MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  smadiadet Structured version   Visualization version   GIF version

Theorem smadiadet 22676
Description: The determinant of a submatrix of a square matrix obtained by removing a row and a column at the same index equals the determinant of the original matrix with the row replaced with 0's and a 1 at the diagonal position. (Contributed by AV, 31-Jan-2019.) (Proof shortened by AV, 24-Jul-2019.)
Hypotheses
Ref Expression
smadiadet.a 𝐴 = (𝑁 Mat 𝑅)
smadiadet.b 𝐵 = (Base‘𝐴)
smadiadet.r 𝑅 ∈ CRing
smadiadet.d 𝐷 = (𝑁 maDet 𝑅)
smadiadet.h 𝐸 = ((𝑁 ∖ {𝐾}) maDet 𝑅)
Assertion
Ref Expression
smadiadet ((𝑀𝐵𝐾𝑁) → (𝐸‘(𝐾((𝑁 subMat 𝑅)‘𝑀)𝐾)) = (𝐷‘(𝐾((𝑁 minMatR1 𝑅)‘𝑀)𝐾)))

Proof of Theorem smadiadet
Dummy variables 𝑖 𝑗 𝑛 𝑝 𝑞 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 smadiadet.a . . . . 5 𝐴 = (𝑁 Mat 𝑅)
2 eqid 2737 . . . . 5 (𝑁 subMat 𝑅) = (𝑁 subMat 𝑅)
3 smadiadet.b . . . . 5 𝐵 = (Base‘𝐴)
41, 2, 3submaval 22587 . . . 4 ((𝑀𝐵𝐾𝑁𝐾𝑁) → (𝐾((𝑁 subMat 𝑅)‘𝑀)𝐾) = (𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑖𝑀𝑗)))
543anidm23 1423 . . 3 ((𝑀𝐵𝐾𝑁) → (𝐾((𝑁 subMat 𝑅)‘𝑀)𝐾) = (𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑖𝑀𝑗)))
65fveq2d 6910 . 2 ((𝑀𝐵𝐾𝑁) → (𝐸‘(𝐾((𝑁 subMat 𝑅)‘𝑀)𝐾)) = (𝐸‘(𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑖𝑀𝑗))))
7 eqid 2737 . . . . . 6 (𝑁 minMatR1 𝑅) = (𝑁 minMatR1 𝑅)
8 eqid 2737 . . . . . 6 (1r𝑅) = (1r𝑅)
9 eqid 2737 . . . . . 6 (0g𝑅) = (0g𝑅)
101, 3, 7, 8, 9minmar1val 22654 . . . . 5 ((𝑀𝐵𝐾𝑁𝐾𝑁) → (𝐾((𝑁 minMatR1 𝑅)‘𝑀)𝐾) = (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐾, (1r𝑅), (0g𝑅)), (𝑖𝑀𝑗))))
11103anidm23 1423 . . . 4 ((𝑀𝐵𝐾𝑁) → (𝐾((𝑁 minMatR1 𝑅)‘𝑀)𝐾) = (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐾, (1r𝑅), (0g𝑅)), (𝑖𝑀𝑗))))
1211fveq2d 6910 . . 3 ((𝑀𝐵𝐾𝑁) → (𝐷‘(𝐾((𝑁 minMatR1 𝑅)‘𝑀)𝐾)) = (𝐷‘(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐾, (1r𝑅), (0g𝑅)), (𝑖𝑀𝑗)))))
13 smadiadet.r . . . . 5 𝑅 ∈ CRing
141, 3, 13, 9, 8marep01ma 22666 . . . . 5 (𝑀𝐵 → (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐾, (1r𝑅), (0g𝑅)), (𝑖𝑀𝑗))) ∈ 𝐵)
15 smadiadet.d . . . . . 6 𝐷 = (𝑁 maDet 𝑅)
16 eqid 2737 . . . . . 6 (Base‘(SymGrp‘𝑁)) = (Base‘(SymGrp‘𝑁))
17 eqid 2737 . . . . . 6 (ℤRHom‘𝑅) = (ℤRHom‘𝑅)
18 eqid 2737 . . . . . 6 (pmSgn‘𝑁) = (pmSgn‘𝑁)
19 eqid 2737 . . . . . 6 (.r𝑅) = (.r𝑅)
20 eqid 2737 . . . . . 6 (mulGrp‘𝑅) = (mulGrp‘𝑅)
2115, 1, 3, 16, 17, 18, 19, 20mdetleib2 22594 . . . . 5 ((𝑅 ∈ CRing ∧ (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐾, (1r𝑅), (0g𝑅)), (𝑖𝑀𝑗))) ∈ 𝐵) → (𝐷‘(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐾, (1r𝑅), (0g𝑅)), (𝑖𝑀𝑗)))) = (𝑅 Σg (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ (𝑛(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐾, (1r𝑅), (0g𝑅)), (𝑖𝑀𝑗)))(𝑝𝑛))))))))
2213, 14, 21sylancr 587 . . . 4 (𝑀𝐵 → (𝐷‘(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐾, (1r𝑅), (0g𝑅)), (𝑖𝑀𝑗)))) = (𝑅 Σg (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ (𝑛(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐾, (1r𝑅), (0g𝑅)), (𝑖𝑀𝑗)))(𝑝𝑛))))))))
2322adantr 480 . . 3 ((𝑀𝐵𝐾𝑁) → (𝐷‘(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐾, (1r𝑅), (0g𝑅)), (𝑖𝑀𝑗)))) = (𝑅 Σg (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ (𝑛(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐾, (1r𝑅), (0g𝑅)), (𝑖𝑀𝑗)))(𝑝𝑛))))))))
24 eqid 2737 . . . . 5 (Base‘𝑅) = (Base‘𝑅)
25 eqid 2737 . . . . 5 (+g𝑅) = (+g𝑅)
26 crngring 20242 . . . . . . 7 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
27 ringcmn 20279 . . . . . . 7 (𝑅 ∈ Ring → 𝑅 ∈ CMnd)
2813, 26, 27mp2b 10 . . . . . 6 𝑅 ∈ CMnd
2928a1i 11 . . . . 5 ((𝑀𝐵𝐾𝑁) → 𝑅 ∈ CMnd)
301, 3matrcl 22416 . . . . . . . 8 (𝑀𝐵 → (𝑁 ∈ Fin ∧ 𝑅 ∈ V))
3130simpld 494 . . . . . . 7 (𝑀𝐵𝑁 ∈ Fin)
32 eqid 2737 . . . . . . . 8 (SymGrp‘𝑁) = (SymGrp‘𝑁)
3332, 16symgbasfi 19396 . . . . . . 7 (𝑁 ∈ Fin → (Base‘(SymGrp‘𝑁)) ∈ Fin)
3431, 33syl 17 . . . . . 6 (𝑀𝐵 → (Base‘(SymGrp‘𝑁)) ∈ Fin)
3534adantr 480 . . . . 5 ((𝑀𝐵𝐾𝑁) → (Base‘(SymGrp‘𝑁)) ∈ Fin)
361, 3, 13, 9, 8, 16, 20, 17, 18, 19smadiadetlem1 22668 . . . . 5 (((𝑀𝐵𝐾𝑁) ∧ 𝑝 ∈ (Base‘(SymGrp‘𝑁))) → ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ (𝑛(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐾, (1r𝑅), (0g𝑅)), (𝑖𝑀𝑗)))(𝑝𝑛))))) ∈ (Base‘𝑅))
37 disjdif 4472 . . . . . 6 ({𝑞 ∈ (Base‘(SymGrp‘𝑁)) ∣ (𝑞𝐾) = 𝐾} ∩ ((Base‘(SymGrp‘𝑁)) ∖ {𝑞 ∈ (Base‘(SymGrp‘𝑁)) ∣ (𝑞𝐾) = 𝐾})) = ∅
3837a1i 11 . . . . 5 ((𝑀𝐵𝐾𝑁) → ({𝑞 ∈ (Base‘(SymGrp‘𝑁)) ∣ (𝑞𝐾) = 𝐾} ∩ ((Base‘(SymGrp‘𝑁)) ∖ {𝑞 ∈ (Base‘(SymGrp‘𝑁)) ∣ (𝑞𝐾) = 𝐾})) = ∅)
39 ssrab2 4080 . . . . . . . 8 {𝑞 ∈ (Base‘(SymGrp‘𝑁)) ∣ (𝑞𝐾) = 𝐾} ⊆ (Base‘(SymGrp‘𝑁))
4039a1i 11 . . . . . . 7 ((𝑀𝐵𝐾𝑁) → {𝑞 ∈ (Base‘(SymGrp‘𝑁)) ∣ (𝑞𝐾) = 𝐾} ⊆ (Base‘(SymGrp‘𝑁)))
41 undif 4482 . . . . . . 7 ({𝑞 ∈ (Base‘(SymGrp‘𝑁)) ∣ (𝑞𝐾) = 𝐾} ⊆ (Base‘(SymGrp‘𝑁)) ↔ ({𝑞 ∈ (Base‘(SymGrp‘𝑁)) ∣ (𝑞𝐾) = 𝐾} ∪ ((Base‘(SymGrp‘𝑁)) ∖ {𝑞 ∈ (Base‘(SymGrp‘𝑁)) ∣ (𝑞𝐾) = 𝐾})) = (Base‘(SymGrp‘𝑁)))
4240, 41sylib 218 . . . . . 6 ((𝑀𝐵𝐾𝑁) → ({𝑞 ∈ (Base‘(SymGrp‘𝑁)) ∣ (𝑞𝐾) = 𝐾} ∪ ((Base‘(SymGrp‘𝑁)) ∖ {𝑞 ∈ (Base‘(SymGrp‘𝑁)) ∣ (𝑞𝐾) = 𝐾})) = (Base‘(SymGrp‘𝑁)))
4342eqcomd 2743 . . . . 5 ((𝑀𝐵𝐾𝑁) → (Base‘(SymGrp‘𝑁)) = ({𝑞 ∈ (Base‘(SymGrp‘𝑁)) ∣ (𝑞𝐾) = 𝐾} ∪ ((Base‘(SymGrp‘𝑁)) ∖ {𝑞 ∈ (Base‘(SymGrp‘𝑁)) ∣ (𝑞𝐾) = 𝐾})))
4424, 25, 29, 35, 36, 38, 43gsummptfidmsplit 19948 . . . 4 ((𝑀𝐵𝐾𝑁) → (𝑅 Σg (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ (𝑛(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐾, (1r𝑅), (0g𝑅)), (𝑖𝑀𝑗)))(𝑝𝑛))))))) = ((𝑅 Σg (𝑝 ∈ {𝑞 ∈ (Base‘(SymGrp‘𝑁)) ∣ (𝑞𝐾) = 𝐾} ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ (𝑛(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐾, (1r𝑅), (0g𝑅)), (𝑖𝑀𝑗)))(𝑝𝑛)))))))(+g𝑅)(𝑅 Σg (𝑝 ∈ ((Base‘(SymGrp‘𝑁)) ∖ {𝑞 ∈ (Base‘(SymGrp‘𝑁)) ∣ (𝑞𝐾) = 𝐾}) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ (𝑛(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐾, (1r𝑅), (0g𝑅)), (𝑖𝑀𝑗)))(𝑝𝑛)))))))))
45 eqid 2737 . . . . . 6 (Base‘(SymGrp‘(𝑁 ∖ {𝐾}))) = (Base‘(SymGrp‘(𝑁 ∖ {𝐾})))
46 eqid 2737 . . . . . 6 (pmSgn‘(𝑁 ∖ {𝐾})) = (pmSgn‘(𝑁 ∖ {𝐾}))
471, 3, 13, 9, 8, 16, 20, 17, 18, 19, 45, 46smadiadetlem4 22675 . . . . 5 ((𝑀𝐵𝐾𝑁) → (𝑅 Σg (𝑝 ∈ {𝑞 ∈ (Base‘(SymGrp‘𝑁)) ∣ (𝑞𝐾) = 𝐾} ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ (𝑛(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐾, (1r𝑅), (0g𝑅)), (𝑖𝑀𝑗)))(𝑝𝑛))))))) = (𝑅 Σg (𝑝 ∈ (Base‘(SymGrp‘(𝑁 ∖ {𝐾}))) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘(𝑁 ∖ {𝐾})))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑛 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑛(𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑖𝑀𝑗))(𝑝𝑛))))))))
481, 3, 13, 9, 8, 16, 20, 17, 18, 19smadiadetlem2 22670 . . . . 5 ((𝑀𝐵𝐾𝑁) → (𝑅 Σg (𝑝 ∈ ((Base‘(SymGrp‘𝑁)) ∖ {𝑞 ∈ (Base‘(SymGrp‘𝑁)) ∣ (𝑞𝐾) = 𝐾}) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ (𝑛(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐾, (1r𝑅), (0g𝑅)), (𝑖𝑀𝑗)))(𝑝𝑛))))))) = (0g𝑅))
4947, 48oveq12d 7449 . . . 4 ((𝑀𝐵𝐾𝑁) → ((𝑅 Σg (𝑝 ∈ {𝑞 ∈ (Base‘(SymGrp‘𝑁)) ∣ (𝑞𝐾) = 𝐾} ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ (𝑛(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐾, (1r𝑅), (0g𝑅)), (𝑖𝑀𝑗)))(𝑝𝑛)))))))(+g𝑅)(𝑅 Σg (𝑝 ∈ ((Base‘(SymGrp‘𝑁)) ∖ {𝑞 ∈ (Base‘(SymGrp‘𝑁)) ∣ (𝑞𝐾) = 𝐾}) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ (𝑛(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐾, (1r𝑅), (0g𝑅)), (𝑖𝑀𝑗)))(𝑝𝑛)))))))) = ((𝑅 Σg (𝑝 ∈ (Base‘(SymGrp‘(𝑁 ∖ {𝐾}))) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘(𝑁 ∖ {𝐾})))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑛 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑛(𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑖𝑀𝑗))(𝑝𝑛)))))))(+g𝑅)(0g𝑅)))
50 ringmnd 20240 . . . . . . 7 (𝑅 ∈ Ring → 𝑅 ∈ Mnd)
5113, 26, 50mp2b 10 . . . . . 6 𝑅 ∈ Mnd
52 diffi 9215 . . . . . . . . . 10 (𝑁 ∈ Fin → (𝑁 ∖ {𝐾}) ∈ Fin)
5331, 52syl 17 . . . . . . . . 9 (𝑀𝐵 → (𝑁 ∖ {𝐾}) ∈ Fin)
5453adantr 480 . . . . . . . 8 ((𝑀𝐵𝐾𝑁) → (𝑁 ∖ {𝐾}) ∈ Fin)
55 eqid 2737 . . . . . . . . 9 (SymGrp‘(𝑁 ∖ {𝐾})) = (SymGrp‘(𝑁 ∖ {𝐾}))
5655, 45symgbasfi 19396 . . . . . . . 8 ((𝑁 ∖ {𝐾}) ∈ Fin → (Base‘(SymGrp‘(𝑁 ∖ {𝐾}))) ∈ Fin)
5754, 56syl 17 . . . . . . 7 ((𝑀𝐵𝐾𝑁) → (Base‘(SymGrp‘(𝑁 ∖ {𝐾}))) ∈ Fin)
58 simpll 767 . . . . . . . . . 10 (((𝑀𝐵𝐾𝑁) ∧ 𝑝 ∈ (Base‘(SymGrp‘(𝑁 ∖ {𝐾})))) → 𝑀𝐵)
59 difssd 4137 . . . . . . . . . 10 (((𝑀𝐵𝐾𝑁) ∧ 𝑝 ∈ (Base‘(SymGrp‘(𝑁 ∖ {𝐾})))) → (𝑁 ∖ {𝐾}) ⊆ 𝑁)
601, 3submabas 22584 . . . . . . . . . 10 ((𝑀𝐵 ∧ (𝑁 ∖ {𝐾}) ⊆ 𝑁) → (𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑖𝑀𝑗)) ∈ (Base‘((𝑁 ∖ {𝐾}) Mat 𝑅)))
6158, 59, 60syl2anc 584 . . . . . . . . 9 (((𝑀𝐵𝐾𝑁) ∧ 𝑝 ∈ (Base‘(SymGrp‘(𝑁 ∖ {𝐾})))) → (𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑖𝑀𝑗)) ∈ (Base‘((𝑁 ∖ {𝐾}) Mat 𝑅)))
62 simpr 484 . . . . . . . . 9 (((𝑀𝐵𝐾𝑁) ∧ 𝑝 ∈ (Base‘(SymGrp‘(𝑁 ∖ {𝐾})))) → 𝑝 ∈ (Base‘(SymGrp‘(𝑁 ∖ {𝐾}))))
63 eqid 2737 . . . . . . . . . 10 ((𝑁 ∖ {𝐾}) Mat 𝑅) = ((𝑁 ∖ {𝐾}) Mat 𝑅)
64 eqid 2737 . . . . . . . . . 10 (Base‘((𝑁 ∖ {𝐾}) Mat 𝑅)) = (Base‘((𝑁 ∖ {𝐾}) Mat 𝑅))
6545, 46, 17, 63, 64, 20madetsmelbas2 22471 . . . . . . . . 9 ((𝑅 ∈ CRing ∧ (𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑖𝑀𝑗)) ∈ (Base‘((𝑁 ∖ {𝐾}) Mat 𝑅)) ∧ 𝑝 ∈ (Base‘(SymGrp‘(𝑁 ∖ {𝐾})))) → ((((ℤRHom‘𝑅) ∘ (pmSgn‘(𝑁 ∖ {𝐾})))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑛 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑛(𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑖𝑀𝑗))(𝑝𝑛))))) ∈ (Base‘𝑅))
6613, 61, 62, 65mp3an2i 1468 . . . . . . . 8 (((𝑀𝐵𝐾𝑁) ∧ 𝑝 ∈ (Base‘(SymGrp‘(𝑁 ∖ {𝐾})))) → ((((ℤRHom‘𝑅) ∘ (pmSgn‘(𝑁 ∖ {𝐾})))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑛 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑛(𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑖𝑀𝑗))(𝑝𝑛))))) ∈ (Base‘𝑅))
6766ralrimiva 3146 . . . . . . 7 ((𝑀𝐵𝐾𝑁) → ∀𝑝 ∈ (Base‘(SymGrp‘(𝑁 ∖ {𝐾})))((((ℤRHom‘𝑅) ∘ (pmSgn‘(𝑁 ∖ {𝐾})))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑛 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑛(𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑖𝑀𝑗))(𝑝𝑛))))) ∈ (Base‘𝑅))
6824, 29, 57, 67gsummptcl 19985 . . . . . 6 ((𝑀𝐵𝐾𝑁) → (𝑅 Σg (𝑝 ∈ (Base‘(SymGrp‘(𝑁 ∖ {𝐾}))) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘(𝑁 ∖ {𝐾})))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑛 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑛(𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑖𝑀𝑗))(𝑝𝑛))))))) ∈ (Base‘𝑅))
6924, 25, 9mndrid 18768 . . . . . 6 ((𝑅 ∈ Mnd ∧ (𝑅 Σg (𝑝 ∈ (Base‘(SymGrp‘(𝑁 ∖ {𝐾}))) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘(𝑁 ∖ {𝐾})))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑛 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑛(𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑖𝑀𝑗))(𝑝𝑛))))))) ∈ (Base‘𝑅)) → ((𝑅 Σg (𝑝 ∈ (Base‘(SymGrp‘(𝑁 ∖ {𝐾}))) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘(𝑁 ∖ {𝐾})))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑛 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑛(𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑖𝑀𝑗))(𝑝𝑛)))))))(+g𝑅)(0g𝑅)) = (𝑅 Σg (𝑝 ∈ (Base‘(SymGrp‘(𝑁 ∖ {𝐾}))) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘(𝑁 ∖ {𝐾})))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑛 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑛(𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑖𝑀𝑗))(𝑝𝑛))))))))
7051, 68, 69sylancr 587 . . . . 5 ((𝑀𝐵𝐾𝑁) → ((𝑅 Σg (𝑝 ∈ (Base‘(SymGrp‘(𝑁 ∖ {𝐾}))) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘(𝑁 ∖ {𝐾})))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑛 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑛(𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑖𝑀𝑗))(𝑝𝑛)))))))(+g𝑅)(0g𝑅)) = (𝑅 Σg (𝑝 ∈ (Base‘(SymGrp‘(𝑁 ∖ {𝐾}))) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘(𝑁 ∖ {𝐾})))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑛 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑛(𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑖𝑀𝑗))(𝑝𝑛))))))))
71 difssd 4137 . . . . . . 7 (𝐾𝑁 → (𝑁 ∖ {𝐾}) ⊆ 𝑁)
7260, 13jctil 519 . . . . . . 7 ((𝑀𝐵 ∧ (𝑁 ∖ {𝐾}) ⊆ 𝑁) → (𝑅 ∈ CRing ∧ (𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑖𝑀𝑗)) ∈ (Base‘((𝑁 ∖ {𝐾}) Mat 𝑅))))
7371, 72sylan2 593 . . . . . 6 ((𝑀𝐵𝐾𝑁) → (𝑅 ∈ CRing ∧ (𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑖𝑀𝑗)) ∈ (Base‘((𝑁 ∖ {𝐾}) Mat 𝑅))))
74 smadiadet.h . . . . . . 7 𝐸 = ((𝑁 ∖ {𝐾}) maDet 𝑅)
7574, 63, 64, 45, 17, 46, 19, 20mdetleib2 22594 . . . . . 6 ((𝑅 ∈ CRing ∧ (𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑖𝑀𝑗)) ∈ (Base‘((𝑁 ∖ {𝐾}) Mat 𝑅))) → (𝐸‘(𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑖𝑀𝑗))) = (𝑅 Σg (𝑝 ∈ (Base‘(SymGrp‘(𝑁 ∖ {𝐾}))) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘(𝑁 ∖ {𝐾})))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑛 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑛(𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑖𝑀𝑗))(𝑝𝑛))))))))
7673, 75syl 17 . . . . 5 ((𝑀𝐵𝐾𝑁) → (𝐸‘(𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑖𝑀𝑗))) = (𝑅 Σg (𝑝 ∈ (Base‘(SymGrp‘(𝑁 ∖ {𝐾}))) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘(𝑁 ∖ {𝐾})))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑛 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑛(𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑖𝑀𝑗))(𝑝𝑛))))))))
7770, 76eqtr4d 2780 . . . 4 ((𝑀𝐵𝐾𝑁) → ((𝑅 Σg (𝑝 ∈ (Base‘(SymGrp‘(𝑁 ∖ {𝐾}))) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘(𝑁 ∖ {𝐾})))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑛 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑛(𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑖𝑀𝑗))(𝑝𝑛)))))))(+g𝑅)(0g𝑅)) = (𝐸‘(𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑖𝑀𝑗))))
7844, 49, 773eqtrd 2781 . . 3 ((𝑀𝐵𝐾𝑁) → (𝑅 Σg (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ (𝑛(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐾, (1r𝑅), (0g𝑅)), (𝑖𝑀𝑗)))(𝑝𝑛))))))) = (𝐸‘(𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑖𝑀𝑗))))
7912, 23, 783eqtrd 2781 . 2 ((𝑀𝐵𝐾𝑁) → (𝐷‘(𝐾((𝑁 minMatR1 𝑅)‘𝑀)𝐾)) = (𝐸‘(𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑖𝑀𝑗))))
806, 79eqtr4d 2780 1 ((𝑀𝐵𝐾𝑁) → (𝐸‘(𝐾((𝑁 subMat 𝑅)‘𝑀)𝐾)) = (𝐷‘(𝐾((𝑁 minMatR1 𝑅)‘𝑀)𝐾)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  {crab 3436  Vcvv 3480  cdif 3948  cun 3949  cin 3950  wss 3951  c0 4333  ifcif 4525  {csn 4626  cmpt 5225  ccom 5689  cfv 6561  (class class class)co 7431  cmpo 7433  Fincfn 8985  Basecbs 17247  +gcplusg 17297  .rcmulr 17298  0gc0g 17484   Σg cgsu 17485  Mndcmnd 18747  SymGrpcsymg 19386  pmSgncpsgn 19507  CMndccmn 19798  mulGrpcmgp 20137  1rcur 20178  Ringcrg 20230  CRingccrg 20231  ℤRHomczrh 21510   Mat cmat 22411   subMat csubma 22582   maDet cmdat 22590   minMatR1 cminmar1 22639
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-addf 11234  ax-mulf 11235
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-xor 1512  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-ot 4635  df-uni 4908  df-int 4947  df-iun 4993  df-iin 4994  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8014  df-2nd 8015  df-supp 8186  df-tpos 8251  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-er 8745  df-map 8868  df-pm 8869  df-ixp 8938  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-fsupp 9402  df-sup 9482  df-oi 9550  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-xnn0 12600  df-z 12614  df-dec 12734  df-uz 12879  df-rp 13035  df-fz 13548  df-fzo 13695  df-seq 14043  df-exp 14103  df-hash 14370  df-word 14553  df-lsw 14601  df-concat 14609  df-s1 14634  df-substr 14679  df-pfx 14709  df-splice 14788  df-reverse 14797  df-s2 14887  df-struct 17184  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-mulr 17311  df-starv 17312  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ds 17319  df-unif 17320  df-hom 17321  df-cco 17322  df-0g 17486  df-gsum 17487  df-prds 17492  df-pws 17494  df-mre 17629  df-mrc 17630  df-acs 17632  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-mhm 18796  df-submnd 18797  df-efmnd 18882  df-grp 18954  df-minusg 18955  df-mulg 19086  df-subg 19141  df-ghm 19231  df-gim 19277  df-cntz 19335  df-oppg 19364  df-symg 19387  df-pmtr 19460  df-psgn 19509  df-cmn 19800  df-abl 19801  df-mgp 20138  df-rng 20150  df-ur 20179  df-ring 20232  df-cring 20233  df-oppr 20334  df-dvdsr 20357  df-unit 20358  df-invr 20388  df-dvr 20401  df-rhm 20472  df-subrng 20546  df-subrg 20570  df-drng 20731  df-sra 21172  df-rgmod 21173  df-cnfld 21365  df-zring 21458  df-zrh 21514  df-dsmm 21752  df-frlm 21767  df-mat 22412  df-subma 22583  df-mdet 22591  df-minmar1 22641
This theorem is referenced by:  smadiadetg  22679
  Copyright terms: Public domain W3C validator