| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > grpodivid | Structured version Visualization version GIF version | ||
| Description: Division of a group member by itself. (Contributed by NM, 15-Feb-2008.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| grpdivf.1 | ⊢ 𝑋 = ran 𝐺 |
| grpdivf.3 | ⊢ 𝐷 = ( /𝑔 ‘𝐺) |
| grpdivid.3 | ⊢ 𝑈 = (GId‘𝐺) |
| Ref | Expression |
|---|---|
| grpodivid | ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) → (𝐴𝐷𝐴) = 𝑈) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpdivf.1 | . . . 4 ⊢ 𝑋 = ran 𝐺 | |
| 2 | eqid 2735 | . . . 4 ⊢ (inv‘𝐺) = (inv‘𝐺) | |
| 3 | grpdivf.3 | . . . 4 ⊢ 𝐷 = ( /𝑔 ‘𝐺) | |
| 4 | 1, 2, 3 | grpodivval 30516 | . . 3 ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋) → (𝐴𝐷𝐴) = (𝐴𝐺((inv‘𝐺)‘𝐴))) |
| 5 | 4 | 3anidm23 1423 | . 2 ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) → (𝐴𝐷𝐴) = (𝐴𝐺((inv‘𝐺)‘𝐴))) |
| 6 | grpdivid.3 | . . 3 ⊢ 𝑈 = (GId‘𝐺) | |
| 7 | 1, 6, 2 | grporinv 30508 | . 2 ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) → (𝐴𝐺((inv‘𝐺)‘𝐴)) = 𝑈) |
| 8 | 5, 7 | eqtrd 2770 | 1 ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) → (𝐴𝐷𝐴) = 𝑈) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ran crn 5655 ‘cfv 6531 (class class class)co 7405 GrpOpcgr 30470 GIdcgi 30471 invcgn 30472 /𝑔 cgs 30473 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-1st 7988 df-2nd 7989 df-grpo 30474 df-gid 30475 df-ginv 30476 df-gdiv 30477 |
| This theorem is referenced by: ablonncan 30537 grpoeqdivid 37905 |
| Copyright terms: Public domain | W3C validator |