MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  smadiadet Structured version   Visualization version   GIF version

Theorem smadiadet 21383
Description: The determinant of a submatrix of a square matrix obtained by removing a row and a column at the same index equals the determinant of the original matrix with the row replaced with 0's and a 1 at the diagonal position. (Contributed by AV, 31-Jan-2019.) (Proof shortened by AV, 24-Jul-2019.)
Hypotheses
Ref Expression
smadiadet.a 𝐴 = (𝑁 Mat 𝑅)
smadiadet.b 𝐵 = (Base‘𝐴)
smadiadet.r 𝑅 ∈ CRing
smadiadet.d 𝐷 = (𝑁 maDet 𝑅)
smadiadet.h 𝐸 = ((𝑁 ∖ {𝐾}) maDet 𝑅)
Assertion
Ref Expression
smadiadet ((𝑀𝐵𝐾𝑁) → (𝐸‘(𝐾((𝑁 subMat 𝑅)‘𝑀)𝐾)) = (𝐷‘(𝐾((𝑁 minMatR1 𝑅)‘𝑀)𝐾)))

Proof of Theorem smadiadet
Dummy variables 𝑖 𝑗 𝑛 𝑝 𝑞 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 smadiadet.a . . . . 5 𝐴 = (𝑁 Mat 𝑅)
2 eqid 2758 . . . . 5 (𝑁 subMat 𝑅) = (𝑁 subMat 𝑅)
3 smadiadet.b . . . . 5 𝐵 = (Base‘𝐴)
41, 2, 3submaval 21294 . . . 4 ((𝑀𝐵𝐾𝑁𝐾𝑁) → (𝐾((𝑁 subMat 𝑅)‘𝑀)𝐾) = (𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑖𝑀𝑗)))
543anidm23 1418 . . 3 ((𝑀𝐵𝐾𝑁) → (𝐾((𝑁 subMat 𝑅)‘𝑀)𝐾) = (𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑖𝑀𝑗)))
65fveq2d 6667 . 2 ((𝑀𝐵𝐾𝑁) → (𝐸‘(𝐾((𝑁 subMat 𝑅)‘𝑀)𝐾)) = (𝐸‘(𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑖𝑀𝑗))))
7 eqid 2758 . . . . . 6 (𝑁 minMatR1 𝑅) = (𝑁 minMatR1 𝑅)
8 eqid 2758 . . . . . 6 (1r𝑅) = (1r𝑅)
9 eqid 2758 . . . . . 6 (0g𝑅) = (0g𝑅)
101, 3, 7, 8, 9minmar1val 21361 . . . . 5 ((𝑀𝐵𝐾𝑁𝐾𝑁) → (𝐾((𝑁 minMatR1 𝑅)‘𝑀)𝐾) = (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐾, (1r𝑅), (0g𝑅)), (𝑖𝑀𝑗))))
11103anidm23 1418 . . . 4 ((𝑀𝐵𝐾𝑁) → (𝐾((𝑁 minMatR1 𝑅)‘𝑀)𝐾) = (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐾, (1r𝑅), (0g𝑅)), (𝑖𝑀𝑗))))
1211fveq2d 6667 . . 3 ((𝑀𝐵𝐾𝑁) → (𝐷‘(𝐾((𝑁 minMatR1 𝑅)‘𝑀)𝐾)) = (𝐷‘(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐾, (1r𝑅), (0g𝑅)), (𝑖𝑀𝑗)))))
13 smadiadet.r . . . . 5 𝑅 ∈ CRing
141, 3, 13, 9, 8marep01ma 21373 . . . . 5 (𝑀𝐵 → (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐾, (1r𝑅), (0g𝑅)), (𝑖𝑀𝑗))) ∈ 𝐵)
15 smadiadet.d . . . . . 6 𝐷 = (𝑁 maDet 𝑅)
16 eqid 2758 . . . . . 6 (Base‘(SymGrp‘𝑁)) = (Base‘(SymGrp‘𝑁))
17 eqid 2758 . . . . . 6 (ℤRHom‘𝑅) = (ℤRHom‘𝑅)
18 eqid 2758 . . . . . 6 (pmSgn‘𝑁) = (pmSgn‘𝑁)
19 eqid 2758 . . . . . 6 (.r𝑅) = (.r𝑅)
20 eqid 2758 . . . . . 6 (mulGrp‘𝑅) = (mulGrp‘𝑅)
2115, 1, 3, 16, 17, 18, 19, 20mdetleib2 21301 . . . . 5 ((𝑅 ∈ CRing ∧ (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐾, (1r𝑅), (0g𝑅)), (𝑖𝑀𝑗))) ∈ 𝐵) → (𝐷‘(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐾, (1r𝑅), (0g𝑅)), (𝑖𝑀𝑗)))) = (𝑅 Σg (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ (𝑛(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐾, (1r𝑅), (0g𝑅)), (𝑖𝑀𝑗)))(𝑝𝑛))))))))
2213, 14, 21sylancr 590 . . . 4 (𝑀𝐵 → (𝐷‘(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐾, (1r𝑅), (0g𝑅)), (𝑖𝑀𝑗)))) = (𝑅 Σg (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ (𝑛(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐾, (1r𝑅), (0g𝑅)), (𝑖𝑀𝑗)))(𝑝𝑛))))))))
2322adantr 484 . . 3 ((𝑀𝐵𝐾𝑁) → (𝐷‘(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐾, (1r𝑅), (0g𝑅)), (𝑖𝑀𝑗)))) = (𝑅 Σg (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ (𝑛(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐾, (1r𝑅), (0g𝑅)), (𝑖𝑀𝑗)))(𝑝𝑛))))))))
24 eqid 2758 . . . . 5 (Base‘𝑅) = (Base‘𝑅)
25 eqid 2758 . . . . 5 (+g𝑅) = (+g𝑅)
26 crngring 19390 . . . . . . 7 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
27 ringcmn 19415 . . . . . . 7 (𝑅 ∈ Ring → 𝑅 ∈ CMnd)
2813, 26, 27mp2b 10 . . . . . 6 𝑅 ∈ CMnd
2928a1i 11 . . . . 5 ((𝑀𝐵𝐾𝑁) → 𝑅 ∈ CMnd)
301, 3matrcl 21125 . . . . . . . 8 (𝑀𝐵 → (𝑁 ∈ Fin ∧ 𝑅 ∈ V))
3130simpld 498 . . . . . . 7 (𝑀𝐵𝑁 ∈ Fin)
32 eqid 2758 . . . . . . . 8 (SymGrp‘𝑁) = (SymGrp‘𝑁)
3332, 16symgbasfi 18587 . . . . . . 7 (𝑁 ∈ Fin → (Base‘(SymGrp‘𝑁)) ∈ Fin)
3431, 33syl 17 . . . . . 6 (𝑀𝐵 → (Base‘(SymGrp‘𝑁)) ∈ Fin)
3534adantr 484 . . . . 5 ((𝑀𝐵𝐾𝑁) → (Base‘(SymGrp‘𝑁)) ∈ Fin)
361, 3, 13, 9, 8, 16, 20, 17, 18, 19smadiadetlem1 21375 . . . . 5 (((𝑀𝐵𝐾𝑁) ∧ 𝑝 ∈ (Base‘(SymGrp‘𝑁))) → ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ (𝑛(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐾, (1r𝑅), (0g𝑅)), (𝑖𝑀𝑗)))(𝑝𝑛))))) ∈ (Base‘𝑅))
37 disjdif 4371 . . . . . 6 ({𝑞 ∈ (Base‘(SymGrp‘𝑁)) ∣ (𝑞𝐾) = 𝐾} ∩ ((Base‘(SymGrp‘𝑁)) ∖ {𝑞 ∈ (Base‘(SymGrp‘𝑁)) ∣ (𝑞𝐾) = 𝐾})) = ∅
3837a1i 11 . . . . 5 ((𝑀𝐵𝐾𝑁) → ({𝑞 ∈ (Base‘(SymGrp‘𝑁)) ∣ (𝑞𝐾) = 𝐾} ∩ ((Base‘(SymGrp‘𝑁)) ∖ {𝑞 ∈ (Base‘(SymGrp‘𝑁)) ∣ (𝑞𝐾) = 𝐾})) = ∅)
39 ssrab2 3986 . . . . . . . 8 {𝑞 ∈ (Base‘(SymGrp‘𝑁)) ∣ (𝑞𝐾) = 𝐾} ⊆ (Base‘(SymGrp‘𝑁))
4039a1i 11 . . . . . . 7 ((𝑀𝐵𝐾𝑁) → {𝑞 ∈ (Base‘(SymGrp‘𝑁)) ∣ (𝑞𝐾) = 𝐾} ⊆ (Base‘(SymGrp‘𝑁)))
41 undif 4381 . . . . . . 7 ({𝑞 ∈ (Base‘(SymGrp‘𝑁)) ∣ (𝑞𝐾) = 𝐾} ⊆ (Base‘(SymGrp‘𝑁)) ↔ ({𝑞 ∈ (Base‘(SymGrp‘𝑁)) ∣ (𝑞𝐾) = 𝐾} ∪ ((Base‘(SymGrp‘𝑁)) ∖ {𝑞 ∈ (Base‘(SymGrp‘𝑁)) ∣ (𝑞𝐾) = 𝐾})) = (Base‘(SymGrp‘𝑁)))
4240, 41sylib 221 . . . . . 6 ((𝑀𝐵𝐾𝑁) → ({𝑞 ∈ (Base‘(SymGrp‘𝑁)) ∣ (𝑞𝐾) = 𝐾} ∪ ((Base‘(SymGrp‘𝑁)) ∖ {𝑞 ∈ (Base‘(SymGrp‘𝑁)) ∣ (𝑞𝐾) = 𝐾})) = (Base‘(SymGrp‘𝑁)))
4342eqcomd 2764 . . . . 5 ((𝑀𝐵𝐾𝑁) → (Base‘(SymGrp‘𝑁)) = ({𝑞 ∈ (Base‘(SymGrp‘𝑁)) ∣ (𝑞𝐾) = 𝐾} ∪ ((Base‘(SymGrp‘𝑁)) ∖ {𝑞 ∈ (Base‘(SymGrp‘𝑁)) ∣ (𝑞𝐾) = 𝐾})))
4424, 25, 29, 35, 36, 38, 43gsummptfidmsplit 19131 . . . 4 ((𝑀𝐵𝐾𝑁) → (𝑅 Σg (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ (𝑛(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐾, (1r𝑅), (0g𝑅)), (𝑖𝑀𝑗)))(𝑝𝑛))))))) = ((𝑅 Σg (𝑝 ∈ {𝑞 ∈ (Base‘(SymGrp‘𝑁)) ∣ (𝑞𝐾) = 𝐾} ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ (𝑛(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐾, (1r𝑅), (0g𝑅)), (𝑖𝑀𝑗)))(𝑝𝑛)))))))(+g𝑅)(𝑅 Σg (𝑝 ∈ ((Base‘(SymGrp‘𝑁)) ∖ {𝑞 ∈ (Base‘(SymGrp‘𝑁)) ∣ (𝑞𝐾) = 𝐾}) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ (𝑛(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐾, (1r𝑅), (0g𝑅)), (𝑖𝑀𝑗)))(𝑝𝑛)))))))))
45 eqid 2758 . . . . . 6 (Base‘(SymGrp‘(𝑁 ∖ {𝐾}))) = (Base‘(SymGrp‘(𝑁 ∖ {𝐾})))
46 eqid 2758 . . . . . 6 (pmSgn‘(𝑁 ∖ {𝐾})) = (pmSgn‘(𝑁 ∖ {𝐾}))
471, 3, 13, 9, 8, 16, 20, 17, 18, 19, 45, 46smadiadetlem4 21382 . . . . 5 ((𝑀𝐵𝐾𝑁) → (𝑅 Σg (𝑝 ∈ {𝑞 ∈ (Base‘(SymGrp‘𝑁)) ∣ (𝑞𝐾) = 𝐾} ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ (𝑛(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐾, (1r𝑅), (0g𝑅)), (𝑖𝑀𝑗)))(𝑝𝑛))))))) = (𝑅 Σg (𝑝 ∈ (Base‘(SymGrp‘(𝑁 ∖ {𝐾}))) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘(𝑁 ∖ {𝐾})))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑛 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑛(𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑖𝑀𝑗))(𝑝𝑛))))))))
481, 3, 13, 9, 8, 16, 20, 17, 18, 19smadiadetlem2 21377 . . . . 5 ((𝑀𝐵𝐾𝑁) → (𝑅 Σg (𝑝 ∈ ((Base‘(SymGrp‘𝑁)) ∖ {𝑞 ∈ (Base‘(SymGrp‘𝑁)) ∣ (𝑞𝐾) = 𝐾}) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ (𝑛(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐾, (1r𝑅), (0g𝑅)), (𝑖𝑀𝑗)))(𝑝𝑛))))))) = (0g𝑅))
4947, 48oveq12d 7174 . . . 4 ((𝑀𝐵𝐾𝑁) → ((𝑅 Σg (𝑝 ∈ {𝑞 ∈ (Base‘(SymGrp‘𝑁)) ∣ (𝑞𝐾) = 𝐾} ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ (𝑛(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐾, (1r𝑅), (0g𝑅)), (𝑖𝑀𝑗)))(𝑝𝑛)))))))(+g𝑅)(𝑅 Σg (𝑝 ∈ ((Base‘(SymGrp‘𝑁)) ∖ {𝑞 ∈ (Base‘(SymGrp‘𝑁)) ∣ (𝑞𝐾) = 𝐾}) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ (𝑛(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐾, (1r𝑅), (0g𝑅)), (𝑖𝑀𝑗)))(𝑝𝑛)))))))) = ((𝑅 Σg (𝑝 ∈ (Base‘(SymGrp‘(𝑁 ∖ {𝐾}))) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘(𝑁 ∖ {𝐾})))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑛 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑛(𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑖𝑀𝑗))(𝑝𝑛)))))))(+g𝑅)(0g𝑅)))
50 ringmnd 19388 . . . . . . 7 (𝑅 ∈ Ring → 𝑅 ∈ Mnd)
5113, 26, 50mp2b 10 . . . . . 6 𝑅 ∈ Mnd
52 diffi 8799 . . . . . . . . . 10 (𝑁 ∈ Fin → (𝑁 ∖ {𝐾}) ∈ Fin)
5331, 52syl 17 . . . . . . . . 9 (𝑀𝐵 → (𝑁 ∖ {𝐾}) ∈ Fin)
5453adantr 484 . . . . . . . 8 ((𝑀𝐵𝐾𝑁) → (𝑁 ∖ {𝐾}) ∈ Fin)
55 eqid 2758 . . . . . . . . 9 (SymGrp‘(𝑁 ∖ {𝐾})) = (SymGrp‘(𝑁 ∖ {𝐾}))
5655, 45symgbasfi 18587 . . . . . . . 8 ((𝑁 ∖ {𝐾}) ∈ Fin → (Base‘(SymGrp‘(𝑁 ∖ {𝐾}))) ∈ Fin)
5754, 56syl 17 . . . . . . 7 ((𝑀𝐵𝐾𝑁) → (Base‘(SymGrp‘(𝑁 ∖ {𝐾}))) ∈ Fin)
58 simpll 766 . . . . . . . . . 10 (((𝑀𝐵𝐾𝑁) ∧ 𝑝 ∈ (Base‘(SymGrp‘(𝑁 ∖ {𝐾})))) → 𝑀𝐵)
59 difssd 4040 . . . . . . . . . 10 (((𝑀𝐵𝐾𝑁) ∧ 𝑝 ∈ (Base‘(SymGrp‘(𝑁 ∖ {𝐾})))) → (𝑁 ∖ {𝐾}) ⊆ 𝑁)
601, 3submabas 21291 . . . . . . . . . 10 ((𝑀𝐵 ∧ (𝑁 ∖ {𝐾}) ⊆ 𝑁) → (𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑖𝑀𝑗)) ∈ (Base‘((𝑁 ∖ {𝐾}) Mat 𝑅)))
6158, 59, 60syl2anc 587 . . . . . . . . 9 (((𝑀𝐵𝐾𝑁) ∧ 𝑝 ∈ (Base‘(SymGrp‘(𝑁 ∖ {𝐾})))) → (𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑖𝑀𝑗)) ∈ (Base‘((𝑁 ∖ {𝐾}) Mat 𝑅)))
62 simpr 488 . . . . . . . . 9 (((𝑀𝐵𝐾𝑁) ∧ 𝑝 ∈ (Base‘(SymGrp‘(𝑁 ∖ {𝐾})))) → 𝑝 ∈ (Base‘(SymGrp‘(𝑁 ∖ {𝐾}))))
63 eqid 2758 . . . . . . . . . 10 ((𝑁 ∖ {𝐾}) Mat 𝑅) = ((𝑁 ∖ {𝐾}) Mat 𝑅)
64 eqid 2758 . . . . . . . . . 10 (Base‘((𝑁 ∖ {𝐾}) Mat 𝑅)) = (Base‘((𝑁 ∖ {𝐾}) Mat 𝑅))
6545, 46, 17, 63, 64, 20madetsmelbas2 21178 . . . . . . . . 9 ((𝑅 ∈ CRing ∧ (𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑖𝑀𝑗)) ∈ (Base‘((𝑁 ∖ {𝐾}) Mat 𝑅)) ∧ 𝑝 ∈ (Base‘(SymGrp‘(𝑁 ∖ {𝐾})))) → ((((ℤRHom‘𝑅) ∘ (pmSgn‘(𝑁 ∖ {𝐾})))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑛 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑛(𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑖𝑀𝑗))(𝑝𝑛))))) ∈ (Base‘𝑅))
6613, 61, 62, 65mp3an2i 1463 . . . . . . . 8 (((𝑀𝐵𝐾𝑁) ∧ 𝑝 ∈ (Base‘(SymGrp‘(𝑁 ∖ {𝐾})))) → ((((ℤRHom‘𝑅) ∘ (pmSgn‘(𝑁 ∖ {𝐾})))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑛 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑛(𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑖𝑀𝑗))(𝑝𝑛))))) ∈ (Base‘𝑅))
6766ralrimiva 3113 . . . . . . 7 ((𝑀𝐵𝐾𝑁) → ∀𝑝 ∈ (Base‘(SymGrp‘(𝑁 ∖ {𝐾})))((((ℤRHom‘𝑅) ∘ (pmSgn‘(𝑁 ∖ {𝐾})))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑛 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑛(𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑖𝑀𝑗))(𝑝𝑛))))) ∈ (Base‘𝑅))
6824, 29, 57, 67gsummptcl 19168 . . . . . 6 ((𝑀𝐵𝐾𝑁) → (𝑅 Σg (𝑝 ∈ (Base‘(SymGrp‘(𝑁 ∖ {𝐾}))) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘(𝑁 ∖ {𝐾})))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑛 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑛(𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑖𝑀𝑗))(𝑝𝑛))))))) ∈ (Base‘𝑅))
6924, 25, 9mndrid 18011 . . . . . 6 ((𝑅 ∈ Mnd ∧ (𝑅 Σg (𝑝 ∈ (Base‘(SymGrp‘(𝑁 ∖ {𝐾}))) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘(𝑁 ∖ {𝐾})))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑛 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑛(𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑖𝑀𝑗))(𝑝𝑛))))))) ∈ (Base‘𝑅)) → ((𝑅 Σg (𝑝 ∈ (Base‘(SymGrp‘(𝑁 ∖ {𝐾}))) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘(𝑁 ∖ {𝐾})))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑛 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑛(𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑖𝑀𝑗))(𝑝𝑛)))))))(+g𝑅)(0g𝑅)) = (𝑅 Σg (𝑝 ∈ (Base‘(SymGrp‘(𝑁 ∖ {𝐾}))) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘(𝑁 ∖ {𝐾})))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑛 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑛(𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑖𝑀𝑗))(𝑝𝑛))))))))
7051, 68, 69sylancr 590 . . . . 5 ((𝑀𝐵𝐾𝑁) → ((𝑅 Σg (𝑝 ∈ (Base‘(SymGrp‘(𝑁 ∖ {𝐾}))) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘(𝑁 ∖ {𝐾})))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑛 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑛(𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑖𝑀𝑗))(𝑝𝑛)))))))(+g𝑅)(0g𝑅)) = (𝑅 Σg (𝑝 ∈ (Base‘(SymGrp‘(𝑁 ∖ {𝐾}))) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘(𝑁 ∖ {𝐾})))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑛 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑛(𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑖𝑀𝑗))(𝑝𝑛))))))))
71 difssd 4040 . . . . . . 7 (𝐾𝑁 → (𝑁 ∖ {𝐾}) ⊆ 𝑁)
7260, 13jctil 523 . . . . . . 7 ((𝑀𝐵 ∧ (𝑁 ∖ {𝐾}) ⊆ 𝑁) → (𝑅 ∈ CRing ∧ (𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑖𝑀𝑗)) ∈ (Base‘((𝑁 ∖ {𝐾}) Mat 𝑅))))
7371, 72sylan2 595 . . . . . 6 ((𝑀𝐵𝐾𝑁) → (𝑅 ∈ CRing ∧ (𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑖𝑀𝑗)) ∈ (Base‘((𝑁 ∖ {𝐾}) Mat 𝑅))))
74 smadiadet.h . . . . . . 7 𝐸 = ((𝑁 ∖ {𝐾}) maDet 𝑅)
7574, 63, 64, 45, 17, 46, 19, 20mdetleib2 21301 . . . . . 6 ((𝑅 ∈ CRing ∧ (𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑖𝑀𝑗)) ∈ (Base‘((𝑁 ∖ {𝐾}) Mat 𝑅))) → (𝐸‘(𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑖𝑀𝑗))) = (𝑅 Σg (𝑝 ∈ (Base‘(SymGrp‘(𝑁 ∖ {𝐾}))) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘(𝑁 ∖ {𝐾})))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑛 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑛(𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑖𝑀𝑗))(𝑝𝑛))))))))
7673, 75syl 17 . . . . 5 ((𝑀𝐵𝐾𝑁) → (𝐸‘(𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑖𝑀𝑗))) = (𝑅 Σg (𝑝 ∈ (Base‘(SymGrp‘(𝑁 ∖ {𝐾}))) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘(𝑁 ∖ {𝐾})))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑛 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑛(𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑖𝑀𝑗))(𝑝𝑛))))))))
7770, 76eqtr4d 2796 . . . 4 ((𝑀𝐵𝐾𝑁) → ((𝑅 Σg (𝑝 ∈ (Base‘(SymGrp‘(𝑁 ∖ {𝐾}))) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘(𝑁 ∖ {𝐾})))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑛 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑛(𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑖𝑀𝑗))(𝑝𝑛)))))))(+g𝑅)(0g𝑅)) = (𝐸‘(𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑖𝑀𝑗))))
7844, 49, 773eqtrd 2797 . . 3 ((𝑀𝐵𝐾𝑁) → (𝑅 Σg (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ (𝑛(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐾, (1r𝑅), (0g𝑅)), (𝑖𝑀𝑗)))(𝑝𝑛))))))) = (𝐸‘(𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑖𝑀𝑗))))
7912, 23, 783eqtrd 2797 . 2 ((𝑀𝐵𝐾𝑁) → (𝐷‘(𝐾((𝑁 minMatR1 𝑅)‘𝑀)𝐾)) = (𝐸‘(𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑖𝑀𝑗))))
806, 79eqtr4d 2796 1 ((𝑀𝐵𝐾𝑁) → (𝐸‘(𝐾((𝑁 subMat 𝑅)‘𝑀)𝐾)) = (𝐷‘(𝐾((𝑁 minMatR1 𝑅)‘𝑀)𝐾)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2111  {crab 3074  Vcvv 3409  cdif 3857  cun 3858  cin 3859  wss 3860  c0 4227  ifcif 4423  {csn 4525  cmpt 5116  ccom 5532  cfv 6340  (class class class)co 7156  cmpo 7158  Fincfn 8540  Basecbs 16554  +gcplusg 16636  .rcmulr 16637  0gc0g 16784   Σg cgsu 16785  Mndcmnd 17990  SymGrpcsymg 18575  pmSgncpsgn 18697  CMndccmn 18986  mulGrpcmgp 19320  1rcur 19332  Ringcrg 19378  CRingccrg 19379  ℤRHomczrh 20282   Mat cmat 21120   subMat csubma 21289   maDet cmdat 21297   minMatR1 cminmar1 21346
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5160  ax-sep 5173  ax-nul 5180  ax-pow 5238  ax-pr 5302  ax-un 7465  ax-cnex 10644  ax-resscn 10645  ax-1cn 10646  ax-icn 10647  ax-addcl 10648  ax-addrcl 10649  ax-mulcl 10650  ax-mulrcl 10651  ax-mulcom 10652  ax-addass 10653  ax-mulass 10654  ax-distr 10655  ax-i2m1 10656  ax-1ne0 10657  ax-1rid 10658  ax-rnegex 10659  ax-rrecex 10660  ax-cnre 10661  ax-pre-lttri 10662  ax-pre-lttrn 10663  ax-pre-ltadd 10664  ax-pre-mulgt0 10665  ax-addf 10667  ax-mulf 10668
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-xor 1503  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-reu 3077  df-rmo 3078  df-rab 3079  df-v 3411  df-sbc 3699  df-csb 3808  df-dif 3863  df-un 3865  df-in 3867  df-ss 3877  df-pss 3879  df-nul 4228  df-if 4424  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-ot 4534  df-uni 4802  df-int 4842  df-iun 4888  df-iin 4889  df-br 5037  df-opab 5099  df-mpt 5117  df-tr 5143  df-id 5434  df-eprel 5439  df-po 5447  df-so 5448  df-fr 5487  df-se 5488  df-we 5489  df-xp 5534  df-rel 5535  df-cnv 5536  df-co 5537  df-dm 5538  df-rn 5539  df-res 5540  df-ima 5541  df-pred 6131  df-ord 6177  df-on 6178  df-lim 6179  df-suc 6180  df-iota 6299  df-fun 6342  df-fn 6343  df-f 6344  df-f1 6345  df-fo 6346  df-f1o 6347  df-fv 6348  df-isom 6349  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-of 7411  df-om 7586  df-1st 7699  df-2nd 7700  df-supp 7842  df-tpos 7908  df-wrecs 7963  df-recs 8024  df-rdg 8062  df-1o 8118  df-2o 8119  df-er 8305  df-map 8424  df-pm 8425  df-ixp 8493  df-en 8541  df-dom 8542  df-sdom 8543  df-fin 8544  df-fsupp 8880  df-sup 8952  df-oi 9020  df-card 9414  df-pnf 10728  df-mnf 10729  df-xr 10730  df-ltxr 10731  df-le 10732  df-sub 10923  df-neg 10924  df-div 11349  df-nn 11688  df-2 11750  df-3 11751  df-4 11752  df-5 11753  df-6 11754  df-7 11755  df-8 11756  df-9 11757  df-n0 11948  df-xnn0 12020  df-z 12034  df-dec 12151  df-uz 12296  df-rp 12444  df-fz 12953  df-fzo 13096  df-seq 13432  df-exp 13493  df-hash 13754  df-word 13927  df-lsw 13975  df-concat 13983  df-s1 14010  df-substr 14063  df-pfx 14093  df-splice 14172  df-reverse 14181  df-s2 14270  df-struct 16556  df-ndx 16557  df-slot 16558  df-base 16560  df-sets 16561  df-ress 16562  df-plusg 16649  df-mulr 16650  df-starv 16651  df-sca 16652  df-vsca 16653  df-ip 16654  df-tset 16655  df-ple 16656  df-ds 16658  df-unif 16659  df-hom 16660  df-cco 16661  df-0g 16786  df-gsum 16787  df-prds 16792  df-pws 16794  df-mre 16928  df-mrc 16929  df-acs 16931  df-mgm 17931  df-sgrp 17980  df-mnd 17991  df-mhm 18035  df-submnd 18036  df-efmnd 18113  df-grp 18185  df-minusg 18186  df-mulg 18305  df-subg 18356  df-ghm 18436  df-gim 18479  df-cntz 18527  df-oppg 18554  df-symg 18576  df-pmtr 18650  df-psgn 18699  df-cmn 18988  df-abl 18989  df-mgp 19321  df-ur 19333  df-ring 19380  df-cring 19381  df-oppr 19457  df-dvdsr 19475  df-unit 19476  df-invr 19506  df-dvr 19517  df-rnghom 19551  df-drng 19585  df-subrg 19614  df-sra 20025  df-rgmod 20026  df-cnfld 20180  df-zring 20252  df-zrh 20286  df-dsmm 20510  df-frlm 20525  df-mat 21121  df-subma 21290  df-mdet 21298  df-minmar1 21348
This theorem is referenced by:  smadiadetg  21386
  Copyright terms: Public domain W3C validator