MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  modgcd Structured version   Visualization version   GIF version

Theorem modgcd 16435
Description: The gcd remains unchanged if one operand is replaced with its remainder modulo the other. (Contributed by Paul Chapman, 31-Mar-2011.)
Assertion
Ref Expression
modgcd ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝑀 mod 𝑁) gcd 𝑁) = (𝑀 gcd 𝑁))

Proof of Theorem modgcd
StepHypRef Expression
1 zre 12464 . . . . . 6 (𝑀 ∈ ℤ → 𝑀 ∈ ℝ)
2 nnrp 12894 . . . . . 6 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ+)
3 modval 13767 . . . . . 6 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ+) → (𝑀 mod 𝑁) = (𝑀 − (𝑁 · (⌊‘(𝑀 / 𝑁)))))
41, 2, 3syl2an 596 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑀 mod 𝑁) = (𝑀 − (𝑁 · (⌊‘(𝑀 / 𝑁)))))
5 zcn 12465 . . . . . . 7 (𝑀 ∈ ℤ → 𝑀 ∈ ℂ)
65adantr 480 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 𝑀 ∈ ℂ)
7 nncn 12125 . . . . . . 7 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
87adantl 481 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℂ)
9 nnre 12124 . . . . . . . . . 10 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
10 nnne0 12151 . . . . . . . . . 10 (𝑁 ∈ ℕ → 𝑁 ≠ 0)
11 redivcl 11832 . . . . . . . . . 10 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑁 ≠ 0) → (𝑀 / 𝑁) ∈ ℝ)
121, 9, 10, 11syl3an 1160 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑀 / 𝑁) ∈ ℝ)
13123anidm23 1423 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑀 / 𝑁) ∈ ℝ)
1413flcld 13694 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (⌊‘(𝑀 / 𝑁)) ∈ ℤ)
1514zcnd 12570 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (⌊‘(𝑀 / 𝑁)) ∈ ℂ)
16 mulneg1 11545 . . . . . . . . . . 11 (((⌊‘(𝑀 / 𝑁)) ∈ ℂ ∧ 𝑁 ∈ ℂ) → (-(⌊‘(𝑀 / 𝑁)) · 𝑁) = -((⌊‘(𝑀 / 𝑁)) · 𝑁))
17 mulcom 11084 . . . . . . . . . . . 12 (((⌊‘(𝑀 / 𝑁)) ∈ ℂ ∧ 𝑁 ∈ ℂ) → ((⌊‘(𝑀 / 𝑁)) · 𝑁) = (𝑁 · (⌊‘(𝑀 / 𝑁))))
1817negeqd 11346 . . . . . . . . . . 11 (((⌊‘(𝑀 / 𝑁)) ∈ ℂ ∧ 𝑁 ∈ ℂ) → -((⌊‘(𝑀 / 𝑁)) · 𝑁) = -(𝑁 · (⌊‘(𝑀 / 𝑁))))
1916, 18eqtrd 2765 . . . . . . . . . 10 (((⌊‘(𝑀 / 𝑁)) ∈ ℂ ∧ 𝑁 ∈ ℂ) → (-(⌊‘(𝑀 / 𝑁)) · 𝑁) = -(𝑁 · (⌊‘(𝑀 / 𝑁))))
2019ancoms 458 . . . . . . . . 9 ((𝑁 ∈ ℂ ∧ (⌊‘(𝑀 / 𝑁)) ∈ ℂ) → (-(⌊‘(𝑀 / 𝑁)) · 𝑁) = -(𝑁 · (⌊‘(𝑀 / 𝑁))))
21203adant1 1130 . . . . . . . 8 ((𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ (⌊‘(𝑀 / 𝑁)) ∈ ℂ) → (-(⌊‘(𝑀 / 𝑁)) · 𝑁) = -(𝑁 · (⌊‘(𝑀 / 𝑁))))
2221oveq2d 7357 . . . . . . 7 ((𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ (⌊‘(𝑀 / 𝑁)) ∈ ℂ) → (𝑀 + (-(⌊‘(𝑀 / 𝑁)) · 𝑁)) = (𝑀 + -(𝑁 · (⌊‘(𝑀 / 𝑁)))))
23 mulcl 11082 . . . . . . . . 9 ((𝑁 ∈ ℂ ∧ (⌊‘(𝑀 / 𝑁)) ∈ ℂ) → (𝑁 · (⌊‘(𝑀 / 𝑁))) ∈ ℂ)
24 negsub 11401 . . . . . . . . 9 ((𝑀 ∈ ℂ ∧ (𝑁 · (⌊‘(𝑀 / 𝑁))) ∈ ℂ) → (𝑀 + -(𝑁 · (⌊‘(𝑀 / 𝑁)))) = (𝑀 − (𝑁 · (⌊‘(𝑀 / 𝑁)))))
2523, 24sylan2 593 . . . . . . . 8 ((𝑀 ∈ ℂ ∧ (𝑁 ∈ ℂ ∧ (⌊‘(𝑀 / 𝑁)) ∈ ℂ)) → (𝑀 + -(𝑁 · (⌊‘(𝑀 / 𝑁)))) = (𝑀 − (𝑁 · (⌊‘(𝑀 / 𝑁)))))
26253impb 1114 . . . . . . 7 ((𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ (⌊‘(𝑀 / 𝑁)) ∈ ℂ) → (𝑀 + -(𝑁 · (⌊‘(𝑀 / 𝑁)))) = (𝑀 − (𝑁 · (⌊‘(𝑀 / 𝑁)))))
2722, 26eqtrd 2765 . . . . . 6 ((𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ (⌊‘(𝑀 / 𝑁)) ∈ ℂ) → (𝑀 + (-(⌊‘(𝑀 / 𝑁)) · 𝑁)) = (𝑀 − (𝑁 · (⌊‘(𝑀 / 𝑁)))))
286, 8, 15, 27syl3anc 1373 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑀 + (-(⌊‘(𝑀 / 𝑁)) · 𝑁)) = (𝑀 − (𝑁 · (⌊‘(𝑀 / 𝑁)))))
294, 28eqtr4d 2768 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑀 mod 𝑁) = (𝑀 + (-(⌊‘(𝑀 / 𝑁)) · 𝑁)))
3029oveq2d 7357 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑁 gcd (𝑀 mod 𝑁)) = (𝑁 gcd (𝑀 + (-(⌊‘(𝑀 / 𝑁)) · 𝑁))))
3114znegcld 12571 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → -(⌊‘(𝑀 / 𝑁)) ∈ ℤ)
32 nnz 12481 . . . . 5 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
3332adantl 481 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℤ)
34 simpl 482 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 𝑀 ∈ ℤ)
35 gcdaddm 16428 . . . 4 ((-(⌊‘(𝑀 / 𝑁)) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑁 gcd 𝑀) = (𝑁 gcd (𝑀 + (-(⌊‘(𝑀 / 𝑁)) · 𝑁))))
3631, 33, 34, 35syl3anc 1373 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑁 gcd 𝑀) = (𝑁 gcd (𝑀 + (-(⌊‘(𝑀 / 𝑁)) · 𝑁))))
3730, 36eqtr4d 2768 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑁 gcd (𝑀 mod 𝑁)) = (𝑁 gcd 𝑀))
38 zmodcl 13787 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑀 mod 𝑁) ∈ ℕ0)
3938nn0zd 12486 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑀 mod 𝑁) ∈ ℤ)
4033, 39gcdcomd 16417 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑁 gcd (𝑀 mod 𝑁)) = ((𝑀 mod 𝑁) gcd 𝑁))
4133, 34gcdcomd 16417 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑁 gcd 𝑀) = (𝑀 gcd 𝑁))
4237, 40, 413eqtr3d 2773 1 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝑀 mod 𝑁) gcd 𝑁) = (𝑀 gcd 𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2110  wne 2926  cfv 6477  (class class class)co 7341  cc 10996  cr 10997  0cc0 10998   + caddc 11001   · cmul 11003  cmin 11336  -cneg 11337   / cdiv 11766  cn 12117  cz 12460  +crp 12882  cfl 13686   mod cmo 13765   gcd cgcd 16397
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7663  ax-cnex 11054  ax-resscn 11055  ax-1cn 11056  ax-icn 11057  ax-addcl 11058  ax-addrcl 11059  ax-mulcl 11060  ax-mulrcl 11061  ax-mulcom 11062  ax-addass 11063  ax-mulass 11064  ax-distr 11065  ax-i2m1 11066  ax-1ne0 11067  ax-1rid 11068  ax-rnegex 11069  ax-rrecex 11070  ax-cnre 11071  ax-pre-lttri 11072  ax-pre-lttrn 11073  ax-pre-ltadd 11074  ax-pre-mulgt0 11075  ax-pre-sup 11076
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3344  df-reu 3345  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-pss 3920  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4858  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6244  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-f1 6482  df-fo 6483  df-f1o 6484  df-fv 6485  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-er 8617  df-en 8865  df-dom 8866  df-sdom 8867  df-sup 9321  df-inf 9322  df-pnf 11140  df-mnf 11141  df-xr 11142  df-ltxr 11143  df-le 11144  df-sub 11338  df-neg 11339  df-div 11767  df-nn 12118  df-2 12180  df-3 12181  df-n0 12374  df-z 12461  df-uz 12725  df-rp 12883  df-fl 13688  df-mod 13766  df-seq 13901  df-exp 13961  df-cj 14998  df-re 14999  df-im 15000  df-sqrt 15134  df-abs 15135  df-dvds 16156  df-gcd 16398
This theorem is referenced by:  eucalginv  16487  phimullem  16682  eulerthlem1  16684  pockthlem  16809  gcdmodi  16978  proththd  47624
  Copyright terms: Public domain W3C validator