Step | Hyp | Ref
| Expression |
1 | | smadiadet.a |
. . . . 5
⊢ 𝐴 = (𝑁 Mat 𝑅) |
2 | | eqid 2758 |
. . . . 5
⊢ (𝑁 subMat 𝑅) = (𝑁 subMat 𝑅) |
3 | | smadiadet.b |
. . . . 5
⊢ 𝐵 = (Base‘𝐴) |
4 | 1, 2, 3 | submaval 21294 |
. . . 4
⊢ ((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁 ∧ 𝐾 ∈ 𝑁) → (𝐾((𝑁 subMat 𝑅)‘𝑀)𝐾) = (𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑖𝑀𝑗))) |
5 | 4 | 3anidm23 1418 |
. . 3
⊢ ((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁) → (𝐾((𝑁 subMat 𝑅)‘𝑀)𝐾) = (𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑖𝑀𝑗))) |
6 | 5 | fveq2d 6667 |
. 2
⊢ ((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁) → (𝐸‘(𝐾((𝑁 subMat 𝑅)‘𝑀)𝐾)) = (𝐸‘(𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑖𝑀𝑗)))) |
7 | | eqid 2758 |
. . . . . 6
⊢ (𝑁 minMatR1 𝑅) = (𝑁 minMatR1 𝑅) |
8 | | eqid 2758 |
. . . . . 6
⊢
(1r‘𝑅) = (1r‘𝑅) |
9 | | eqid 2758 |
. . . . . 6
⊢
(0g‘𝑅) = (0g‘𝑅) |
10 | 1, 3, 7, 8, 9 | minmar1val 21361 |
. . . . 5
⊢ ((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁 ∧ 𝐾 ∈ 𝑁) → (𝐾((𝑁 minMatR1 𝑅)‘𝑀)𝐾) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐾, (1r‘𝑅), (0g‘𝑅)), (𝑖𝑀𝑗)))) |
11 | 10 | 3anidm23 1418 |
. . . 4
⊢ ((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁) → (𝐾((𝑁 minMatR1 𝑅)‘𝑀)𝐾) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐾, (1r‘𝑅), (0g‘𝑅)), (𝑖𝑀𝑗)))) |
12 | 11 | fveq2d 6667 |
. . 3
⊢ ((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁) → (𝐷‘(𝐾((𝑁 minMatR1 𝑅)‘𝑀)𝐾)) = (𝐷‘(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐾, (1r‘𝑅), (0g‘𝑅)), (𝑖𝑀𝑗))))) |
13 | | smadiadet.r |
. . . . 5
⊢ 𝑅 ∈ CRing |
14 | 1, 3, 13, 9, 8 | marep01ma 21373 |
. . . . 5
⊢ (𝑀 ∈ 𝐵 → (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐾, (1r‘𝑅), (0g‘𝑅)), (𝑖𝑀𝑗))) ∈ 𝐵) |
15 | | smadiadet.d |
. . . . . 6
⊢ 𝐷 = (𝑁 maDet 𝑅) |
16 | | eqid 2758 |
. . . . . 6
⊢
(Base‘(SymGrp‘𝑁)) = (Base‘(SymGrp‘𝑁)) |
17 | | eqid 2758 |
. . . . . 6
⊢
(ℤRHom‘𝑅) = (ℤRHom‘𝑅) |
18 | | eqid 2758 |
. . . . . 6
⊢
(pmSgn‘𝑁) =
(pmSgn‘𝑁) |
19 | | eqid 2758 |
. . . . . 6
⊢
(.r‘𝑅) = (.r‘𝑅) |
20 | | eqid 2758 |
. . . . . 6
⊢
(mulGrp‘𝑅) =
(mulGrp‘𝑅) |
21 | 15, 1, 3, 16, 17, 18, 19, 20 | mdetleib2 21301 |
. . . . 5
⊢ ((𝑅 ∈ CRing ∧ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐾, (1r‘𝑅), (0g‘𝑅)), (𝑖𝑀𝑗))) ∈ 𝐵) → (𝐷‘(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐾, (1r‘𝑅), (0g‘𝑅)), (𝑖𝑀𝑗)))) = (𝑅 Σg (𝑝 ∈
(Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r‘𝑅)((mulGrp‘𝑅) Σg (𝑛 ∈ 𝑁 ↦ (𝑛(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐾, (1r‘𝑅), (0g‘𝑅)), (𝑖𝑀𝑗)))(𝑝‘𝑛)))))))) |
22 | 13, 14, 21 | sylancr 590 |
. . . 4
⊢ (𝑀 ∈ 𝐵 → (𝐷‘(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐾, (1r‘𝑅), (0g‘𝑅)), (𝑖𝑀𝑗)))) = (𝑅 Σg (𝑝 ∈
(Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r‘𝑅)((mulGrp‘𝑅) Σg (𝑛 ∈ 𝑁 ↦ (𝑛(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐾, (1r‘𝑅), (0g‘𝑅)), (𝑖𝑀𝑗)))(𝑝‘𝑛)))))))) |
23 | 22 | adantr 484 |
. . 3
⊢ ((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁) → (𝐷‘(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐾, (1r‘𝑅), (0g‘𝑅)), (𝑖𝑀𝑗)))) = (𝑅 Σg (𝑝 ∈
(Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r‘𝑅)((mulGrp‘𝑅) Σg (𝑛 ∈ 𝑁 ↦ (𝑛(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐾, (1r‘𝑅), (0g‘𝑅)), (𝑖𝑀𝑗)))(𝑝‘𝑛)))))))) |
24 | | eqid 2758 |
. . . . 5
⊢
(Base‘𝑅) =
(Base‘𝑅) |
25 | | eqid 2758 |
. . . . 5
⊢
(+g‘𝑅) = (+g‘𝑅) |
26 | | crngring 19390 |
. . . . . . 7
⊢ (𝑅 ∈ CRing → 𝑅 ∈ Ring) |
27 | | ringcmn 19415 |
. . . . . . 7
⊢ (𝑅 ∈ Ring → 𝑅 ∈ CMnd) |
28 | 13, 26, 27 | mp2b 10 |
. . . . . 6
⊢ 𝑅 ∈ CMnd |
29 | 28 | a1i 11 |
. . . . 5
⊢ ((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁) → 𝑅 ∈ CMnd) |
30 | 1, 3 | matrcl 21125 |
. . . . . . . 8
⊢ (𝑀 ∈ 𝐵 → (𝑁 ∈ Fin ∧ 𝑅 ∈ V)) |
31 | 30 | simpld 498 |
. . . . . . 7
⊢ (𝑀 ∈ 𝐵 → 𝑁 ∈ Fin) |
32 | | eqid 2758 |
. . . . . . . 8
⊢
(SymGrp‘𝑁) =
(SymGrp‘𝑁) |
33 | 32, 16 | symgbasfi 18587 |
. . . . . . 7
⊢ (𝑁 ∈ Fin →
(Base‘(SymGrp‘𝑁)) ∈ Fin) |
34 | 31, 33 | syl 17 |
. . . . . 6
⊢ (𝑀 ∈ 𝐵 → (Base‘(SymGrp‘𝑁)) ∈ Fin) |
35 | 34 | adantr 484 |
. . . . 5
⊢ ((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁) → (Base‘(SymGrp‘𝑁)) ∈ Fin) |
36 | 1, 3, 13, 9, 8, 16, 20, 17, 18, 19 | smadiadetlem1 21375 |
. . . . 5
⊢ (((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁) ∧ 𝑝 ∈ (Base‘(SymGrp‘𝑁))) →
((((ℤRHom‘𝑅)
∘ (pmSgn‘𝑁))‘𝑝)(.r‘𝑅)((mulGrp‘𝑅) Σg (𝑛 ∈ 𝑁 ↦ (𝑛(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐾, (1r‘𝑅), (0g‘𝑅)), (𝑖𝑀𝑗)))(𝑝‘𝑛))))) ∈ (Base‘𝑅)) |
37 | | disjdif 4371 |
. . . . . 6
⊢ ({𝑞 ∈
(Base‘(SymGrp‘𝑁)) ∣ (𝑞‘𝐾) = 𝐾} ∩ ((Base‘(SymGrp‘𝑁)) ∖ {𝑞 ∈ (Base‘(SymGrp‘𝑁)) ∣ (𝑞‘𝐾) = 𝐾})) = ∅ |
38 | 37 | a1i 11 |
. . . . 5
⊢ ((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁) → ({𝑞 ∈ (Base‘(SymGrp‘𝑁)) ∣ (𝑞‘𝐾) = 𝐾} ∩ ((Base‘(SymGrp‘𝑁)) ∖ {𝑞 ∈ (Base‘(SymGrp‘𝑁)) ∣ (𝑞‘𝐾) = 𝐾})) = ∅) |
39 | | ssrab2 3986 |
. . . . . . . 8
⊢ {𝑞 ∈
(Base‘(SymGrp‘𝑁)) ∣ (𝑞‘𝐾) = 𝐾} ⊆ (Base‘(SymGrp‘𝑁)) |
40 | 39 | a1i 11 |
. . . . . . 7
⊢ ((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁) → {𝑞 ∈ (Base‘(SymGrp‘𝑁)) ∣ (𝑞‘𝐾) = 𝐾} ⊆ (Base‘(SymGrp‘𝑁))) |
41 | | undif 4381 |
. . . . . . 7
⊢ ({𝑞 ∈
(Base‘(SymGrp‘𝑁)) ∣ (𝑞‘𝐾) = 𝐾} ⊆ (Base‘(SymGrp‘𝑁)) ↔ ({𝑞 ∈ (Base‘(SymGrp‘𝑁)) ∣ (𝑞‘𝐾) = 𝐾} ∪ ((Base‘(SymGrp‘𝑁)) ∖ {𝑞 ∈ (Base‘(SymGrp‘𝑁)) ∣ (𝑞‘𝐾) = 𝐾})) = (Base‘(SymGrp‘𝑁))) |
42 | 40, 41 | sylib 221 |
. . . . . 6
⊢ ((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁) → ({𝑞 ∈ (Base‘(SymGrp‘𝑁)) ∣ (𝑞‘𝐾) = 𝐾} ∪ ((Base‘(SymGrp‘𝑁)) ∖ {𝑞 ∈ (Base‘(SymGrp‘𝑁)) ∣ (𝑞‘𝐾) = 𝐾})) = (Base‘(SymGrp‘𝑁))) |
43 | 42 | eqcomd 2764 |
. . . . 5
⊢ ((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁) → (Base‘(SymGrp‘𝑁)) = ({𝑞 ∈ (Base‘(SymGrp‘𝑁)) ∣ (𝑞‘𝐾) = 𝐾} ∪ ((Base‘(SymGrp‘𝑁)) ∖ {𝑞 ∈ (Base‘(SymGrp‘𝑁)) ∣ (𝑞‘𝐾) = 𝐾}))) |
44 | 24, 25, 29, 35, 36, 38, 43 | gsummptfidmsplit 19131 |
. . . 4
⊢ ((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁) → (𝑅 Σg (𝑝 ∈
(Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r‘𝑅)((mulGrp‘𝑅) Σg (𝑛 ∈ 𝑁 ↦ (𝑛(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐾, (1r‘𝑅), (0g‘𝑅)), (𝑖𝑀𝑗)))(𝑝‘𝑛))))))) = ((𝑅 Σg (𝑝 ∈ {𝑞 ∈ (Base‘(SymGrp‘𝑁)) ∣ (𝑞‘𝐾) = 𝐾} ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r‘𝑅)((mulGrp‘𝑅) Σg (𝑛 ∈ 𝑁 ↦ (𝑛(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐾, (1r‘𝑅), (0g‘𝑅)), (𝑖𝑀𝑗)))(𝑝‘𝑛)))))))(+g‘𝑅)(𝑅 Σg (𝑝 ∈
((Base‘(SymGrp‘𝑁)) ∖ {𝑞 ∈ (Base‘(SymGrp‘𝑁)) ∣ (𝑞‘𝐾) = 𝐾}) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r‘𝑅)((mulGrp‘𝑅) Σg (𝑛 ∈ 𝑁 ↦ (𝑛(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐾, (1r‘𝑅), (0g‘𝑅)), (𝑖𝑀𝑗)))(𝑝‘𝑛))))))))) |
45 | | eqid 2758 |
. . . . . 6
⊢
(Base‘(SymGrp‘(𝑁 ∖ {𝐾}))) = (Base‘(SymGrp‘(𝑁 ∖ {𝐾}))) |
46 | | eqid 2758 |
. . . . . 6
⊢
(pmSgn‘(𝑁
∖ {𝐾})) =
(pmSgn‘(𝑁 ∖
{𝐾})) |
47 | 1, 3, 13, 9, 8, 16, 20, 17, 18, 19, 45, 46 | smadiadetlem4 21382 |
. . . . 5
⊢ ((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁) → (𝑅 Σg (𝑝 ∈ {𝑞 ∈ (Base‘(SymGrp‘𝑁)) ∣ (𝑞‘𝐾) = 𝐾} ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r‘𝑅)((mulGrp‘𝑅) Σg (𝑛 ∈ 𝑁 ↦ (𝑛(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐾, (1r‘𝑅), (0g‘𝑅)), (𝑖𝑀𝑗)))(𝑝‘𝑛))))))) = (𝑅 Σg (𝑝 ∈
(Base‘(SymGrp‘(𝑁 ∖ {𝐾}))) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘(𝑁 ∖ {𝐾})))‘𝑝)(.r‘𝑅)((mulGrp‘𝑅) Σg (𝑛 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑛(𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑖𝑀𝑗))(𝑝‘𝑛)))))))) |
48 | 1, 3, 13, 9, 8, 16, 20, 17, 18, 19 | smadiadetlem2 21377 |
. . . . 5
⊢ ((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁) → (𝑅 Σg (𝑝 ∈
((Base‘(SymGrp‘𝑁)) ∖ {𝑞 ∈ (Base‘(SymGrp‘𝑁)) ∣ (𝑞‘𝐾) = 𝐾}) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r‘𝑅)((mulGrp‘𝑅) Σg (𝑛 ∈ 𝑁 ↦ (𝑛(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐾, (1r‘𝑅), (0g‘𝑅)), (𝑖𝑀𝑗)))(𝑝‘𝑛))))))) = (0g‘𝑅)) |
49 | 47, 48 | oveq12d 7174 |
. . . 4
⊢ ((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁) → ((𝑅 Σg (𝑝 ∈ {𝑞 ∈ (Base‘(SymGrp‘𝑁)) ∣ (𝑞‘𝐾) = 𝐾} ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r‘𝑅)((mulGrp‘𝑅) Σg (𝑛 ∈ 𝑁 ↦ (𝑛(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐾, (1r‘𝑅), (0g‘𝑅)), (𝑖𝑀𝑗)))(𝑝‘𝑛)))))))(+g‘𝑅)(𝑅 Σg (𝑝 ∈
((Base‘(SymGrp‘𝑁)) ∖ {𝑞 ∈ (Base‘(SymGrp‘𝑁)) ∣ (𝑞‘𝐾) = 𝐾}) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r‘𝑅)((mulGrp‘𝑅) Σg (𝑛 ∈ 𝑁 ↦ (𝑛(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐾, (1r‘𝑅), (0g‘𝑅)), (𝑖𝑀𝑗)))(𝑝‘𝑛)))))))) = ((𝑅 Σg (𝑝 ∈
(Base‘(SymGrp‘(𝑁 ∖ {𝐾}))) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘(𝑁 ∖ {𝐾})))‘𝑝)(.r‘𝑅)((mulGrp‘𝑅) Σg (𝑛 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑛(𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑖𝑀𝑗))(𝑝‘𝑛)))))))(+g‘𝑅)(0g‘𝑅))) |
50 | | ringmnd 19388 |
. . . . . . 7
⊢ (𝑅 ∈ Ring → 𝑅 ∈ Mnd) |
51 | 13, 26, 50 | mp2b 10 |
. . . . . 6
⊢ 𝑅 ∈ Mnd |
52 | | diffi 8799 |
. . . . . . . . . 10
⊢ (𝑁 ∈ Fin → (𝑁 ∖ {𝐾}) ∈ Fin) |
53 | 31, 52 | syl 17 |
. . . . . . . . 9
⊢ (𝑀 ∈ 𝐵 → (𝑁 ∖ {𝐾}) ∈ Fin) |
54 | 53 | adantr 484 |
. . . . . . . 8
⊢ ((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁) → (𝑁 ∖ {𝐾}) ∈ Fin) |
55 | | eqid 2758 |
. . . . . . . . 9
⊢
(SymGrp‘(𝑁
∖ {𝐾})) =
(SymGrp‘(𝑁 ∖
{𝐾})) |
56 | 55, 45 | symgbasfi 18587 |
. . . . . . . 8
⊢ ((𝑁 ∖ {𝐾}) ∈ Fin →
(Base‘(SymGrp‘(𝑁 ∖ {𝐾}))) ∈ Fin) |
57 | 54, 56 | syl 17 |
. . . . . . 7
⊢ ((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁) → (Base‘(SymGrp‘(𝑁 ∖ {𝐾}))) ∈ Fin) |
58 | | simpll 766 |
. . . . . . . . . 10
⊢ (((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁) ∧ 𝑝 ∈ (Base‘(SymGrp‘(𝑁 ∖ {𝐾})))) → 𝑀 ∈ 𝐵) |
59 | | difssd 4040 |
. . . . . . . . . 10
⊢ (((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁) ∧ 𝑝 ∈ (Base‘(SymGrp‘(𝑁 ∖ {𝐾})))) → (𝑁 ∖ {𝐾}) ⊆ 𝑁) |
60 | 1, 3 | submabas 21291 |
. . . . . . . . . 10
⊢ ((𝑀 ∈ 𝐵 ∧ (𝑁 ∖ {𝐾}) ⊆ 𝑁) → (𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑖𝑀𝑗)) ∈ (Base‘((𝑁 ∖ {𝐾}) Mat 𝑅))) |
61 | 58, 59, 60 | syl2anc 587 |
. . . . . . . . 9
⊢ (((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁) ∧ 𝑝 ∈ (Base‘(SymGrp‘(𝑁 ∖ {𝐾})))) → (𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑖𝑀𝑗)) ∈ (Base‘((𝑁 ∖ {𝐾}) Mat 𝑅))) |
62 | | simpr 488 |
. . . . . . . . 9
⊢ (((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁) ∧ 𝑝 ∈ (Base‘(SymGrp‘(𝑁 ∖ {𝐾})))) → 𝑝 ∈ (Base‘(SymGrp‘(𝑁 ∖ {𝐾})))) |
63 | | eqid 2758 |
. . . . . . . . . 10
⊢ ((𝑁 ∖ {𝐾}) Mat 𝑅) = ((𝑁 ∖ {𝐾}) Mat 𝑅) |
64 | | eqid 2758 |
. . . . . . . . . 10
⊢
(Base‘((𝑁
∖ {𝐾}) Mat 𝑅)) = (Base‘((𝑁 ∖ {𝐾}) Mat 𝑅)) |
65 | 45, 46, 17, 63, 64, 20 | madetsmelbas2 21178 |
. . . . . . . . 9
⊢ ((𝑅 ∈ CRing ∧ (𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑖𝑀𝑗)) ∈ (Base‘((𝑁 ∖ {𝐾}) Mat 𝑅)) ∧ 𝑝 ∈ (Base‘(SymGrp‘(𝑁 ∖ {𝐾})))) → ((((ℤRHom‘𝑅) ∘ (pmSgn‘(𝑁 ∖ {𝐾})))‘𝑝)(.r‘𝑅)((mulGrp‘𝑅) Σg (𝑛 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑛(𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑖𝑀𝑗))(𝑝‘𝑛))))) ∈ (Base‘𝑅)) |
66 | 13, 61, 62, 65 | mp3an2i 1463 |
. . . . . . . 8
⊢ (((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁) ∧ 𝑝 ∈ (Base‘(SymGrp‘(𝑁 ∖ {𝐾})))) → ((((ℤRHom‘𝑅) ∘ (pmSgn‘(𝑁 ∖ {𝐾})))‘𝑝)(.r‘𝑅)((mulGrp‘𝑅) Σg (𝑛 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑛(𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑖𝑀𝑗))(𝑝‘𝑛))))) ∈ (Base‘𝑅)) |
67 | 66 | ralrimiva 3113 |
. . . . . . 7
⊢ ((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁) → ∀𝑝 ∈ (Base‘(SymGrp‘(𝑁 ∖ {𝐾})))((((ℤRHom‘𝑅) ∘ (pmSgn‘(𝑁 ∖ {𝐾})))‘𝑝)(.r‘𝑅)((mulGrp‘𝑅) Σg (𝑛 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑛(𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑖𝑀𝑗))(𝑝‘𝑛))))) ∈ (Base‘𝑅)) |
68 | 24, 29, 57, 67 | gsummptcl 19168 |
. . . . . 6
⊢ ((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁) → (𝑅 Σg (𝑝 ∈
(Base‘(SymGrp‘(𝑁 ∖ {𝐾}))) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘(𝑁 ∖ {𝐾})))‘𝑝)(.r‘𝑅)((mulGrp‘𝑅) Σg (𝑛 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑛(𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑖𝑀𝑗))(𝑝‘𝑛))))))) ∈ (Base‘𝑅)) |
69 | 24, 25, 9 | mndrid 18011 |
. . . . . 6
⊢ ((𝑅 ∈ Mnd ∧ (𝑅 Σg
(𝑝 ∈
(Base‘(SymGrp‘(𝑁 ∖ {𝐾}))) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘(𝑁 ∖ {𝐾})))‘𝑝)(.r‘𝑅)((mulGrp‘𝑅) Σg (𝑛 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑛(𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑖𝑀𝑗))(𝑝‘𝑛))))))) ∈ (Base‘𝑅)) → ((𝑅 Σg (𝑝 ∈
(Base‘(SymGrp‘(𝑁 ∖ {𝐾}))) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘(𝑁 ∖ {𝐾})))‘𝑝)(.r‘𝑅)((mulGrp‘𝑅) Σg (𝑛 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑛(𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑖𝑀𝑗))(𝑝‘𝑛)))))))(+g‘𝑅)(0g‘𝑅)) = (𝑅 Σg (𝑝 ∈
(Base‘(SymGrp‘(𝑁 ∖ {𝐾}))) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘(𝑁 ∖ {𝐾})))‘𝑝)(.r‘𝑅)((mulGrp‘𝑅) Σg (𝑛 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑛(𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑖𝑀𝑗))(𝑝‘𝑛)))))))) |
70 | 51, 68, 69 | sylancr 590 |
. . . . 5
⊢ ((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁) → ((𝑅 Σg (𝑝 ∈
(Base‘(SymGrp‘(𝑁 ∖ {𝐾}))) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘(𝑁 ∖ {𝐾})))‘𝑝)(.r‘𝑅)((mulGrp‘𝑅) Σg (𝑛 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑛(𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑖𝑀𝑗))(𝑝‘𝑛)))))))(+g‘𝑅)(0g‘𝑅)) = (𝑅 Σg (𝑝 ∈
(Base‘(SymGrp‘(𝑁 ∖ {𝐾}))) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘(𝑁 ∖ {𝐾})))‘𝑝)(.r‘𝑅)((mulGrp‘𝑅) Σg (𝑛 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑛(𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑖𝑀𝑗))(𝑝‘𝑛)))))))) |
71 | | difssd 4040 |
. . . . . . 7
⊢ (𝐾 ∈ 𝑁 → (𝑁 ∖ {𝐾}) ⊆ 𝑁) |
72 | 60, 13 | jctil 523 |
. . . . . . 7
⊢ ((𝑀 ∈ 𝐵 ∧ (𝑁 ∖ {𝐾}) ⊆ 𝑁) → (𝑅 ∈ CRing ∧ (𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑖𝑀𝑗)) ∈ (Base‘((𝑁 ∖ {𝐾}) Mat 𝑅)))) |
73 | 71, 72 | sylan2 595 |
. . . . . 6
⊢ ((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁) → (𝑅 ∈ CRing ∧ (𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑖𝑀𝑗)) ∈ (Base‘((𝑁 ∖ {𝐾}) Mat 𝑅)))) |
74 | | smadiadet.h |
. . . . . . 7
⊢ 𝐸 = ((𝑁 ∖ {𝐾}) maDet 𝑅) |
75 | 74, 63, 64, 45, 17, 46, 19, 20 | mdetleib2 21301 |
. . . . . 6
⊢ ((𝑅 ∈ CRing ∧ (𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑖𝑀𝑗)) ∈ (Base‘((𝑁 ∖ {𝐾}) Mat 𝑅))) → (𝐸‘(𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑖𝑀𝑗))) = (𝑅 Σg (𝑝 ∈
(Base‘(SymGrp‘(𝑁 ∖ {𝐾}))) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘(𝑁 ∖ {𝐾})))‘𝑝)(.r‘𝑅)((mulGrp‘𝑅) Σg (𝑛 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑛(𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑖𝑀𝑗))(𝑝‘𝑛)))))))) |
76 | 73, 75 | syl 17 |
. . . . 5
⊢ ((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁) → (𝐸‘(𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑖𝑀𝑗))) = (𝑅 Σg (𝑝 ∈
(Base‘(SymGrp‘(𝑁 ∖ {𝐾}))) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘(𝑁 ∖ {𝐾})))‘𝑝)(.r‘𝑅)((mulGrp‘𝑅) Σg (𝑛 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑛(𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑖𝑀𝑗))(𝑝‘𝑛)))))))) |
77 | 70, 76 | eqtr4d 2796 |
. . . 4
⊢ ((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁) → ((𝑅 Σg (𝑝 ∈
(Base‘(SymGrp‘(𝑁 ∖ {𝐾}))) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘(𝑁 ∖ {𝐾})))‘𝑝)(.r‘𝑅)((mulGrp‘𝑅) Σg (𝑛 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑛(𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑖𝑀𝑗))(𝑝‘𝑛)))))))(+g‘𝑅)(0g‘𝑅)) = (𝐸‘(𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑖𝑀𝑗)))) |
78 | 44, 49, 77 | 3eqtrd 2797 |
. . 3
⊢ ((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁) → (𝑅 Σg (𝑝 ∈
(Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r‘𝑅)((mulGrp‘𝑅) Σg (𝑛 ∈ 𝑁 ↦ (𝑛(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐾, (1r‘𝑅), (0g‘𝑅)), (𝑖𝑀𝑗)))(𝑝‘𝑛))))))) = (𝐸‘(𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑖𝑀𝑗)))) |
79 | 12, 23, 78 | 3eqtrd 2797 |
. 2
⊢ ((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁) → (𝐷‘(𝐾((𝑁 minMatR1 𝑅)‘𝑀)𝐾)) = (𝐸‘(𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑖𝑀𝑗)))) |
80 | 6, 79 | eqtr4d 2796 |
1
⊢ ((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁) → (𝐸‘(𝐾((𝑁 subMat 𝑅)‘𝑀)𝐾)) = (𝐷‘(𝐾((𝑁 minMatR1 𝑅)‘𝑀)𝐾))) |