MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  smadiadet Structured version   Visualization version   GIF version

Theorem smadiadet 21278
Description: The determinant of a submatrix of a square matrix obtained by removing a row and a column at the same index equals the determinant of the original matrix with the row replaced with 0's and a 1 at the diagonal position. (Contributed by AV, 31-Jan-2019.) (Proof shortened by AV, 24-Jul-2019.)
Hypotheses
Ref Expression
smadiadet.a 𝐴 = (𝑁 Mat 𝑅)
smadiadet.b 𝐵 = (Base‘𝐴)
smadiadet.r 𝑅 ∈ CRing
smadiadet.d 𝐷 = (𝑁 maDet 𝑅)
smadiadet.h 𝐸 = ((𝑁 ∖ {𝐾}) maDet 𝑅)
Assertion
Ref Expression
smadiadet ((𝑀𝐵𝐾𝑁) → (𝐸‘(𝐾((𝑁 subMat 𝑅)‘𝑀)𝐾)) = (𝐷‘(𝐾((𝑁 minMatR1 𝑅)‘𝑀)𝐾)))

Proof of Theorem smadiadet
Dummy variables 𝑖 𝑗 𝑛 𝑝 𝑞 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 smadiadet.a . . . . 5 𝐴 = (𝑁 Mat 𝑅)
2 eqid 2821 . . . . 5 (𝑁 subMat 𝑅) = (𝑁 subMat 𝑅)
3 smadiadet.b . . . . 5 𝐵 = (Base‘𝐴)
41, 2, 3submaval 21189 . . . 4 ((𝑀𝐵𝐾𝑁𝐾𝑁) → (𝐾((𝑁 subMat 𝑅)‘𝑀)𝐾) = (𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑖𝑀𝑗)))
543anidm23 1417 . . 3 ((𝑀𝐵𝐾𝑁) → (𝐾((𝑁 subMat 𝑅)‘𝑀)𝐾) = (𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑖𝑀𝑗)))
65fveq2d 6673 . 2 ((𝑀𝐵𝐾𝑁) → (𝐸‘(𝐾((𝑁 subMat 𝑅)‘𝑀)𝐾)) = (𝐸‘(𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑖𝑀𝑗))))
7 eqid 2821 . . . . . 6 (𝑁 minMatR1 𝑅) = (𝑁 minMatR1 𝑅)
8 eqid 2821 . . . . . 6 (1r𝑅) = (1r𝑅)
9 eqid 2821 . . . . . 6 (0g𝑅) = (0g𝑅)
101, 3, 7, 8, 9minmar1val 21256 . . . . 5 ((𝑀𝐵𝐾𝑁𝐾𝑁) → (𝐾((𝑁 minMatR1 𝑅)‘𝑀)𝐾) = (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐾, (1r𝑅), (0g𝑅)), (𝑖𝑀𝑗))))
11103anidm23 1417 . . . 4 ((𝑀𝐵𝐾𝑁) → (𝐾((𝑁 minMatR1 𝑅)‘𝑀)𝐾) = (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐾, (1r𝑅), (0g𝑅)), (𝑖𝑀𝑗))))
1211fveq2d 6673 . . 3 ((𝑀𝐵𝐾𝑁) → (𝐷‘(𝐾((𝑁 minMatR1 𝑅)‘𝑀)𝐾)) = (𝐷‘(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐾, (1r𝑅), (0g𝑅)), (𝑖𝑀𝑗)))))
13 smadiadet.r . . . . 5 𝑅 ∈ CRing
141, 3, 13, 9, 8marep01ma 21268 . . . . 5 (𝑀𝐵 → (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐾, (1r𝑅), (0g𝑅)), (𝑖𝑀𝑗))) ∈ 𝐵)
15 smadiadet.d . . . . . 6 𝐷 = (𝑁 maDet 𝑅)
16 eqid 2821 . . . . . 6 (Base‘(SymGrp‘𝑁)) = (Base‘(SymGrp‘𝑁))
17 eqid 2821 . . . . . 6 (ℤRHom‘𝑅) = (ℤRHom‘𝑅)
18 eqid 2821 . . . . . 6 (pmSgn‘𝑁) = (pmSgn‘𝑁)
19 eqid 2821 . . . . . 6 (.r𝑅) = (.r𝑅)
20 eqid 2821 . . . . . 6 (mulGrp‘𝑅) = (mulGrp‘𝑅)
