![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > efsub | Structured version Visualization version GIF version |
Description: Difference of exponents law for exponential function. (Contributed by Steve Rodriguez, 25-Nov-2007.) |
Ref | Expression |
---|---|
efsub | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (exp‘(𝐴 − 𝐵)) = ((exp‘𝐴) / (exp‘𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | efcl 16084 | . . . 4 ⊢ (𝐴 ∈ ℂ → (exp‘𝐴) ∈ ℂ) | |
2 | efcl 16084 | . . . 4 ⊢ (𝐵 ∈ ℂ → (exp‘𝐵) ∈ ℂ) | |
3 | efne0 16099 | . . . 4 ⊢ (𝐵 ∈ ℂ → (exp‘𝐵) ≠ 0) | |
4 | divrec 11939 | . . . 4 ⊢ (((exp‘𝐴) ∈ ℂ ∧ (exp‘𝐵) ∈ ℂ ∧ (exp‘𝐵) ≠ 0) → ((exp‘𝐴) / (exp‘𝐵)) = ((exp‘𝐴) · (1 / (exp‘𝐵)))) | |
5 | 1, 2, 3, 4 | syl3an 1157 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((exp‘𝐴) / (exp‘𝐵)) = ((exp‘𝐴) · (1 / (exp‘𝐵)))) |
6 | 5 | 3anidm23 1418 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((exp‘𝐴) / (exp‘𝐵)) = ((exp‘𝐴) · (1 / (exp‘𝐵)))) |
7 | efcan 16098 | . . . . . . 7 ⊢ (𝐵 ∈ ℂ → ((exp‘𝐵) · (exp‘-𝐵)) = 1) | |
8 | 7 | eqcomd 2732 | . . . . . 6 ⊢ (𝐵 ∈ ℂ → 1 = ((exp‘𝐵) · (exp‘-𝐵))) |
9 | negcl 11510 | . . . . . . . 8 ⊢ (𝐵 ∈ ℂ → -𝐵 ∈ ℂ) | |
10 | efcl 16084 | . . . . . . . 8 ⊢ (-𝐵 ∈ ℂ → (exp‘-𝐵) ∈ ℂ) | |
11 | 9, 10 | syl 17 | . . . . . . 7 ⊢ (𝐵 ∈ ℂ → (exp‘-𝐵) ∈ ℂ) |
12 | ax-1cn 11216 | . . . . . . . 8 ⊢ 1 ∈ ℂ | |
13 | divmul2 11927 | . . . . . . . 8 ⊢ ((1 ∈ ℂ ∧ (exp‘-𝐵) ∈ ℂ ∧ ((exp‘𝐵) ∈ ℂ ∧ (exp‘𝐵) ≠ 0)) → ((1 / (exp‘𝐵)) = (exp‘-𝐵) ↔ 1 = ((exp‘𝐵) · (exp‘-𝐵)))) | |
14 | 12, 13 | mp3an1 1445 | . . . . . . 7 ⊢ (((exp‘-𝐵) ∈ ℂ ∧ ((exp‘𝐵) ∈ ℂ ∧ (exp‘𝐵) ≠ 0)) → ((1 / (exp‘𝐵)) = (exp‘-𝐵) ↔ 1 = ((exp‘𝐵) · (exp‘-𝐵)))) |
15 | 11, 2, 3, 14 | syl12anc 835 | . . . . . 6 ⊢ (𝐵 ∈ ℂ → ((1 / (exp‘𝐵)) = (exp‘-𝐵) ↔ 1 = ((exp‘𝐵) · (exp‘-𝐵)))) |
16 | 8, 15 | mpbird 256 | . . . . 5 ⊢ (𝐵 ∈ ℂ → (1 / (exp‘𝐵)) = (exp‘-𝐵)) |
17 | 16 | oveq2d 7440 | . . . 4 ⊢ (𝐵 ∈ ℂ → ((exp‘𝐴) · (1 / (exp‘𝐵))) = ((exp‘𝐴) · (exp‘-𝐵))) |
18 | 17 | adantl 480 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((exp‘𝐴) · (1 / (exp‘𝐵))) = ((exp‘𝐴) · (exp‘-𝐵))) |
19 | efadd 16096 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ -𝐵 ∈ ℂ) → (exp‘(𝐴 + -𝐵)) = ((exp‘𝐴) · (exp‘-𝐵))) | |
20 | 9, 19 | sylan2 591 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (exp‘(𝐴 + -𝐵)) = ((exp‘𝐴) · (exp‘-𝐵))) |
21 | 18, 20 | eqtr4d 2769 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((exp‘𝐴) · (1 / (exp‘𝐵))) = (exp‘(𝐴 + -𝐵))) |
22 | negsub 11558 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + -𝐵) = (𝐴 − 𝐵)) | |
23 | 22 | fveq2d 6905 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (exp‘(𝐴 + -𝐵)) = (exp‘(𝐴 − 𝐵))) |
24 | 6, 21, 23 | 3eqtrrd 2771 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (exp‘(𝐴 − 𝐵)) = ((exp‘𝐴) / (exp‘𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 = wceq 1534 ∈ wcel 2099 ≠ wne 2930 ‘cfv 6554 (class class class)co 7424 ℂcc 11156 0cc0 11158 1c1 11159 + caddc 11161 · cmul 11163 − cmin 11494 -cneg 11495 / cdiv 11921 expce 16063 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-rep 5290 ax-sep 5304 ax-nul 5311 ax-pow 5369 ax-pr 5433 ax-un 7746 ax-inf2 9684 ax-cnex 11214 ax-resscn 11215 ax-1cn 11216 ax-icn 11217 ax-addcl 11218 ax-addrcl 11219 ax-mulcl 11220 ax-mulrcl 11221 ax-mulcom 11222 ax-addass 11223 ax-mulass 11224 ax-distr 11225 ax-i2m1 11226 ax-1ne0 11227 ax-1rid 11228 ax-rnegex 11229 ax-rrecex 11230 ax-cnre 11231 ax-pre-lttri 11232 ax-pre-lttrn 11233 ax-pre-ltadd 11234 ax-pre-mulgt0 11235 ax-pre-sup 11236 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3967 df-nul 4326 df-if 4534 df-pw 4609 df-sn 4634 df-pr 4636 df-op 4640 df-uni 4914 df-int 4955 df-iun 5003 df-br 5154 df-opab 5216 df-mpt 5237 df-tr 5271 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-se 5638 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6312 df-ord 6379 df-on 6380 df-lim 6381 df-suc 6382 df-iota 6506 df-fun 6556 df-fn 6557 df-f 6558 df-f1 6559 df-fo 6560 df-f1o 6561 df-fv 6562 df-isom 6563 df-riota 7380 df-ov 7427 df-oprab 7428 df-mpo 7429 df-om 7877 df-1st 8003 df-2nd 8004 df-frecs 8296 df-wrecs 8327 df-recs 8401 df-rdg 8440 df-1o 8496 df-er 8734 df-pm 8858 df-en 8975 df-dom 8976 df-sdom 8977 df-fin 8978 df-sup 9485 df-inf 9486 df-oi 9553 df-card 9982 df-pnf 11300 df-mnf 11301 df-xr 11302 df-ltxr 11303 df-le 11304 df-sub 11496 df-neg 11497 df-div 11922 df-nn 12265 df-2 12327 df-3 12328 df-n0 12525 df-z 12611 df-uz 12875 df-rp 13029 df-ico 13384 df-fz 13539 df-fzo 13682 df-fl 13812 df-seq 14022 df-exp 14082 df-fac 14291 df-bc 14320 df-hash 14348 df-shft 15072 df-cj 15104 df-re 15105 df-im 15106 df-sqrt 15240 df-abs 15241 df-limsup 15473 df-clim 15490 df-rlim 15491 df-sum 15691 df-ef 16069 |
This theorem is referenced by: efeq1 26555 efif1olem4 26572 relogdiv 26620 eflogeq 26629 efiarg 26634 logneg2 26642 logdiv2 26644 logcnlem4 26672 efopn 26685 ang180lem1 26837 efiatan 26940 2efiatan 26946 atantan 26951 birthdaylem2 26980 gamcvg2lem 27087 efchtdvds 27187 bposlem9 27321 iprodgam 35564 efsubd 42134 |
Copyright terms: Public domain | W3C validator |