MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  smadiadet Structured version   Visualization version   GIF version

Theorem smadiadet 22557
Description: The determinant of a submatrix of a square matrix obtained by removing a row and a column at the same index equals the determinant of the original matrix with the row replaced with 0's and a 1 at the diagonal position. (Contributed by AV, 31-Jan-2019.) (Proof shortened by AV, 24-Jul-2019.)
Hypotheses
Ref Expression
smadiadet.a 𝐴 = (𝑁 Mat 𝑅)
smadiadet.b 𝐵 = (Base‘𝐴)
smadiadet.r 𝑅 ∈ CRing
smadiadet.d 𝐷 = (𝑁 maDet 𝑅)
smadiadet.h 𝐸 = ((𝑁 ∖ {𝐾}) maDet 𝑅)
Assertion
Ref Expression
smadiadet ((𝑀𝐵𝐾𝑁) → (𝐸‘(𝐾((𝑁 subMat 𝑅)‘𝑀)𝐾)) = (𝐷‘(𝐾((𝑁 minMatR1 𝑅)‘𝑀)𝐾)))

Proof of Theorem smadiadet
Dummy variables 𝑖 𝑗 𝑛 𝑝 𝑞 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 smadiadet.a . . . . 5 𝐴 = (𝑁 Mat 𝑅)
2 eqid 2729 . . . . 5 (𝑁 subMat 𝑅) = (𝑁 subMat 𝑅)
3 smadiadet.b . . . . 5 𝐵 = (Base‘𝐴)
41, 2, 3submaval 22468 . . . 4 ((𝑀𝐵𝐾𝑁𝐾𝑁) → (𝐾((𝑁 subMat 𝑅)‘𝑀)𝐾) = (𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑖𝑀𝑗)))
543anidm23 1423 . . 3 ((𝑀𝐵𝐾𝑁) → (𝐾((𝑁 subMat 𝑅)‘𝑀)𝐾) = (𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑖𝑀𝑗)))
65fveq2d 6862 . 2 ((𝑀𝐵𝐾𝑁) → (𝐸‘(𝐾((𝑁 subMat 𝑅)‘𝑀)𝐾)) = (𝐸‘(𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑖𝑀𝑗))))
7 eqid 2729 . . . . . 6 (𝑁 minMatR1 𝑅) = (𝑁 minMatR1 𝑅)
8 eqid 2729 . . . . . 6 (1r𝑅) = (1r𝑅)
9 eqid 2729 . . . . . 6 (0g𝑅) = (0g𝑅)
101, 3, 7, 8, 9minmar1val 22535 . . . . 5 ((𝑀𝐵𝐾𝑁𝐾𝑁) → (𝐾((𝑁 minMatR1 𝑅)‘𝑀)𝐾) = (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐾, (1r𝑅), (0g𝑅)), (𝑖𝑀𝑗))))
11103anidm23 1423 . . . 4 ((𝑀𝐵𝐾𝑁) → (𝐾((𝑁 minMatR1 𝑅)‘𝑀)𝐾) = (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐾, (1r𝑅), (0g𝑅)), (𝑖𝑀𝑗))))
1211fveq2d 6862 . . 3 ((𝑀𝐵𝐾𝑁) → (𝐷‘(𝐾((𝑁 minMatR1 𝑅)‘𝑀)𝐾)) = (𝐷‘(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐾, (1r𝑅), (0g𝑅)), (𝑖𝑀𝑗)))))
13 smadiadet.r . . . . 5 𝑅 ∈ CRing
141, 3, 13, 9, 8marep01ma 22547 . . . . 5 (𝑀𝐵 → (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐾, (1r𝑅), (0g𝑅)), (𝑖𝑀𝑗))) ∈ 𝐵)
15 smadiadet.d . . . . . 6 𝐷 = (𝑁 maDet 𝑅)
16 eqid 2729 . . . . . 6 (Base‘(SymGrp‘𝑁)) = (Base‘(SymGrp‘𝑁))
17 eqid 2729 . . . . . 6 (ℤRHom‘𝑅) = (ℤRHom‘𝑅)
18 eqid 2729 . . . . . 6 (pmSgn‘𝑁) = (pmSgn‘𝑁)
19 eqid 2729 . . . . . 6 (.r𝑅) = (.r𝑅)
20 eqid 2729 . . . . . 6 (mulGrp‘𝑅) = (mulGrp‘𝑅)
2115, 1, 3, 16, 17, 18, 19, 20mdetleib2 22475 . . . . 5 ((𝑅 ∈ CRing ∧ (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐾, (1r𝑅), (0g𝑅)), (𝑖𝑀𝑗))) ∈ 𝐵) → (𝐷‘(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐾, (1r𝑅), (0g𝑅)), (𝑖𝑀𝑗)))) = (𝑅 Σg (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ (𝑛(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐾, (1r𝑅), (0g𝑅)), (𝑖𝑀𝑗)))(𝑝𝑛))))))))
2213, 14, 21sylancr 587 . . . 4 (𝑀𝐵 → (𝐷‘(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐾, (1r𝑅), (0g𝑅)), (𝑖𝑀𝑗)))) = (𝑅 Σg (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ (𝑛(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐾, (1r𝑅), (0g𝑅)), (𝑖𝑀𝑗)))(𝑝𝑛))))))))
2322adantr 480 . . 3 ((𝑀𝐵𝐾𝑁) → (𝐷‘(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐾, (1r𝑅), (0g𝑅)), (𝑖𝑀𝑗)))) = (𝑅 Σg (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ (𝑛(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐾, (1r𝑅), (0g𝑅)), (𝑖𝑀𝑗)))(𝑝𝑛))))))))
24 eqid 2729 . . . . 5 (Base‘𝑅) = (Base‘𝑅)
25 eqid 2729 . . . . 5 (+g𝑅) = (+g𝑅)
26 crngring 20154 . . . . . . 7 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
27 ringcmn 20191 . . . . . . 7 (𝑅 ∈ Ring → 𝑅 ∈ CMnd)
2813, 26, 27mp2b 10 . . . . . 6 𝑅 ∈ CMnd
2928a1i 11 . . . . 5 ((𝑀𝐵𝐾𝑁) → 𝑅 ∈ CMnd)
301, 3matrcl 22299 . . . . . . . 8 (𝑀𝐵 → (𝑁 ∈ Fin ∧ 𝑅 ∈ V))
3130simpld 494 . . . . . . 7 (𝑀𝐵𝑁 ∈ Fin)
32 eqid 2729 . . . . . . . 8 (SymGrp‘𝑁) = (SymGrp‘𝑁)
3332, 16symgbasfi 19309 . . . . . . 7 (𝑁 ∈ Fin → (Base‘(SymGrp‘𝑁)) ∈ Fin)
3431, 33syl 17 . . . . . 6 (𝑀𝐵 → (Base‘(SymGrp‘𝑁)) ∈ Fin)
3534adantr 480 . . . . 5 ((𝑀𝐵𝐾𝑁) → (Base‘(SymGrp‘𝑁)) ∈ Fin)
361, 3, 13, 9, 8, 16, 20, 17, 18, 19smadiadetlem1 22549 . . . . 5 (((𝑀𝐵𝐾𝑁) ∧ 𝑝 ∈ (Base‘(SymGrp‘𝑁))) → ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ (𝑛(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐾, (1r𝑅), (0g𝑅)), (𝑖𝑀𝑗)))(𝑝𝑛))))) ∈ (Base‘𝑅))
37 disjdif 4435 . . . . . 6 ({𝑞 ∈ (Base‘(SymGrp‘𝑁)) ∣ (𝑞𝐾) = 𝐾} ∩ ((Base‘(SymGrp‘𝑁)) ∖ {𝑞 ∈ (Base‘(SymGrp‘𝑁)) ∣ (𝑞𝐾) = 𝐾})) = ∅
3837a1i 11 . . . . 5 ((𝑀𝐵𝐾𝑁) → ({𝑞 ∈ (Base‘(SymGrp‘𝑁)) ∣ (𝑞𝐾) = 𝐾} ∩ ((Base‘(SymGrp‘𝑁)) ∖ {𝑞 ∈ (Base‘(SymGrp‘𝑁)) ∣ (𝑞𝐾) = 𝐾})) = ∅)
39 ssrab2 4043 . . . . . . . 8 {𝑞 ∈ (Base‘(SymGrp‘𝑁)) ∣ (𝑞𝐾) = 𝐾} ⊆ (Base‘(SymGrp‘𝑁))
4039a1i 11 . . . . . . 7 ((𝑀𝐵𝐾𝑁) → {𝑞 ∈ (Base‘(SymGrp‘𝑁)) ∣ (𝑞𝐾) = 𝐾} ⊆ (Base‘(SymGrp‘𝑁)))
41 undif 4445 . . . . . . 7 ({𝑞 ∈ (Base‘(SymGrp‘𝑁)) ∣ (𝑞𝐾) = 𝐾} ⊆ (Base‘(SymGrp‘𝑁)) ↔ ({𝑞 ∈ (Base‘(SymGrp‘𝑁)) ∣ (𝑞𝐾) = 𝐾} ∪ ((Base‘(SymGrp‘𝑁)) ∖ {𝑞 ∈ (Base‘(SymGrp‘𝑁)) ∣ (𝑞𝐾) = 𝐾})) = (Base‘(SymGrp‘𝑁)))
4240, 41sylib 218 . . . . . 6 ((𝑀𝐵𝐾𝑁) → ({𝑞 ∈ (Base‘(SymGrp‘𝑁)) ∣ (𝑞𝐾) = 𝐾} ∪ ((Base‘(SymGrp‘𝑁)) ∖ {𝑞 ∈ (Base‘(SymGrp‘𝑁)) ∣ (𝑞𝐾) = 𝐾})) = (Base‘(SymGrp‘𝑁)))
4342eqcomd 2735 . . . . 5 ((𝑀𝐵𝐾𝑁) → (Base‘(SymGrp‘𝑁)) = ({𝑞 ∈ (Base‘(SymGrp‘𝑁)) ∣ (𝑞𝐾) = 𝐾} ∪ ((Base‘(SymGrp‘𝑁)) ∖ {𝑞 ∈ (Base‘(SymGrp‘𝑁)) ∣ (𝑞𝐾) = 𝐾})))
4424, 25, 29, 35, 36, 38, 43gsummptfidmsplit 19860 . . . 4 ((𝑀𝐵𝐾𝑁) → (𝑅 Σg (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ (𝑛(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐾, (1r𝑅), (0g𝑅)), (𝑖𝑀𝑗)))(𝑝𝑛))))))) = ((𝑅 Σg (𝑝 ∈ {𝑞 ∈ (Base‘(SymGrp‘𝑁)) ∣ (𝑞𝐾) = 𝐾} ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ (𝑛(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐾, (1r𝑅), (0g𝑅)), (𝑖𝑀𝑗)))(𝑝𝑛)))))))(+g𝑅)(𝑅 Σg (𝑝 ∈ ((Base‘(SymGrp‘𝑁)) ∖ {𝑞 ∈ (Base‘(SymGrp‘𝑁)) ∣ (𝑞𝐾) = 𝐾}) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ (𝑛(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐾, (1r𝑅), (0g𝑅)), (𝑖𝑀𝑗)))(𝑝𝑛)))))))))
45 eqid 2729 . . . . . 6 (Base‘(SymGrp‘(𝑁 ∖ {𝐾}))) = (Base‘(SymGrp‘(𝑁 ∖ {𝐾})))
46 eqid 2729 . . . . . 6 (pmSgn‘(𝑁 ∖ {𝐾})) = (pmSgn‘(𝑁 ∖ {𝐾}))
471, 3, 13, 9, 8, 16, 20, 17, 18, 19, 45, 46smadiadetlem4 22556 . . . . 5 ((𝑀𝐵𝐾𝑁) → (𝑅 Σg (𝑝 ∈ {𝑞 ∈ (Base‘(SymGrp‘𝑁)) ∣ (𝑞𝐾) = 𝐾} ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ (𝑛(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐾, (1r𝑅), (0g𝑅)), (𝑖𝑀𝑗)))(𝑝𝑛))))))) = (𝑅 Σg (𝑝 ∈ (Base‘(SymGrp‘(𝑁 ∖ {𝐾}))) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘(𝑁 ∖ {𝐾})))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑛 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑛(𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑖𝑀𝑗))(𝑝𝑛))))))))
481, 3, 13, 9, 8, 16, 20, 17, 18, 19smadiadetlem2 22551 . . . . 5 ((𝑀𝐵𝐾𝑁) → (𝑅 Σg (𝑝 ∈ ((Base‘(SymGrp‘𝑁)) ∖ {𝑞 ∈ (Base‘(SymGrp‘𝑁)) ∣ (𝑞𝐾) = 𝐾}) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ (𝑛(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐾, (1r𝑅), (0g𝑅)), (𝑖𝑀𝑗)))(𝑝𝑛))))))) = (0g𝑅))
4947, 48oveq12d 7405 . . . 4 ((𝑀𝐵𝐾𝑁) → ((𝑅 Σg (𝑝 ∈ {𝑞 ∈ (Base‘(SymGrp‘𝑁)) ∣ (𝑞𝐾) = 𝐾} ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ (𝑛(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐾, (1r𝑅), (0g𝑅)), (𝑖𝑀𝑗)))(𝑝𝑛)))))))(+g𝑅)(𝑅 Σg (𝑝 ∈ ((Base‘(SymGrp‘𝑁)) ∖ {𝑞 ∈ (Base‘(SymGrp‘𝑁)) ∣ (𝑞𝐾) = 𝐾}) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ (𝑛(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐾, (1r𝑅), (0g𝑅)), (𝑖𝑀𝑗)))(𝑝𝑛)))))))) = ((𝑅 Σg (𝑝 ∈ (Base‘(SymGrp‘(𝑁 ∖ {𝐾}))) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘(𝑁 ∖ {𝐾})))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑛 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑛(𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑖𝑀𝑗))(𝑝𝑛)))))))(+g𝑅)(0g𝑅)))
50 ringmnd 20152 . . . . . . 7 (𝑅 ∈ Ring → 𝑅 ∈ Mnd)
5113, 26, 50mp2b 10 . . . . . 6 𝑅 ∈ Mnd
52 diffi 9139 . . . . . . . . . 10 (𝑁 ∈ Fin → (𝑁 ∖ {𝐾}) ∈ Fin)
5331, 52syl 17 . . . . . . . . 9 (𝑀𝐵 → (𝑁 ∖ {𝐾}) ∈ Fin)
5453adantr 480 . . . . . . . 8 ((𝑀𝐵𝐾𝑁) → (𝑁 ∖ {𝐾}) ∈ Fin)
55 eqid 2729 . . . . . . . . 9 (SymGrp‘(𝑁 ∖ {𝐾})) = (SymGrp‘(𝑁 ∖ {𝐾}))
5655, 45symgbasfi 19309 . . . . . . . 8 ((𝑁 ∖ {𝐾}) ∈ Fin → (Base‘(SymGrp‘(𝑁 ∖ {𝐾}))) ∈ Fin)
5754, 56syl 17 . . . . . . 7 ((𝑀𝐵𝐾𝑁) → (Base‘(SymGrp‘(𝑁 ∖ {𝐾}))) ∈ Fin)
58 simpll 766 . . . . . . . . . 10 (((𝑀𝐵𝐾𝑁) ∧ 𝑝 ∈ (Base‘(SymGrp‘(𝑁 ∖ {𝐾})))) → 𝑀𝐵)
59 difssd 4100 . . . . . . . . . 10 (((𝑀𝐵𝐾𝑁) ∧ 𝑝 ∈ (Base‘(SymGrp‘(𝑁 ∖ {𝐾})))) → (𝑁 ∖ {𝐾}) ⊆ 𝑁)
601, 3submabas 22465 . . . . . . . . . 10 ((𝑀𝐵 ∧ (𝑁 ∖ {𝐾}) ⊆ 𝑁) → (𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑖𝑀𝑗)) ∈ (Base‘((𝑁 ∖ {𝐾}) Mat 𝑅)))
6158, 59, 60syl2anc 584 . . . . . . . . 9 (((𝑀𝐵𝐾𝑁) ∧ 𝑝 ∈ (Base‘(SymGrp‘(𝑁 ∖ {𝐾})))) → (𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑖𝑀𝑗)) ∈ (Base‘((𝑁 ∖ {𝐾}) Mat 𝑅)))
62 simpr 484 . . . . . . . . 9 (((𝑀𝐵𝐾𝑁) ∧ 𝑝 ∈ (Base‘(SymGrp‘(𝑁 ∖ {𝐾})))) → 𝑝 ∈ (Base‘(SymGrp‘(𝑁 ∖ {𝐾}))))
63 eqid 2729 . . . . . . . . . 10 ((𝑁 ∖ {𝐾}) Mat 𝑅) = ((𝑁 ∖ {𝐾}) Mat 𝑅)
64 eqid 2729 . . . . . . . . . 10 (Base‘((𝑁 ∖ {𝐾}) Mat 𝑅)) = (Base‘((𝑁 ∖ {𝐾}) Mat 𝑅))
6545, 46, 17, 63, 64, 20madetsmelbas2 22352 . . . . . . . . 9 ((𝑅 ∈ CRing ∧ (𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑖𝑀𝑗)) ∈ (Base‘((𝑁 ∖ {𝐾}) Mat 𝑅)) ∧ 𝑝 ∈ (Base‘(SymGrp‘(𝑁 ∖ {𝐾})))) → ((((ℤRHom‘𝑅) ∘ (pmSgn‘(𝑁 ∖ {𝐾})))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑛 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑛(𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑖𝑀𝑗))(𝑝𝑛))))) ∈ (Base‘𝑅))
6613, 61, 62, 65mp3an2i 1468 . . . . . . . 8 (((𝑀𝐵𝐾𝑁) ∧ 𝑝 ∈ (Base‘(SymGrp‘(𝑁 ∖ {𝐾})))) → ((((ℤRHom‘𝑅) ∘ (pmSgn‘(𝑁 ∖ {𝐾})))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑛 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑛(𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑖𝑀𝑗))(𝑝𝑛))))) ∈ (Base‘𝑅))
6766ralrimiva 3125 . . . . . . 7 ((𝑀𝐵𝐾𝑁) → ∀𝑝 ∈ (Base‘(SymGrp‘(𝑁 ∖ {𝐾})))((((ℤRHom‘𝑅) ∘ (pmSgn‘(𝑁 ∖ {𝐾})))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑛 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑛(𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑖𝑀𝑗))(𝑝𝑛))))) ∈ (Base‘𝑅))
6824, 29, 57, 67gsummptcl 19897 . . . . . 6 ((𝑀𝐵𝐾𝑁) → (𝑅 Σg (𝑝 ∈ (Base‘(SymGrp‘(𝑁 ∖ {𝐾}))) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘(𝑁 ∖ {𝐾})))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑛 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑛(𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑖𝑀𝑗))(𝑝𝑛))))))) ∈ (Base‘𝑅))
6924, 25, 9mndrid 18682 . . . . . 6 ((𝑅 ∈ Mnd ∧ (𝑅 Σg (𝑝 ∈ (Base‘(SymGrp‘(𝑁 ∖ {𝐾}))) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘(𝑁 ∖ {𝐾})))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑛 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑛(𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑖𝑀𝑗))(𝑝𝑛))))))) ∈ (Base‘𝑅)) → ((𝑅 Σg (𝑝 ∈ (Base‘(SymGrp‘(𝑁 ∖ {𝐾}))) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘(𝑁 ∖ {𝐾})))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑛 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑛(𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑖𝑀𝑗))(𝑝𝑛)))))))(+g𝑅)(0g𝑅)) = (𝑅 Σg (𝑝 ∈ (Base‘(SymGrp‘(𝑁 ∖ {𝐾}))) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘(𝑁 ∖ {𝐾})))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑛 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑛(𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑖𝑀𝑗))(𝑝𝑛))))))))
7051, 68, 69sylancr 587 . . . . 5 ((𝑀𝐵𝐾𝑁) → ((𝑅 Σg (𝑝 ∈ (Base‘(SymGrp‘(𝑁 ∖ {𝐾}))) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘(𝑁 ∖ {𝐾})))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑛 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑛(𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑖𝑀𝑗))(𝑝𝑛)))))))(+g𝑅)(0g𝑅)) = (𝑅 Σg (𝑝 ∈ (Base‘(SymGrp‘(𝑁 ∖ {𝐾}))) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘(𝑁 ∖ {𝐾})))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑛 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑛(𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑖𝑀𝑗))(𝑝𝑛))))))))
71 difssd 4100 . . . . . . 7 (𝐾𝑁 → (𝑁 ∖ {𝐾}) ⊆ 𝑁)
7260, 13jctil 519 . . . . . . 7 ((𝑀𝐵 ∧ (𝑁 ∖ {𝐾}) ⊆ 𝑁) → (𝑅 ∈ CRing ∧ (𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑖𝑀𝑗)) ∈ (Base‘((𝑁 ∖ {𝐾}) Mat 𝑅))))
7371, 72sylan2 593 . . . . . 6 ((𝑀𝐵𝐾𝑁) → (𝑅 ∈ CRing ∧ (𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑖𝑀𝑗)) ∈ (Base‘((𝑁 ∖ {𝐾}) Mat 𝑅))))
74 smadiadet.h . . . . . . 7 𝐸 = ((𝑁 ∖ {𝐾}) maDet 𝑅)
7574, 63, 64, 45, 17, 46, 19, 20mdetleib2 22475 . . . . . 6 ((𝑅 ∈ CRing ∧ (𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑖𝑀𝑗)) ∈ (Base‘((𝑁 ∖ {𝐾}) Mat 𝑅))) → (𝐸‘(𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑖𝑀𝑗))) = (𝑅 Σg (𝑝 ∈ (Base‘(SymGrp‘(𝑁 ∖ {𝐾}))) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘(𝑁 ∖ {𝐾})))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑛 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑛(𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑖𝑀𝑗))(𝑝𝑛))))))))
7673, 75syl 17 . . . . 5 ((𝑀𝐵𝐾𝑁) → (𝐸‘(𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑖𝑀𝑗))) = (𝑅 Σg (𝑝 ∈ (Base‘(SymGrp‘(𝑁 ∖ {𝐾}))) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘(𝑁 ∖ {𝐾})))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑛 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑛(𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑖𝑀𝑗))(𝑝𝑛))))))))
7770, 76eqtr4d 2767 . . . 4 ((𝑀𝐵𝐾𝑁) → ((𝑅 Σg (𝑝 ∈ (Base‘(SymGrp‘(𝑁 ∖ {𝐾}))) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘(𝑁 ∖ {𝐾})))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑛 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑛(𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑖𝑀𝑗))(𝑝𝑛)))))))(+g𝑅)(0g𝑅)) = (𝐸‘(𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑖𝑀𝑗))))
7844, 49, 773eqtrd 2768 . . 3 ((𝑀𝐵𝐾𝑁) → (𝑅 Σg (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)((mulGrp‘𝑅) Σg (𝑛𝑁 ↦ (𝑛(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐾, (1r𝑅), (0g𝑅)), (𝑖𝑀𝑗)))(𝑝𝑛))))))) = (𝐸‘(𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑖𝑀𝑗))))
7912, 23, 783eqtrd 2768 . 2 ((𝑀𝐵𝐾𝑁) → (𝐷‘(𝐾((𝑁 minMatR1 𝑅)‘𝑀)𝐾)) = (𝐸‘(𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑖𝑀𝑗))))
806, 79eqtr4d 2767 1 ((𝑀𝐵𝐾𝑁) → (𝐸‘(𝐾((𝑁 subMat 𝑅)‘𝑀)𝐾)) = (𝐷‘(𝐾((𝑁 minMatR1 𝑅)‘𝑀)𝐾)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  {crab 3405  Vcvv 3447  cdif 3911  cun 3912  cin 3913  wss 3914  c0 4296  ifcif 4488  {csn 4589  cmpt 5188  ccom 5642  cfv 6511  (class class class)co 7387  cmpo 7389  Fincfn 8918  Basecbs 17179  +gcplusg 17220  .rcmulr 17221  0gc0g 17402   Σg cgsu 17403  Mndcmnd 18661  SymGrpcsymg 19299  pmSgncpsgn 19419  CMndccmn 19710  mulGrpcmgp 20049  1rcur 20090  Ringcrg 20142  CRingccrg 20143  ℤRHomczrh 21409   Mat cmat 22294   subMat csubma 22463   maDet cmdat 22471   minMatR1 cminmar1 22520
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-addf 11147  ax-mulf 11148
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-xor 1512  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-ot 4598  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-om 7843  df-1st 7968  df-2nd 7969  df-supp 8140  df-tpos 8205  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-er 8671  df-map 8801  df-pm 8802  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fsupp 9313  df-sup 9393  df-oi 9463  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-xnn0 12516  df-z 12530  df-dec 12650  df-uz 12794  df-rp 12952  df-fz 13469  df-fzo 13616  df-seq 13967  df-exp 14027  df-hash 14296  df-word 14479  df-lsw 14528  df-concat 14536  df-s1 14561  df-substr 14606  df-pfx 14636  df-splice 14715  df-reverse 14724  df-s2 14814  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-starv 17235  df-sca 17236  df-vsca 17237  df-ip 17238  df-tset 17239  df-ple 17240  df-ds 17242  df-unif 17243  df-hom 17244  df-cco 17245  df-0g 17404  df-gsum 17405  df-prds 17410  df-pws 17412  df-mre 17547  df-mrc 17548  df-acs 17550  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-mhm 18710  df-submnd 18711  df-efmnd 18796  df-grp 18868  df-minusg 18869  df-mulg 19000  df-subg 19055  df-ghm 19145  df-gim 19191  df-cntz 19249  df-oppg 19278  df-symg 19300  df-pmtr 19372  df-psgn 19421  df-cmn 19712  df-abl 19713  df-mgp 20050  df-rng 20062  df-ur 20091  df-ring 20144  df-cring 20145  df-oppr 20246  df-dvdsr 20266  df-unit 20267  df-invr 20297  df-dvr 20310  df-rhm 20381  df-subrng 20455  df-subrg 20479  df-drng 20640  df-sra 21080  df-rgmod 21081  df-cnfld 21265  df-zring 21357  df-zrh 21413  df-dsmm 21641  df-frlm 21656  df-mat 22295  df-subma 22464  df-mdet 22472  df-minmar1 22522
This theorem is referenced by:  smadiadetg  22560
  Copyright terms: Public domain W3C validator