MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  modgcd Structured version   Visualization version   GIF version

Theorem modgcd 16238
Description: The gcd remains unchanged if one operand is replaced with its remainder modulo the other. (Contributed by Paul Chapman, 31-Mar-2011.)
Assertion
Ref Expression
modgcd ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝑀 mod 𝑁) gcd 𝑁) = (𝑀 gcd 𝑁))

Proof of Theorem modgcd
StepHypRef Expression
1 zre 12323 . . . . . 6 (𝑀 ∈ ℤ → 𝑀 ∈ ℝ)
2 nnrp 12740 . . . . . 6 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ+)
3 modval 13589 . . . . . 6 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ+) → (𝑀 mod 𝑁) = (𝑀 − (𝑁 · (⌊‘(𝑀 / 𝑁)))))
41, 2, 3syl2an 596 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑀 mod 𝑁) = (𝑀 − (𝑁 · (⌊‘(𝑀 / 𝑁)))))
5 zcn 12324 . . . . . . 7 (𝑀 ∈ ℤ → 𝑀 ∈ ℂ)
65adantr 481 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 𝑀 ∈ ℂ)
7 nncn 11981 . . . . . . 7 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
87adantl 482 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℂ)
9 nnre 11980 . . . . . . . . . 10 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
10 nnne0 12007 . . . . . . . . . 10 (𝑁 ∈ ℕ → 𝑁 ≠ 0)
11 redivcl 11694 . . . . . . . . . 10 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑁 ≠ 0) → (𝑀 / 𝑁) ∈ ℝ)
121, 9, 10, 11syl3an 1159 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑀 / 𝑁) ∈ ℝ)
13123anidm23 1420 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑀 / 𝑁) ∈ ℝ)
1413flcld 13516 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (⌊‘(𝑀 / 𝑁)) ∈ ℤ)
1514zcnd 12426 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (⌊‘(𝑀 / 𝑁)) ∈ ℂ)
16 mulneg1 11411 . . . . . . . . . . 11 (((⌊‘(𝑀 / 𝑁)) ∈ ℂ ∧ 𝑁 ∈ ℂ) → (-(⌊‘(𝑀 / 𝑁)) · 𝑁) = -((⌊‘(𝑀 / 𝑁)) · 𝑁))
17 mulcom 10958 . . . . . . . . . . . 12 (((⌊‘(𝑀 / 𝑁)) ∈ ℂ ∧ 𝑁 ∈ ℂ) → ((⌊‘(𝑀 / 𝑁)) · 𝑁) = (𝑁 · (⌊‘(𝑀 / 𝑁))))
1817negeqd 11215 . . . . . . . . . . 11 (((⌊‘(𝑀 / 𝑁)) ∈ ℂ ∧ 𝑁 ∈ ℂ) → -((⌊‘(𝑀 / 𝑁)) · 𝑁) = -(𝑁 · (⌊‘(𝑀 / 𝑁))))
1916, 18eqtrd 2780 . . . . . . . . . 10 (((⌊‘(𝑀 / 𝑁)) ∈ ℂ ∧ 𝑁 ∈ ℂ) → (-(⌊‘(𝑀 / 𝑁)) · 𝑁) = -(𝑁 · (⌊‘(𝑀 / 𝑁))))
2019ancoms 459 . . . . . . . . 9 ((𝑁 ∈ ℂ ∧ (⌊‘(𝑀 / 𝑁)) ∈ ℂ) → (-(⌊‘(𝑀 / 𝑁)) · 𝑁) = -(𝑁 · (⌊‘(𝑀 / 𝑁))))
21203adant1 1129 . . . . . . . 8 ((𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ (⌊‘(𝑀 / 𝑁)) ∈ ℂ) → (-(⌊‘(𝑀 / 𝑁)) · 𝑁) = -(𝑁 · (⌊‘(𝑀 / 𝑁))))
2221oveq2d 7287 . . . . . . 7 ((𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ (⌊‘(𝑀 / 𝑁)) ∈ ℂ) → (𝑀 + (-(⌊‘(𝑀 / 𝑁)) · 𝑁)) = (𝑀 + -(𝑁 · (⌊‘(𝑀 / 𝑁)))))
23 mulcl 10956 . . . . . . . . 9 ((𝑁 ∈ ℂ ∧ (⌊‘(𝑀 / 𝑁)) ∈ ℂ) → (𝑁 · (⌊‘(𝑀 / 𝑁))) ∈ ℂ)
24 negsub 11269 . . . . . . . . 9 ((𝑀 ∈ ℂ ∧ (𝑁 · (⌊‘(𝑀 / 𝑁))) ∈ ℂ) → (𝑀 + -(𝑁 · (⌊‘(𝑀 / 𝑁)))) = (𝑀 − (𝑁 · (⌊‘(𝑀 / 𝑁)))))
2523, 24sylan2 593 . . . . . . . 8 ((𝑀 ∈ ℂ ∧ (𝑁 ∈ ℂ ∧ (⌊‘(𝑀 / 𝑁)) ∈ ℂ)) → (𝑀 + -(𝑁 · (⌊‘(𝑀 / 𝑁)))) = (𝑀 − (𝑁 · (⌊‘(𝑀 / 𝑁)))))
26253impb 1114 . . . . . . 7 ((𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ (⌊‘(𝑀 / 𝑁)) ∈ ℂ) → (𝑀 + -(𝑁 · (⌊‘(𝑀 / 𝑁)))) = (𝑀 − (𝑁 · (⌊‘(𝑀 / 𝑁)))))
2722, 26eqtrd 2780 . . . . . 6 ((𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ (⌊‘(𝑀 / 𝑁)) ∈ ℂ) → (𝑀 + (-(⌊‘(𝑀 / 𝑁)) · 𝑁)) = (𝑀 − (𝑁 · (⌊‘(𝑀 / 𝑁)))))
286, 8, 15, 27syl3anc 1370 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑀 + (-(⌊‘(𝑀 / 𝑁)) · 𝑁)) = (𝑀 − (𝑁 · (⌊‘(𝑀 / 𝑁)))))
294, 28eqtr4d 2783 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑀 mod 𝑁) = (𝑀 + (-(⌊‘(𝑀 / 𝑁)) · 𝑁)))
3029oveq2d 7287 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑁 gcd (𝑀 mod 𝑁)) = (𝑁 gcd (𝑀 + (-(⌊‘(𝑀 / 𝑁)) · 𝑁))))
3114znegcld 12427 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → -(⌊‘(𝑀 / 𝑁)) ∈ ℤ)
32 nnz 12342 . . . . 5 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
3332adantl 482 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℤ)
34 simpl 483 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 𝑀 ∈ ℤ)
35 gcdaddm 16230 . . . 4 ((-(⌊‘(𝑀 / 𝑁)) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑁 gcd 𝑀) = (𝑁 gcd (𝑀 + (-(⌊‘(𝑀 / 𝑁)) · 𝑁))))
3631, 33, 34, 35syl3anc 1370 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑁 gcd 𝑀) = (𝑁 gcd (𝑀 + (-(⌊‘(𝑀 / 𝑁)) · 𝑁))))
3730, 36eqtr4d 2783 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑁 gcd (𝑀 mod 𝑁)) = (𝑁 gcd 𝑀))
38 zmodcl 13609 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑀 mod 𝑁) ∈ ℕ0)
3938nn0zd 12423 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑀 mod 𝑁) ∈ ℤ)
4033, 39gcdcomd 16219 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑁 gcd (𝑀 mod 𝑁)) = ((𝑀 mod 𝑁) gcd 𝑁))
4133, 34gcdcomd 16219 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑁 gcd 𝑀) = (𝑀 gcd 𝑁))
4237, 40, 413eqtr3d 2788 1 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝑀 mod 𝑁) gcd 𝑁) = (𝑀 gcd 𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086   = wceq 1542  wcel 2110  wne 2945  cfv 6432  (class class class)co 7271  cc 10870  cr 10871  0cc0 10872   + caddc 10875   · cmul 10877  cmin 11205  -cneg 11206   / cdiv 11632  cn 11973  cz 12319  +crp 12729  cfl 13508   mod cmo 13587   gcd cgcd 16199
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7582  ax-cnex 10928  ax-resscn 10929  ax-1cn 10930  ax-icn 10931  ax-addcl 10932  ax-addrcl 10933  ax-mulcl 10934  ax-mulrcl 10935  ax-mulcom 10936  ax-addass 10937  ax-mulass 10938  ax-distr 10939  ax-i2m1 10940  ax-1ne0 10941  ax-1rid 10942  ax-rnegex 10943  ax-rrecex 10944  ax-cnre 10945  ax-pre-lttri 10946  ax-pre-lttrn 10947  ax-pre-ltadd 10948  ax-pre-mulgt0 10949  ax-pre-sup 10950
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-nel 3052  df-ral 3071  df-rex 3072  df-reu 3073  df-rmo 3074  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-iun 4932  df-br 5080  df-opab 5142  df-mpt 5163  df-tr 5197  df-id 5490  df-eprel 5496  df-po 5504  df-so 5505  df-fr 5545  df-we 5547  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-pred 6201  df-ord 6268  df-on 6269  df-lim 6270  df-suc 6271  df-iota 6390  df-fun 6434  df-fn 6435  df-f 6436  df-f1 6437  df-fo 6438  df-f1o 6439  df-fv 6440  df-riota 7228  df-ov 7274  df-oprab 7275  df-mpo 7276  df-om 7707  df-2nd 7825  df-frecs 8088  df-wrecs 8119  df-recs 8193  df-rdg 8232  df-er 8481  df-en 8717  df-dom 8718  df-sdom 8719  df-sup 9179  df-inf 9180  df-pnf 11012  df-mnf 11013  df-xr 11014  df-ltxr 11015  df-le 11016  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-n0 12234  df-z 12320  df-uz 12582  df-rp 12730  df-fl 13510  df-mod 13588  df-seq 13720  df-exp 13781  df-cj 14808  df-re 14809  df-im 14810  df-sqrt 14944  df-abs 14945  df-dvds 15962  df-gcd 16200
This theorem is referenced by:  eucalginv  16287  phimullem  16478  eulerthlem1  16480  pockthlem  16604  gcdmodi  16773  proththd  45035
  Copyright terms: Public domain W3C validator