![]() |
Mathbox for Jeff Hoffman |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > nndivlub | Structured version Visualization version GIF version |
Description: A factor of a positive integer cannot exceed it. (Contributed by Jeff Hoffman, 17-Jun-2008.) |
Ref | Expression |
---|---|
nndivlub | ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ((𝐴 / 𝐵) ∈ ℕ → 𝐵 ≤ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnre 12224 | . . 3 ⊢ (𝐵 ∈ ℕ → 𝐵 ∈ ℝ) | |
2 | nngt0 12248 | . . 3 ⊢ (𝐵 ∈ ℕ → 0 < 𝐵) | |
3 | 1, 2 | jca 511 | . 2 ⊢ (𝐵 ∈ ℕ → (𝐵 ∈ ℝ ∧ 0 < 𝐵)) |
4 | nnre 12224 | . . 3 ⊢ (𝐴 ∈ ℕ → 𝐴 ∈ ℝ) | |
5 | nngt0 12248 | . . 3 ⊢ (𝐴 ∈ ℕ → 0 < 𝐴) | |
6 | 4, 5 | jca 511 | . 2 ⊢ (𝐴 ∈ ℕ → (𝐴 ∈ ℝ ∧ 0 < 𝐴)) |
7 | nnge1 12245 | . . 3 ⊢ ((𝐴 / 𝐵) ∈ ℕ → 1 ≤ (𝐴 / 𝐵)) | |
8 | lediv2 12109 | . . . . 5 ⊢ (((𝐵 ∈ ℝ ∧ 0 < 𝐵) ∧ (𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) → (𝐵 ≤ 𝐴 ↔ (𝐴 / 𝐴) ≤ (𝐴 / 𝐵))) | |
9 | 8 | 3anidm23 1420 | . . . 4 ⊢ (((𝐵 ∈ ℝ ∧ 0 < 𝐵) ∧ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) → (𝐵 ≤ 𝐴 ↔ (𝐴 / 𝐴) ≤ (𝐴 / 𝐵))) |
10 | recn 11203 | . . . . . . 7 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℂ) | |
11 | 10 | adantr 480 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 𝐴 ∈ ℂ) |
12 | gt0ne0 11684 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 𝐴 ≠ 0) | |
13 | divid 11906 | . . . . . . 7 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (𝐴 / 𝐴) = 1) | |
14 | 13 | breq1d 5158 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ((𝐴 / 𝐴) ≤ (𝐴 / 𝐵) ↔ 1 ≤ (𝐴 / 𝐵))) |
15 | 11, 12, 14 | syl2anc 583 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → ((𝐴 / 𝐴) ≤ (𝐴 / 𝐵) ↔ 1 ≤ (𝐴 / 𝐵))) |
16 | 15 | adantl 481 | . . . 4 ⊢ (((𝐵 ∈ ℝ ∧ 0 < 𝐵) ∧ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) → ((𝐴 / 𝐴) ≤ (𝐴 / 𝐵) ↔ 1 ≤ (𝐴 / 𝐵))) |
17 | 9, 16 | bitrd 279 | . . 3 ⊢ (((𝐵 ∈ ℝ ∧ 0 < 𝐵) ∧ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) → (𝐵 ≤ 𝐴 ↔ 1 ≤ (𝐴 / 𝐵))) |
18 | 7, 17 | imbitrrid 245 | . 2 ⊢ (((𝐵 ∈ ℝ ∧ 0 < 𝐵) ∧ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) → ((𝐴 / 𝐵) ∈ ℕ → 𝐵 ≤ 𝐴)) |
19 | 3, 6, 18 | syl2anr 596 | 1 ⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ((𝐴 / 𝐵) ∈ ℕ → 𝐵 ≤ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∈ wcel 2105 ≠ wne 2939 class class class wbr 5148 (class class class)co 7412 ℂcc 11111 ℝcr 11112 0cc0 11113 1c1 11114 < clt 11253 ≤ cle 11254 / cdiv 11876 ℕcn 12217 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7728 ax-resscn 11170 ax-1cn 11171 ax-icn 11172 ax-addcl 11173 ax-addrcl 11174 ax-mulcl 11175 ax-mulrcl 11176 ax-mulcom 11177 ax-addass 11178 ax-mulass 11179 ax-distr 11180 ax-i2m1 11181 ax-1ne0 11182 ax-1rid 11183 ax-rnegex 11184 ax-rrecex 11185 ax-cnre 11186 ax-pre-lttri 11187 ax-pre-lttrn 11188 ax-pre-ltadd 11189 ax-pre-mulgt0 11190 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7859 df-2nd 7979 df-frecs 8269 df-wrecs 8300 df-recs 8374 df-rdg 8413 df-er 8706 df-en 8943 df-dom 8944 df-sdom 8945 df-pnf 11255 df-mnf 11256 df-xr 11257 df-ltxr 11258 df-le 11259 df-sub 11451 df-neg 11452 df-div 11877 df-nn 12218 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |