Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > efsub | Structured version Visualization version GIF version |
Description: Difference of exponents law for exponential function. (Contributed by Steve Rodriguez, 25-Nov-2007.) |
Ref | Expression |
---|---|
efsub | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (exp‘(𝐴 − 𝐵)) = ((exp‘𝐴) / (exp‘𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | efcl 15891 | . . . 4 ⊢ (𝐴 ∈ ℂ → (exp‘𝐴) ∈ ℂ) | |
2 | efcl 15891 | . . . 4 ⊢ (𝐵 ∈ ℂ → (exp‘𝐵) ∈ ℂ) | |
3 | efne0 15905 | . . . 4 ⊢ (𝐵 ∈ ℂ → (exp‘𝐵) ≠ 0) | |
4 | divrec 11754 | . . . 4 ⊢ (((exp‘𝐴) ∈ ℂ ∧ (exp‘𝐵) ∈ ℂ ∧ (exp‘𝐵) ≠ 0) → ((exp‘𝐴) / (exp‘𝐵)) = ((exp‘𝐴) · (1 / (exp‘𝐵)))) | |
5 | 1, 2, 3, 4 | syl3an 1160 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((exp‘𝐴) / (exp‘𝐵)) = ((exp‘𝐴) · (1 / (exp‘𝐵)))) |
6 | 5 | 3anidm23 1421 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((exp‘𝐴) / (exp‘𝐵)) = ((exp‘𝐴) · (1 / (exp‘𝐵)))) |
7 | efcan 15904 | . . . . . . 7 ⊢ (𝐵 ∈ ℂ → ((exp‘𝐵) · (exp‘-𝐵)) = 1) | |
8 | 7 | eqcomd 2743 | . . . . . 6 ⊢ (𝐵 ∈ ℂ → 1 = ((exp‘𝐵) · (exp‘-𝐵))) |
9 | negcl 11326 | . . . . . . . 8 ⊢ (𝐵 ∈ ℂ → -𝐵 ∈ ℂ) | |
10 | efcl 15891 | . . . . . . . 8 ⊢ (-𝐵 ∈ ℂ → (exp‘-𝐵) ∈ ℂ) | |
11 | 9, 10 | syl 17 | . . . . . . 7 ⊢ (𝐵 ∈ ℂ → (exp‘-𝐵) ∈ ℂ) |
12 | ax-1cn 11034 | . . . . . . . 8 ⊢ 1 ∈ ℂ | |
13 | divmul2 11742 | . . . . . . . 8 ⊢ ((1 ∈ ℂ ∧ (exp‘-𝐵) ∈ ℂ ∧ ((exp‘𝐵) ∈ ℂ ∧ (exp‘𝐵) ≠ 0)) → ((1 / (exp‘𝐵)) = (exp‘-𝐵) ↔ 1 = ((exp‘𝐵) · (exp‘-𝐵)))) | |
14 | 12, 13 | mp3an1 1448 | . . . . . . 7 ⊢ (((exp‘-𝐵) ∈ ℂ ∧ ((exp‘𝐵) ∈ ℂ ∧ (exp‘𝐵) ≠ 0)) → ((1 / (exp‘𝐵)) = (exp‘-𝐵) ↔ 1 = ((exp‘𝐵) · (exp‘-𝐵)))) |
15 | 11, 2, 3, 14 | syl12anc 835 | . . . . . 6 ⊢ (𝐵 ∈ ℂ → ((1 / (exp‘𝐵)) = (exp‘-𝐵) ↔ 1 = ((exp‘𝐵) · (exp‘-𝐵)))) |
16 | 8, 15 | mpbird 257 | . . . . 5 ⊢ (𝐵 ∈ ℂ → (1 / (exp‘𝐵)) = (exp‘-𝐵)) |
17 | 16 | oveq2d 7357 | . . . 4 ⊢ (𝐵 ∈ ℂ → ((exp‘𝐴) · (1 / (exp‘𝐵))) = ((exp‘𝐴) · (exp‘-𝐵))) |
18 | 17 | adantl 483 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((exp‘𝐴) · (1 / (exp‘𝐵))) = ((exp‘𝐴) · (exp‘-𝐵))) |
19 | efadd 15902 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ -𝐵 ∈ ℂ) → (exp‘(𝐴 + -𝐵)) = ((exp‘𝐴) · (exp‘-𝐵))) | |
20 | 9, 19 | sylan2 594 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (exp‘(𝐴 + -𝐵)) = ((exp‘𝐴) · (exp‘-𝐵))) |
21 | 18, 20 | eqtr4d 2780 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((exp‘𝐴) · (1 / (exp‘𝐵))) = (exp‘(𝐴 + -𝐵))) |
22 | negsub 11374 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + -𝐵) = (𝐴 − 𝐵)) | |
23 | 22 | fveq2d 6833 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (exp‘(𝐴 + -𝐵)) = (exp‘(𝐴 − 𝐵))) |
24 | 6, 21, 23 | 3eqtrrd 2782 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (exp‘(𝐴 − 𝐵)) = ((exp‘𝐴) / (exp‘𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 = wceq 1541 ∈ wcel 2106 ≠ wne 2941 ‘cfv 6483 (class class class)co 7341 ℂcc 10974 0cc0 10976 1c1 10977 + caddc 10979 · cmul 10981 − cmin 11310 -cneg 11311 / cdiv 11737 expce 15870 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 ax-rep 5233 ax-sep 5247 ax-nul 5254 ax-pow 5312 ax-pr 5376 ax-un 7654 ax-inf2 9502 ax-cnex 11032 ax-resscn 11033 ax-1cn 11034 ax-icn 11035 ax-addcl 11036 ax-addrcl 11037 ax-mulcl 11038 ax-mulrcl 11039 ax-mulcom 11040 ax-addass 11041 ax-mulass 11042 ax-distr 11043 ax-i2m1 11044 ax-1ne0 11045 ax-1rid 11046 ax-rnegex 11047 ax-rrecex 11048 ax-cnre 11049 ax-pre-lttri 11050 ax-pre-lttrn 11051 ax-pre-ltadd 11052 ax-pre-mulgt0 11053 ax-pre-sup 11054 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3350 df-reu 3351 df-rab 3405 df-v 3444 df-sbc 3731 df-csb 3847 df-dif 3904 df-un 3906 df-in 3908 df-ss 3918 df-pss 3920 df-nul 4274 df-if 4478 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4857 df-int 4899 df-iun 4947 df-br 5097 df-opab 5159 df-mpt 5180 df-tr 5214 df-id 5522 df-eprel 5528 df-po 5536 df-so 5537 df-fr 5579 df-se 5580 df-we 5581 df-xp 5630 df-rel 5631 df-cnv 5632 df-co 5633 df-dm 5634 df-rn 5635 df-res 5636 df-ima 5637 df-pred 6242 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6435 df-fun 6485 df-fn 6486 df-f 6487 df-f1 6488 df-fo 6489 df-f1o 6490 df-fv 6491 df-isom 6492 df-riota 7297 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7785 df-1st 7903 df-2nd 7904 df-frecs 8171 df-wrecs 8202 df-recs 8276 df-rdg 8315 df-1o 8371 df-er 8573 df-pm 8693 df-en 8809 df-dom 8810 df-sdom 8811 df-fin 8812 df-sup 9303 df-inf 9304 df-oi 9371 df-card 9800 df-pnf 11116 df-mnf 11117 df-xr 11118 df-ltxr 11119 df-le 11120 df-sub 11312 df-neg 11313 df-div 11738 df-nn 12079 df-2 12141 df-3 12142 df-n0 12339 df-z 12425 df-uz 12688 df-rp 12836 df-ico 13190 df-fz 13345 df-fzo 13488 df-fl 13617 df-seq 13827 df-exp 13888 df-fac 14093 df-bc 14122 df-hash 14150 df-shft 14877 df-cj 14909 df-re 14910 df-im 14911 df-sqrt 15045 df-abs 15046 df-limsup 15279 df-clim 15296 df-rlim 15297 df-sum 15497 df-ef 15876 |
This theorem is referenced by: efeq1 25789 efif1olem4 25806 relogdiv 25853 eflogeq 25862 efiarg 25867 logneg2 25875 logdiv2 25877 logcnlem4 25905 efopn 25918 ang180lem1 26064 efiatan 26167 2efiatan 26173 atantan 26178 birthdaylem2 26207 gamcvg2lem 26313 efchtdvds 26413 bposlem9 26545 iprodgam 33998 |
Copyright terms: Public domain | W3C validator |