MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  modgcd Structured version   Visualization version   GIF version

Theorem modgcd 16509
Description: The gcd remains unchanged if one operand is replaced with its remainder modulo the other. (Contributed by Paul Chapman, 31-Mar-2011.)
Assertion
Ref Expression
modgcd ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝑀 mod 𝑁) gcd 𝑁) = (𝑀 gcd 𝑁))

Proof of Theorem modgcd
StepHypRef Expression
1 zre 12540 . . . . . 6 (𝑀 ∈ ℤ → 𝑀 ∈ ℝ)
2 nnrp 12970 . . . . . 6 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ+)
3 modval 13840 . . . . . 6 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ+) → (𝑀 mod 𝑁) = (𝑀 − (𝑁 · (⌊‘(𝑀 / 𝑁)))))
41, 2, 3syl2an 596 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑀 mod 𝑁) = (𝑀 − (𝑁 · (⌊‘(𝑀 / 𝑁)))))
5 zcn 12541 . . . . . . 7 (𝑀 ∈ ℤ → 𝑀 ∈ ℂ)
65adantr 480 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 𝑀 ∈ ℂ)
7 nncn 12201 . . . . . . 7 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
87adantl 481 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℂ)
9 nnre 12200 . . . . . . . . . 10 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
10 nnne0 12227 . . . . . . . . . 10 (𝑁 ∈ ℕ → 𝑁 ≠ 0)
11 redivcl 11908 . . . . . . . . . 10 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑁 ≠ 0) → (𝑀 / 𝑁) ∈ ℝ)
121, 9, 10, 11syl3an 1160 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑀 / 𝑁) ∈ ℝ)
13123anidm23 1423 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑀 / 𝑁) ∈ ℝ)
1413flcld 13767 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (⌊‘(𝑀 / 𝑁)) ∈ ℤ)
1514zcnd 12646 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (⌊‘(𝑀 / 𝑁)) ∈ ℂ)
16 mulneg1 11621 . . . . . . . . . . 11 (((⌊‘(𝑀 / 𝑁)) ∈ ℂ ∧ 𝑁 ∈ ℂ) → (-(⌊‘(𝑀 / 𝑁)) · 𝑁) = -((⌊‘(𝑀 / 𝑁)) · 𝑁))
17 mulcom 11161 . . . . . . . . . . . 12 (((⌊‘(𝑀 / 𝑁)) ∈ ℂ ∧ 𝑁 ∈ ℂ) → ((⌊‘(𝑀 / 𝑁)) · 𝑁) = (𝑁 · (⌊‘(𝑀 / 𝑁))))
1817negeqd 11422 . . . . . . . . . . 11 (((⌊‘(𝑀 / 𝑁)) ∈ ℂ ∧ 𝑁 ∈ ℂ) → -((⌊‘(𝑀 / 𝑁)) · 𝑁) = -(𝑁 · (⌊‘(𝑀 / 𝑁))))
1916, 18eqtrd 2765 . . . . . . . . . 10 (((⌊‘(𝑀 / 𝑁)) ∈ ℂ ∧ 𝑁 ∈ ℂ) → (-(⌊‘(𝑀 / 𝑁)) · 𝑁) = -(𝑁 · (⌊‘(𝑀 / 𝑁))))
2019ancoms 458 . . . . . . . . 9 ((𝑁 ∈ ℂ ∧ (⌊‘(𝑀 / 𝑁)) ∈ ℂ) → (-(⌊‘(𝑀 / 𝑁)) · 𝑁) = -(𝑁 · (⌊‘(𝑀 / 𝑁))))
21203adant1 1130 . . . . . . . 8 ((𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ (⌊‘(𝑀 / 𝑁)) ∈ ℂ) → (-(⌊‘(𝑀 / 𝑁)) · 𝑁) = -(𝑁 · (⌊‘(𝑀 / 𝑁))))
2221oveq2d 7406 . . . . . . 7 ((𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ (⌊‘(𝑀 / 𝑁)) ∈ ℂ) → (𝑀 + (-(⌊‘(𝑀 / 𝑁)) · 𝑁)) = (𝑀 + -(𝑁 · (⌊‘(𝑀 / 𝑁)))))
23 mulcl 11159 . . . . . . . . 9 ((𝑁 ∈ ℂ ∧ (⌊‘(𝑀 / 𝑁)) ∈ ℂ) → (𝑁 · (⌊‘(𝑀 / 𝑁))) ∈ ℂ)
24 negsub 11477 . . . . . . . . 9 ((𝑀 ∈ ℂ ∧ (𝑁 · (⌊‘(𝑀 / 𝑁))) ∈ ℂ) → (𝑀 + -(𝑁 · (⌊‘(𝑀 / 𝑁)))) = (𝑀 − (𝑁 · (⌊‘(𝑀 / 𝑁)))))
2523, 24sylan2 593 . . . . . . . 8 ((𝑀 ∈ ℂ ∧ (𝑁 ∈ ℂ ∧ (⌊‘(𝑀 / 𝑁)) ∈ ℂ)) → (𝑀 + -(𝑁 · (⌊‘(𝑀 / 𝑁)))) = (𝑀 − (𝑁 · (⌊‘(𝑀 / 𝑁)))))
26253impb 1114 . . . . . . 7 ((𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ (⌊‘(𝑀 / 𝑁)) ∈ ℂ) → (𝑀 + -(𝑁 · (⌊‘(𝑀 / 𝑁)))) = (𝑀 − (𝑁 · (⌊‘(𝑀 / 𝑁)))))
2722, 26eqtrd 2765 . . . . . 6 ((𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ (⌊‘(𝑀 / 𝑁)) ∈ ℂ) → (𝑀 + (-(⌊‘(𝑀 / 𝑁)) · 𝑁)) = (𝑀 − (𝑁 · (⌊‘(𝑀 / 𝑁)))))
286, 8, 15, 27syl3anc 1373 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑀 + (-(⌊‘(𝑀 / 𝑁)) · 𝑁)) = (𝑀 − (𝑁 · (⌊‘(𝑀 / 𝑁)))))
294, 28eqtr4d 2768 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑀 mod 𝑁) = (𝑀 + (-(⌊‘(𝑀 / 𝑁)) · 𝑁)))
3029oveq2d 7406 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑁 gcd (𝑀 mod 𝑁)) = (𝑁 gcd (𝑀 + (-(⌊‘(𝑀 / 𝑁)) · 𝑁))))
3114znegcld 12647 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → -(⌊‘(𝑀 / 𝑁)) ∈ ℤ)
32 nnz 12557 . . . . 5 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
3332adantl 481 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℤ)
34 simpl 482 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 𝑀 ∈ ℤ)
35 gcdaddm 16502 . . . 4 ((-(⌊‘(𝑀 / 𝑁)) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑁 gcd 𝑀) = (𝑁 gcd (𝑀 + (-(⌊‘(𝑀 / 𝑁)) · 𝑁))))
3631, 33, 34, 35syl3anc 1373 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑁 gcd 𝑀) = (𝑁 gcd (𝑀 + (-(⌊‘(𝑀 / 𝑁)) · 𝑁))))
3730, 36eqtr4d 2768 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑁 gcd (𝑀 mod 𝑁)) = (𝑁 gcd 𝑀))
38 zmodcl 13860 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑀 mod 𝑁) ∈ ℕ0)
3938nn0zd 12562 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑀 mod 𝑁) ∈ ℤ)
4033, 39gcdcomd 16491 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑁 gcd (𝑀 mod 𝑁)) = ((𝑀 mod 𝑁) gcd 𝑁))
4133, 34gcdcomd 16491 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑁 gcd 𝑀) = (𝑀 gcd 𝑁))
4237, 40, 413eqtr3d 2773 1 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝑀 mod 𝑁) gcd 𝑁) = (𝑀 gcd 𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2926  cfv 6514  (class class class)co 7390  cc 11073  cr 11074  0cc0 11075   + caddc 11078   · cmul 11080  cmin 11412  -cneg 11413   / cdiv 11842  cn 12193  cz 12536  +crp 12958  cfl 13759   mod cmo 13838   gcd cgcd 16471
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-sup 9400  df-inf 9401  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-n0 12450  df-z 12537  df-uz 12801  df-rp 12959  df-fl 13761  df-mod 13839  df-seq 13974  df-exp 14034  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-dvds 16230  df-gcd 16472
This theorem is referenced by:  eucalginv  16561  phimullem  16756  eulerthlem1  16758  pockthlem  16883  gcdmodi  17052  proththd  47619
  Copyright terms: Public domain W3C validator