2115, 1, 3, 16, 17, 18, 19, 20mdetleib2 21196 . . . . 5 ((𝑅 ∈ CRing ∧ (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐾, (1r𝑅), (0g𝑅)), (𝑖𝑀𝑗))) ∈ 𝐵) → (𝐷‘(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐾, (1r𝑅), (0g𝑅)), (𝑖𝑀𝑗)))) = (𝑅 Σg (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ (𝑛(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐾, (1r𝑅), (0g𝑅)), (𝑖𝑀𝑗)))(𝑝𝑛))))))))
2213, 14, 21sylancr 589 . . . 4 (𝑀𝐵 → (𝐷‘(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐾, (1r𝑅), (0g𝑅)), (𝑖𝑀𝑗)))) = (𝑅 Σg (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ (𝑛(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐾, (1r𝑅), (0g𝑅)), (𝑖𝑀𝑗)))(𝑝𝑛))))))))
2322adantr 483 . . 3 ((𝑀𝐵𝐾𝑁) → (𝐷‘(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐾, (1r𝑅), (0g𝑅)), (𝑖𝑀𝑗)))) = (𝑅 Σg (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ (𝑛(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐾, (1r𝑅), (0g𝑅)), (𝑖𝑀𝑗)))(𝑝𝑛))))))))
24 eqid 2821 . . . . 5 (Base‘𝑅) = (Base‘𝑅)
25 eqid 2821 . . . . 5 (+g𝑅) = (+g𝑅)
26 crngring 19307 . . . . . . 7 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
27 ringcmn 19330 . . . . . . 7 (𝑅 ∈ Ring → 𝑅 ∈ CMnd)
2813, 26, 27mp2b 10 . . . . . 6 𝑅 ∈ CMnd
2928a1i 11 . . . . 5 ((𝑀𝐵𝐾𝑁) → 𝑅 ∈ CMnd)
301, 3matrcl 21020 . . . . . . . 8 (𝑀𝐵 → (𝑁 ∈ Fin ∧ 𝑅 ∈ V))
3130simpld 497 . . . . . . 7 (𝑀𝐵𝑁 ∈ Fin)
32 eqid 2821 . . . . . . . 8 (SymGrp‘𝑁) = (SymGrp‘𝑁)
3332, 16symgbasfi 18506 . . . . . . 7 (𝑁 ∈ Fin → (Base‘(SymGrp‘𝑁)) ∈ Fin)
3431, 33syl 17 . . . . . 6 (𝑀𝐵 → (Base‘(SymGrp‘𝑁)) ∈ Fin)
3534adantr 483 . . . . 5 ((𝑀𝐵𝐾𝑁) → (Base‘(SymGrp‘𝑁)) ∈ Fin)
361, 3, 13, 9, 8, 16, 20, 17, 18, 19smadiadetlem1 21270 . . . . 5 (((𝑀𝐵𝐾𝑁) ∧ 𝑝 ∈ (Base‘(SymGrp‘𝑁))) → ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ (𝑛(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐾, (1r𝑅), (0g𝑅)), (𝑖𝑀𝑗)))(𝑝𝑛))))) ∈ (Base‘𝑅))
37 disjdif 4420 . . . . . 6 ({𝑞 ∈ (Base‘(SymGrp‘𝑁)) ∣ (𝑞𝐾) = 𝐾} ∩ ((Base‘(SymGrp‘𝑁)) ∖ {𝑞 ∈ (Base‘(SymGrp‘𝑁)) ∣ (𝑞𝐾) = 𝐾})) = ∅
3837a1i 11 . . . . 5 ((𝑀𝐵𝐾𝑁) → ({𝑞 ∈ (Base‘(SymGrp‘𝑁)) ∣ (𝑞𝐾) = 𝐾} ∩ ((Base‘(SymGrp‘𝑁)) ∖ {𝑞 ∈ (Base‘(SymGrp‘𝑁)) ∣ (𝑞𝐾) = 𝐾})) = ∅)
39 ssrab2 4055 . . . . . . . 8 {𝑞 ∈ (Base‘(SymGrp‘𝑁)) ∣ (𝑞𝐾) = 𝐾} ⊆ (Base‘(SymGrp‘𝑁))
4039a1i 11 . . . . . . 7 ((𝑀𝐵𝐾𝑁) → {𝑞 ∈ (Base‘(SymGrp‘𝑁)) ∣ (𝑞𝐾) = 𝐾} ⊆ (Base‘(SymGrp‘𝑁)))
41 undif 4429 . . . . . . 7 ({𝑞 ∈ (Base‘(SymGrp‘𝑁)) ∣ (𝑞𝐾) = 𝐾} ⊆ (Base‘(SymGrp‘𝑁)) ↔ ({𝑞 ∈ (Base‘(SymGrp‘𝑁)) ∣ (𝑞𝐾) = 𝐾} ∪ ((Base‘(SymGrp‘𝑁)) ∖ {𝑞 ∈ (Base‘(SymGrp‘𝑁)) ∣ (𝑞𝐾) = 𝐾})) = (Base‘(SymGrp‘𝑁)))
4240, 41sylib 220 . . . . . 6 ((𝑀𝐵𝐾𝑁) → ({𝑞 ∈ (Base‘(SymGrp‘𝑁)) ∣ (𝑞𝐾) = 𝐾} ∪ ((Base‘(SymGrp‘𝑁)) ∖ {𝑞 ∈ (Base‘(SymGrp‘𝑁)) ∣ (𝑞𝐾) = 𝐾})) = (Base‘(SymGrp‘𝑁)))
4342eqcomd 2827 . . . . 5 ((𝑀𝐵𝐾𝑁) → (Base‘(SymGrp‘𝑁)) = ({𝑞 ∈ (Base‘(SymGrp‘𝑁)) ∣ (𝑞𝐾) = 𝐾} ∪ ((Base‘(SymGrp‘𝑁)) ∖ {𝑞 ∈ (Base‘(SymGrp‘𝑁)) ∣ (𝑞𝐾) = 𝐾})))
4424, 25, 29, 35, 36, 38, 43gsummptfidmsplit 19049 . . . 4 ((𝑀𝐵𝐾𝑁) → (𝑅 Σg (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ (𝑛(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐾, (1r𝑅), (0g𝑅)), (𝑖𝑀𝑗)))(𝑝𝑛))))))) = ((𝑅 Σg (𝑝 ∈ {𝑞 ∈ (Base‘(SymGrp‘𝑁)) ∣ (𝑞𝐾) = 𝐾} ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ (𝑛(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐾, (1r𝑅), (0g𝑅)), (𝑖𝑀𝑗)))(𝑝𝑛)))))))(+g𝑅)(𝑅 Σg (𝑝 ∈ ((Base‘(SymGrp‘𝑁)) ∖ {𝑞 ∈ (Base‘(SymGrp‘𝑁)) ∣ (𝑞𝐾) = 𝐾}) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ (𝑛(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐾, (1r𝑅), (0g𝑅)), (𝑖𝑀𝑗)))(𝑝𝑛)))))))))
45 eqid 2821 . . . . . 6 (Base‘(SymGrp‘(𝑁 ∖ {𝐾}))) = (Base‘(SymGrp‘(𝑁 ∖ {𝐾})))
46 eqid 2821 . . . . . 6 (pmSgn‘(𝑁 ∖ {𝐾})) = (pmSgn‘(𝑁 ∖ {𝐾}))
471, 3, 13, 9, 8, 16, 20, 17, 18, 19, 45, 46smadiadetlem4 21277 . . . . 5 ((𝑀𝐵𝐾𝑁) → (𝑅 Σg (𝑝 ∈ {𝑞 ∈ (Base‘(SymGrp‘𝑁)) ∣ (𝑞𝐾) = 𝐾} ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ (𝑛(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐾, (1r𝑅), (0g𝑅)), (𝑖𝑀𝑗)))(𝑝𝑛))))))) = (𝑅 Σg (𝑝 ∈ (Base‘(SymGrp‘(𝑁 ∖ {𝐾}))) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘(𝑁 ∖ {𝐾})))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑛 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑛(𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑖𝑀𝑗))(𝑝𝑛))))))))
481, 3, 13, 9, 8, 16, 20, 17, 18, 19smadiadetlem2 21272 . . . . 5 ((𝑀𝐵𝐾𝑁) → (𝑅 Σg (𝑝 ∈ ((Base‘(SymGrp‘𝑁)) ∖ {𝑞 ∈ (Base‘(SymGrp‘𝑁)) ∣ (𝑞𝐾) = 𝐾}) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ (𝑛(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐾, (1r𝑅), (0g𝑅)), (𝑖𝑀𝑗)))(𝑝𝑛))))))) = (0g𝑅))
4947, 48oveq12d 7173 . . . 4 ((𝑀𝐵𝐾𝑁) → ((𝑅 Σg (𝑝 ∈ {𝑞 ∈ (Base‘(SymGrp‘𝑁)) ∣ (𝑞𝐾) = 𝐾} ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ (𝑛(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐾, (1r𝑅), (0g𝑅)), (𝑖𝑀𝑗)))(𝑝𝑛)))))))(+g𝑅)(𝑅 Σg (𝑝 ∈ ((Base‘(SymGrp‘𝑁)) ∖ {𝑞 ∈ (Base‘(SymGrp‘𝑁)) ∣ (𝑞𝐾) = 𝐾}) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ (𝑛(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐾, (1r𝑅), (0g𝑅)), (𝑖𝑀𝑗)))(𝑝𝑛)))))))) = ((𝑅 Σg (𝑝 ∈ (Base‘(SymGrp‘(𝑁 ∖ {𝐾}))) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘(𝑁 ∖ {𝐾})))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑛 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑛(𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑖𝑀𝑗))(𝑝𝑛)))))))(+g𝑅)(0g𝑅)))
