 1 ≤ (𝐴 / 𝐵)))
179, 16bitrd 279 . . 3 (((𝐵 ∈ ℝ ∧ 0 < 𝐵) ∧ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) → (𝐵𝐴 ↔ 1 ≤ (𝐴 / 𝐵)))
187, 17imbitrrid 245 . 2 (((𝐵 ∈ ℝ ∧ 0 < 𝐵) ∧ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) → ((𝐴 / 𝐵) ∈ ℕ → 𝐵𝐴))
193, 6, 18syl2anr 596 1 ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ((𝐴 / 𝐵) ∈ ℕ → 𝐵𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wcel 2105  wne 2939   class class class wbr 5148  (class class class)co 7412  cc 11111  cr 11112  0cc0 11113  1c1 11114   < clt 11253  cle 11254   / cdiv 11876  cn 12217
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7728  ax-resscn 11170  ax-1cn 11171  ax-icn 11172  ax-addcl 11173  ax-addrcl 11174  ax-mulcl 11175  ax-mulrcl 11176  ax-mulcom 11177  ax-addass 11178  ax-mulass 11179  ax-distr 11180  ax-i2m1 11181  ax-1ne0 11182  ax-1rid 11183  ax-rnegex 11184  ax-rrecex 11185  ax-cnre 11186  ax-pre-lttri 11187  ax-pre-lttrn 11188  ax-pre-ltadd 11189  ax-pre-mulgt0 11190
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7368  df-ov 7415  df-oprab 7416  df-mpo 7417  df-om 7859  df-2nd 7979  df-frecs 8269  df-wrecs 8300  df-recs 8374  df-rdg 8413  df-er 8706  df-en 8943  df-dom 8944  df-sdom 8945  df-pnf 11255  df-mnf 11256  df-xr 11257  df-ltxr 11258  df-le 11259  df-sub 11451  df-neg 11452  df-div 11877  df-nn 12218
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator