Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  efsub Structured version   Visualization version   GIF version

Theorem efsub 15465
 Description: Difference of exponents law for exponential function. (Contributed by Steve Rodriguez, 25-Nov-2007.)
Assertion
Ref Expression
efsub ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (exp‘(𝐴𝐵)) = ((exp‘𝐴) / (exp‘𝐵)))

Proof of Theorem efsub
StepHypRef Expression
1 efcl 15448 . . . 4 (𝐴 ∈ ℂ → (exp‘𝐴) ∈ ℂ)
2 efcl 15448 . . . 4 (𝐵 ∈ ℂ → (exp‘𝐵) ∈ ℂ)
3 efne0 15462 . . . 4 (𝐵 ∈ ℂ → (exp‘𝐵) ≠ 0)
4 divrec 11321 . . . 4 (((exp‘𝐴) ∈ ℂ ∧ (exp‘𝐵) ∈ ℂ ∧ (exp‘𝐵) ≠ 0) → ((exp‘𝐴) / (exp‘𝐵)) = ((exp‘𝐴) · (1 / (exp‘𝐵))))
51, 2, 3, 4syl3an 1157 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((exp‘𝐴) / (exp‘𝐵)) = ((exp‘𝐴) · (1 / (exp‘𝐵))))
653anidm23 1418 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((exp‘𝐴) / (exp‘𝐵)) = ((exp‘𝐴) · (1 / (exp‘𝐵))))
7 efcan 15461 . . . . . . 7 (𝐵 ∈ ℂ → ((exp‘𝐵) · (exp‘-𝐵)) = 1)
87eqcomd 2804 . . . . . 6 (𝐵 ∈ ℂ → 1 = ((exp‘𝐵) · (exp‘-𝐵)))
9 negcl 10893 . . . . . . . 8 (𝐵 ∈ ℂ → -𝐵 ∈ ℂ)
10 efcl 15448 . . . . . . . 8 (-𝐵 ∈ ℂ → (exp‘-𝐵) ∈ ℂ)
119, 10syl 17 . . . . . . 7 (𝐵 ∈ ℂ → (exp‘-𝐵) ∈ ℂ)
12 ax-1cn 10602 . . . . . . . 8 1 ∈ ℂ
13 divmul2 11309 . . . . . . . 8 ((1 ∈ ℂ ∧ (exp‘-𝐵) ∈ ℂ ∧ ((exp‘𝐵) ∈ ℂ ∧ (exp‘𝐵) ≠ 0)) → ((1 / (exp‘𝐵)) = (exp‘-𝐵) ↔ 1 = ((exp‘𝐵) · (exp‘-𝐵))))
1412, 13mp3an1 1445 . . . . . . 7 (((exp‘-𝐵) ∈ ℂ ∧ ((exp‘𝐵) ∈ ℂ ∧ (exp‘𝐵) ≠ 0)) → ((1 / (exp‘𝐵)) = (exp‘-𝐵) ↔ 1 = ((exp‘𝐵) · (exp‘-𝐵))))
1511, 2, 3, 14syl12anc 835 . . . . . 6 (𝐵 ∈ ℂ → ((1 / (exp‘𝐵)) = (exp‘-𝐵) ↔ 1 = ((exp‘𝐵) · (exp‘-𝐵))))
168, 15mpbird 260 . . . . 5 (𝐵 ∈ ℂ → (1 / (exp‘𝐵)) = (exp‘-𝐵))
1716oveq2d 7161 . . . 4 (𝐵 ∈ ℂ → ((exp‘𝐴) · (1 / (exp‘𝐵))) = ((exp‘𝐴) · (exp‘-𝐵)))
1817adantl 485 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((exp‘𝐴) · (1 / (exp‘𝐵))) = ((exp‘𝐴) · (exp‘-𝐵)))
19 efadd 15459 . . . 4 ((𝐴 ∈ ℂ ∧ -𝐵 ∈ ℂ) → (exp‘(𝐴 + -𝐵)) = ((exp‘𝐴) · (exp‘-𝐵)))
209, 19sylan2 595 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (exp‘(𝐴 + -𝐵)) = ((exp‘𝐴) · (exp‘-𝐵)))
2118, 20eqtr4d 2836 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((exp‘𝐴) · (1 / (exp‘𝐵))) = (exp‘(𝐴 + -𝐵)))
22 negsub 10941 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + -𝐵) = (𝐴𝐵))
2322fveq2d 6659 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (exp‘(𝐴 + -𝐵)) = (exp‘(𝐴𝐵)))
246, 21, 233eqtrrd 2838 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (exp‘(𝐴𝐵)) = ((exp‘𝐴) / (exp‘𝐵)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399   = wceq 1538   ∈ wcel 2111   ≠ wne 2987  ‘cfv 6332  (class class class)co 7145  ℂcc 10542  0cc0 10544  1c1 10545   + caddc 10547   · cmul 10549   − cmin 10877  -cneg 10878   / cdiv 11304  expce 15427 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5158  ax-sep 5171  ax-nul 5178  ax-pow 5235  ax-pr 5299  ax-un 7454  ax-inf2 9106  ax-cnex 10600  ax-resscn 10601  ax-1cn 10602  ax-icn 10603  ax-addcl 10604  ax-addrcl 10605  ax-mulcl 10606  ax-mulrcl 10607  ax-mulcom 10608  ax-addass 10609  ax-mulass 10610  ax-distr 10611  ax-i2m1 10612  ax-1ne0 10613  ax-1rid 10614  ax-rnegex 10615  ax-rrecex 10616  ax-cnre 10617  ax-pre-lttri 10618  ax-pre-lttrn 10619  ax-pre-ltadd 10620  ax-pre-mulgt0 10621  ax-pre-sup 10622  ax-addf 10623  ax-mulf 10624 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3444  df-sbc 3723  df-csb 3831  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4805  df-int 4843  df-iun 4887  df-br 5035  df-opab 5097  df-mpt 5115  df-tr 5141  df-id 5429  df-eprel 5434  df-po 5442  df-so 5443  df-fr 5482  df-se 5483  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6123  df-ord 6169  df-on 6170  df-lim 6171  df-suc 6172  df-iota 6291  df-fun 6334  df-fn 6335  df-f 6336  df-f1 6337  df-fo 6338  df-f1o 6339  df-fv 6340  df-isom 6341  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7574  df-1st 7684  df-2nd 7685  df-wrecs 7948  df-recs 8009  df-rdg 8047  df-1o 8103  df-oadd 8107  df-er 8290  df-pm 8410  df-en 8511  df-dom 8512  df-sdom 8513  df-fin 8514  df-sup 8908  df-inf 8909  df-oi 8976  df-card 9370  df-pnf 10684  df-mnf 10685  df-xr 10686  df-ltxr 10687  df-le 10688  df-sub 10879  df-neg 10880  df-div 11305  df-nn 11644  df-2 11706  df-3 11707  df-n0 11904  df-z 11990  df-uz 12252  df-rp 12398  df-ico 12752  df-fz 12906  df-fzo 13049  df-fl 13177  df-seq 13385  df-exp 13446  df-fac 13650  df-bc 13679  df-hash 13707  df-shft 14438  df-cj 14470  df-re 14471  df-im 14472  df-sqrt 14606  df-abs 14607  df-limsup 14840  df-clim 14857  df-rlim 14858  df-sum 15055  df-ef 15433 This theorem is referenced by:  efeq1  25164  efif1olem4  25181  relogdiv  25228  eflogeq  25237  efiarg  25242  logneg2  25250  logdiv2  25252  logcnlem4  25280  efopn  25293  ang180lem1  25439  efiatan  25542  2efiatan  25548  atantan  25553  birthdaylem2  25582  gamcvg2lem  25688  efchtdvds  25788  bposlem9  25920  iprodgam  33157
 Copyright terms: Public domain W3C validator