50 ringmnd 19305 . . . . . . 7 (𝑅 ∈ Ring → 𝑅 ∈ Mnd)
5113, 26, 50mp2b 10 . . . . . 6 𝑅 ∈ Mnd
52 diffi 8749 . . . . . . . . . 10 (𝑁 ∈ Fin → (𝑁 ∖ {𝐾}) ∈ Fin)
5331, 52syl 17 . . . . . . . . 9 (𝑀𝐵 → (𝑁 ∖ {𝐾}) ∈ Fin)
5453adantr 483 . . . . . . . 8 ((𝑀𝐵𝐾𝑁) → (𝑁 ∖ {𝐾}) ∈ Fin)
55 eqid 2821 . . . . . . . . 9 (SymGrp‘(𝑁 ∖ {𝐾})) = (SymGrp‘(𝑁 ∖ {𝐾}))
5655, 45symgbasfi 18506 . . . . . . . 8 ((𝑁 ∖ {𝐾}) ∈ Fin → (Base‘(SymGrp‘(𝑁 ∖ {𝐾}))) ∈ Fin)
5754, 56syl 17 . . . . . . 7 ((𝑀𝐵𝐾𝑁) → (Base‘(SymGrp‘(𝑁 ∖ {𝐾}))) ∈ Fin)
58 simpll 765 . . . . . . . . . 10 (((𝑀𝐵𝐾𝑁) ∧ 𝑝 ∈ (Base‘(SymGrp‘(𝑁 ∖ {𝐾})))) → 𝑀𝐵)
59 difssd 4108 . . . . . . . . . 10 (((𝑀𝐵𝐾𝑁) ∧ 𝑝 ∈ (Base‘(SymGrp‘(𝑁 ∖ {𝐾})))) → (𝑁 ∖ {𝐾}) ⊆ 𝑁)
601, 3submabas 21186 . . . . . . . . . 10 ((𝑀𝐵 ∧ (𝑁 ∖ {𝐾}) ⊆ 𝑁) → (𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑖𝑀𝑗)) ∈ (Base‘((𝑁 ∖ {𝐾}) Mat 𝑅)))
6158, 59, 60syl2anc 586 . . . . . . . . 9 (((𝑀𝐵𝐾𝑁) ∧ 𝑝 ∈ (Base‘(SymGrp‘(𝑁 ∖ {𝐾})))) → (𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑖𝑀𝑗)) ∈ (Base‘((𝑁 ∖ {𝐾}) Mat 𝑅)))
62 simpr 487 . . . . . . . . 9 (((𝑀𝐵𝐾𝑁) ∧ 𝑝 ∈ (Base‘(SymGrp‘(𝑁 ∖ {𝐾})))) → 𝑝 ∈ (Base‘(SymGrp‘(𝑁 ∖ {𝐾}))))
63 eqid 2821 . . . . . . . . . 10 ((𝑁 ∖ {𝐾}) Mat 𝑅) = ((𝑁 ∖ {𝐾}) Mat 𝑅)
64 eqid 2821 . . . . . . . . . 10 (Base‘((𝑁 ∖ {𝐾}) Mat 𝑅)) = (Base‘((𝑁 ∖ {𝐾}) Mat 𝑅))
6545, 46, 17, 63, 64, 20madetsmelbas2 21073 . . . . . . . . 9 ((𝑅 ∈ CRing ∧ (𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑖𝑀𝑗)) ∈ (Base‘((𝑁 ∖ {𝐾}) Mat 𝑅)) ∧ 𝑝 ∈ (Base‘(SymGrp‘(𝑁 ∖ {𝐾})))) → ((((ℤRHom‘𝑅) ∘ (pmSgn‘(𝑁 ∖ {𝐾})))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑛 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑛(𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑖𝑀𝑗))(𝑝𝑛))))) ∈ (Base‘𝑅))
6613, 61, 62, 65mp3an2i 1462 . . . . . . . 8 (((𝑀𝐵𝐾𝑁) ∧ 𝑝 ∈ (Base‘(SymGrp‘(𝑁 ∖ {𝐾})))) → ((((ℤRHom‘𝑅) ∘ (pmSgn‘(𝑁 ∖ {𝐾})))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑛 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑛(𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑖𝑀𝑗))(𝑝𝑛))))) ∈ (Base‘𝑅))
6766ralrimiva 3182 . . . . . . 7 ((𝑀𝐵𝐾𝑁) → ∀𝑝 ∈ (Base‘(SymGrp‘(𝑁 ∖ {𝐾})))((((ℤRHom‘𝑅) ∘ (pmSgn‘(𝑁 ∖ {𝐾})))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑛 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑛(𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑖𝑀𝑗))(𝑝𝑛))))) ∈ (Base‘𝑅))
6824, 29, 57, 67gsummptcl 19086 . . . . . 6 ((𝑀𝐵𝐾𝑁) → (𝑅 Σg (𝑝 ∈ (Base‘(SymGrp‘(𝑁 ∖ {𝐾}))) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘(𝑁 ∖ {𝐾})))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑛 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑛(𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑖𝑀𝑗))(𝑝𝑛))))))) ∈ (Base‘𝑅))
6924, 25, 9mndrid 17931 . . . . . 6 ((𝑅 ∈ Mnd ∧ (𝑅 Σg (𝑝 ∈ (Base‘(SymGrp‘(𝑁 ∖ {𝐾}))) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘(𝑁 ∖ {𝐾})))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑛 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑛(𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑖𝑀𝑗))(𝑝𝑛))))))) ∈ (Base‘𝑅)) → ((𝑅 Σg (𝑝 ∈ (Base‘(SymGrp‘(𝑁 ∖ {𝐾}))) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘(𝑁 ∖ {𝐾})))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑛 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑛(𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑖𝑀𝑗))(𝑝𝑛)))))))(+g𝑅)(0g𝑅)) = (𝑅 Σg (𝑝 ∈ (Base‘(SymGrp‘(𝑁 ∖ {𝐾}))) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘(𝑁 ∖ {𝐾})))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑛 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑛(𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑖𝑀𝑗))(𝑝𝑛))))))))
7051, 68, 69sylancr 589 . . . . 5 ((𝑀𝐵𝐾𝑁) → ((𝑅 Σg (𝑝 ∈ (Base‘(SymGrp‘(𝑁 ∖ {𝐾}))) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘(𝑁 ∖ {𝐾})))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑛 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑛(𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑖𝑀𝑗))(𝑝𝑛)))))))(+g𝑅)(0g𝑅)) = (𝑅 Σg (𝑝 ∈ (Base‘(SymGrp‘(𝑁 ∖ {𝐾}))) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘(𝑁 ∖ {𝐾})))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑛 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑛(𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑖𝑀𝑗))(𝑝𝑛))))))))
71 difssd 4108 . . . . . . 7 (𝐾𝑁 → (𝑁 ∖ {𝐾}) ⊆ 𝑁)
7260, 13jctil 522 . . . . . . 7 ((𝑀𝐵 ∧ (𝑁 ∖ {𝐾}) ⊆ 𝑁) → (𝑅 ∈ CRing ∧ (𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑖𝑀𝑗)) ∈ (Base‘((𝑁 ∖ {𝐾}) Mat 𝑅))))
7371, 72sylan2 594 . . . . . 6 ((𝑀𝐵𝐾𝑁) → (𝑅 ∈ CRing ∧ (𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑖𝑀𝑗)) ∈ (Base‘((𝑁 ∖ {𝐾}) Mat 𝑅))))
74 smadiadet.h . . . . . . 7 𝐸 = ((𝑁 ∖ {𝐾}) maDet 𝑅)
7574, 63, 64, 45, 17, 46, 19, 20mdetleib2 21196 . . . . . 6 ((𝑅 ∈ CRing ∧ (𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑖𝑀𝑗)) ∈ (Base‘((𝑁 ∖ {𝐾}) Mat 𝑅))) → (𝐸‘(𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑖𝑀𝑗))) = (𝑅 Σg (𝑝 ∈ (Base‘(SymGrp‘(𝑁 ∖ {𝐾}))) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘(𝑁 ∖ {𝐾})))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑛 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑛(𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑖𝑀𝑗))(𝑝𝑛))))))))
7673, 75syl 17 . . . . 5 ((𝑀𝐵𝐾𝑁) → (𝐸‘(𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑖𝑀𝑗))) = (𝑅 Σg (𝑝 ∈ (Base‘(SymGrp‘(𝑁 ∖ {𝐾}))) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘(𝑁 ∖ {𝐾})))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑛 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑛(𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑖𝑀𝑗))(𝑝𝑛))))))))
7770, 76eqtr4d 2859 . . . 4 ((𝑀𝐵𝐾𝑁) → ((𝑅 Σg (𝑝 ∈ (Base‘(SymGrp‘(𝑁 ∖ {𝐾}))) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘(𝑁 ∖ {𝐾})))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑛 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑛(𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑖𝑀𝑗))(𝑝𝑛)))))))(+g𝑅)(0g𝑅)) = (𝐸‘(𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑖𝑀𝑗))))
7844, 49, 773eqtrd 2860 . . 3 ((𝑀𝐵𝐾𝑁) → (𝑅 Σg (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ (𝑛(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐾, (1r𝑅), (0g𝑅)), (𝑖𝑀𝑗)))(𝑝𝑛))))))) = (𝐸‘(𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑖𝑀𝑗))))
7912, 23, 783eqtrd 2860 . 2 ((𝑀𝐵𝐾𝑁) → (𝐷‘(𝐾((𝑁 minMatR1 𝑅)‘𝑀)𝐾)) = (𝐸‘(𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑖𝑀𝑗))))
806, 79eqtr4d 2859 1 ((𝑀𝐵𝐾𝑁) → (𝐸‘(𝐾((𝑁 subMat 𝑅)‘𝑀)𝐾)) = (𝐷‘(𝐾((𝑁 minMatR1 𝑅)‘𝑀)𝐾)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1533  wcel 2110  {crab 3142  Vcvv 3494  cdif 3932  cun 3933  cin 3934  wss 3935  c0 4290  ifcif 4466  {csn 4566  cmpt 5145  ccom 5558  cfv 6354  (class class class)co 7155  cmpo 7157  Fincfn 8508  Basecbs 16482  +gcplusg 16564  .rcmulr 16565  0gc0g 16712   Σg cgsu 16713  Mndcmnd 17910  SymGrpcsymg 18494  pmSgncpsgn 18616  CMndccmn 18905  mulGrpcmgp 19238  1rcur 19250  Ringcrg 19296  CRingccrg 19297  ℤRHomczrh 20646   Mat cmat 21015   subMat csubma 21184   maDet cmdat 21192   minMatR1 cminmar1 21241
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5189  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460  ax-cnex 10592  ax-resscn 10593  ax-1cn 10594  ax-icn 10595  ax-addcl 10596  ax-addrcl 10597  ax-mulcl 10598  ax-mulrcl 10599  ax-mulcom 10600  ax-addass 10601  ax-mulass 10602  ax-distr 10603  ax-i2m1 10604  ax-1ne0 10605  ax-1rid 10606  ax-rnegex 10607  ax-rrecex 10608  ax-cnre 10609  ax-pre-lttri 10610  ax-pre-lttrn 10611  ax-pre-ltadd 10612  ax-pre-mulgt0 10613  ax-addf 10615  ax-mulf 10616
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-xor 1501  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-ot 4575  df-uni 4838  df-int 4876  df-iun 4920  df-iin 4921  df-br 5066  df-opab 5128  df-mpt 5146  df-tr 5172  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-se 5514  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6147  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-isom 6363  df-riota 7113  df-ov 7158  df-oprab 7159  df-mpo 7160  df-of 7408  df-om 7580  df-1st 7688  df-2nd 7689  df-supp 7830  df-tpos 7891  df-wrecs 7946  df-recs 8007  df-rdg 8045  df-1o 8101  df-2o 8102  df-oadd 8105  df-er 8288  df-map 8407  df-pm 8408  df-ixp 8461  df-en 8509  df-dom 8510  df-sdom 8511  df-fin 8512  df-fsupp 8833  df-sup 8905  df-oi 8973  df-card 9367  df-pnf 10676  df-mnf 10677  df-xr 10678  df-ltxr 10679  df-le 10680  df-sub 10871  df-neg 10872  df-div 11297  df-nn 11638  df-2 11699  df-3 11700  df-4 11701  df-5 11702  df-6 11703  df-7 11704  df-8 11705  df-9 11706  df-n0 11897  df-xnn0 11967  df-z 11981  df-dec 12098  df-uz 12243  df-rp 12389  df-fz 12892  df-fzo 13033  df-seq 13369  df-exp 13429  df-hash 13690  df-word 13861  df-lsw 13914  df-concat 13922  df-s1 13949  df-substr 14002  df-pfx 14032  df-splice 14111  df-reverse 14120  df-s2 14209  df-struct 16484  df-ndx 16485  df-slot 16486  df-base 16488  df-sets 16489  df-ress 16490  df-plusg 16577  df-mulr 16578  df-starv 16579  df-sca 16580  df-vsca 16581  df-ip 16582  df-tset 16583  df-ple 16584  df-ds 16586  df-unif 16587  df-hom 16588  df-cco 16589  df-0g 16714  df-gsum 16715  df-prds 16720  df-pws 16722  df-mre 16856  df-mrc 16857  df-acs 16859  df-mgm 17851  df-sgrp 17900  df-mnd 17911  df-mhm 17955  df-submnd 17956  df-efmnd 18033  df-grp 18105  df-minusg 18106  df-mulg 18224  df-subg 18275  df-ghm 18355  df-gim 18398  df-cntz 18446  df-oppg 18473  df-symg 18495  df-pmtr 18569  df-psgn 18618  df-cmn 18907  df-abl 18908  df-mgp 19239  df-ur 19251  df-ring 19298  df-cring 19299  df-oppr 19372  df-dvdsr 19390  df-unit 19391  df-invr 19421  df-dvr 19432  df-rnghom 19466  df-drng 19503  df-subrg 19532  df-sra 19943  df-rgmod 19944  df-cnfld 20545  df-zring 20617  df-zrh 20650  df-dsmm 20875  df-frlm 20890  df-mat 21016  df-subma 21185  df-mdet 21193  df-minmar1 21243
This theorem is referenced by:  smadiadetg  21281
  Copyright terms: Public domain W3C validator