| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > efsub | Structured version Visualization version GIF version | ||
| Description: Difference of exponents law for exponential function. (Contributed by Steve Rodriguez, 25-Nov-2007.) |
| Ref | Expression |
|---|---|
| efsub | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (exp‘(𝐴 − 𝐵)) = ((exp‘𝐴) / (exp‘𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | efcl 16048 | . . . 4 ⊢ (𝐴 ∈ ℂ → (exp‘𝐴) ∈ ℂ) | |
| 2 | efcl 16048 | . . . 4 ⊢ (𝐵 ∈ ℂ → (exp‘𝐵) ∈ ℂ) | |
| 3 | efne0 16064 | . . . 4 ⊢ (𝐵 ∈ ℂ → (exp‘𝐵) ≠ 0) | |
| 4 | divrec 11853 | . . . 4 ⊢ (((exp‘𝐴) ∈ ℂ ∧ (exp‘𝐵) ∈ ℂ ∧ (exp‘𝐵) ≠ 0) → ((exp‘𝐴) / (exp‘𝐵)) = ((exp‘𝐴) · (1 / (exp‘𝐵)))) | |
| 5 | 1, 2, 3, 4 | syl3an 1160 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((exp‘𝐴) / (exp‘𝐵)) = ((exp‘𝐴) · (1 / (exp‘𝐵)))) |
| 6 | 5 | 3anidm23 1423 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((exp‘𝐴) / (exp‘𝐵)) = ((exp‘𝐴) · (1 / (exp‘𝐵)))) |
| 7 | efcan 16062 | . . . . . . 7 ⊢ (𝐵 ∈ ℂ → ((exp‘𝐵) · (exp‘-𝐵)) = 1) | |
| 8 | 7 | eqcomd 2735 | . . . . . 6 ⊢ (𝐵 ∈ ℂ → 1 = ((exp‘𝐵) · (exp‘-𝐵))) |
| 9 | negcl 11421 | . . . . . . . 8 ⊢ (𝐵 ∈ ℂ → -𝐵 ∈ ℂ) | |
| 10 | efcl 16048 | . . . . . . . 8 ⊢ (-𝐵 ∈ ℂ → (exp‘-𝐵) ∈ ℂ) | |
| 11 | 9, 10 | syl 17 | . . . . . . 7 ⊢ (𝐵 ∈ ℂ → (exp‘-𝐵) ∈ ℂ) |
| 12 | ax-1cn 11126 | . . . . . . . 8 ⊢ 1 ∈ ℂ | |
| 13 | divmul2 11841 | . . . . . . . 8 ⊢ ((1 ∈ ℂ ∧ (exp‘-𝐵) ∈ ℂ ∧ ((exp‘𝐵) ∈ ℂ ∧ (exp‘𝐵) ≠ 0)) → ((1 / (exp‘𝐵)) = (exp‘-𝐵) ↔ 1 = ((exp‘𝐵) · (exp‘-𝐵)))) | |
| 14 | 12, 13 | mp3an1 1450 | . . . . . . 7 ⊢ (((exp‘-𝐵) ∈ ℂ ∧ ((exp‘𝐵) ∈ ℂ ∧ (exp‘𝐵) ≠ 0)) → ((1 / (exp‘𝐵)) = (exp‘-𝐵) ↔ 1 = ((exp‘𝐵) · (exp‘-𝐵)))) |
| 15 | 11, 2, 3, 14 | syl12anc 836 | . . . . . 6 ⊢ (𝐵 ∈ ℂ → ((1 / (exp‘𝐵)) = (exp‘-𝐵) ↔ 1 = ((exp‘𝐵) · (exp‘-𝐵)))) |
| 16 | 8, 15 | mpbird 257 | . . . . 5 ⊢ (𝐵 ∈ ℂ → (1 / (exp‘𝐵)) = (exp‘-𝐵)) |
| 17 | 16 | oveq2d 7403 | . . . 4 ⊢ (𝐵 ∈ ℂ → ((exp‘𝐴) · (1 / (exp‘𝐵))) = ((exp‘𝐴) · (exp‘-𝐵))) |
| 18 | 17 | adantl 481 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((exp‘𝐴) · (1 / (exp‘𝐵))) = ((exp‘𝐴) · (exp‘-𝐵))) |
| 19 | efadd 16060 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ -𝐵 ∈ ℂ) → (exp‘(𝐴 + -𝐵)) = ((exp‘𝐴) · (exp‘-𝐵))) | |
| 20 | 9, 19 | sylan2 593 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (exp‘(𝐴 + -𝐵)) = ((exp‘𝐴) · (exp‘-𝐵))) |
| 21 | 18, 20 | eqtr4d 2767 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((exp‘𝐴) · (1 / (exp‘𝐵))) = (exp‘(𝐴 + -𝐵))) |
| 22 | negsub 11470 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + -𝐵) = (𝐴 − 𝐵)) | |
| 23 | 22 | fveq2d 6862 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (exp‘(𝐴 + -𝐵)) = (exp‘(𝐴 − 𝐵))) |
| 24 | 6, 21, 23 | 3eqtrrd 2769 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (exp‘(𝐴 − 𝐵)) = ((exp‘𝐴) / (exp‘𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ‘cfv 6511 (class class class)co 7387 ℂcc 11066 0cc0 11068 1c1 11069 + caddc 11071 · cmul 11073 − cmin 11405 -cneg 11406 / cdiv 11835 expce 16027 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-inf2 9594 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 ax-pre-sup 11146 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-se 5592 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-isom 6520 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-er 8671 df-pm 8802 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-sup 9393 df-inf 9394 df-oi 9463 df-card 9892 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 df-nn 12187 df-2 12249 df-3 12250 df-n0 12443 df-z 12530 df-uz 12794 df-rp 12952 df-ico 13312 df-fz 13469 df-fzo 13616 df-fl 13754 df-seq 13967 df-exp 14027 df-fac 14239 df-bc 14268 df-hash 14296 df-shft 15033 df-cj 15065 df-re 15066 df-im 15067 df-sqrt 15201 df-abs 15202 df-limsup 15437 df-clim 15454 df-rlim 15455 df-sum 15653 df-ef 16033 |
| This theorem is referenced by: efeq1 26437 efif1olem4 26454 relogdiv 26502 eflogeq 26511 efiarg 26516 logneg2 26524 logdiv2 26526 logcnlem4 26554 efopn 26567 ang180lem1 26719 efiatan 26822 2efiatan 26828 atantan 26833 birthdaylem2 26862 gamcvg2lem 26969 efchtdvds 27069 bposlem9 27203 iprodgam 35729 efsubd 42326 |
| Copyright terms: Public domain | W3C validator |