![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > grpodivid | Structured version Visualization version GIF version |
Description: Division of a group member by itself. (Contributed by NM, 15-Feb-2008.) (New usage is discouraged.) |
Ref | Expression |
---|---|
grpdivf.1 | ⊢ 𝑋 = ran 𝐺 |
grpdivf.3 | ⊢ 𝐷 = ( /𝑔 ‘𝐺) |
grpdivid.3 | ⊢ 𝑈 = (GId‘𝐺) |
Ref | Expression |
---|---|
grpodivid | ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) → (𝐴𝐷𝐴) = 𝑈) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | grpdivf.1 | . . . 4 ⊢ 𝑋 = ran 𝐺 | |
2 | eqid 2779 | . . . 4 ⊢ (inv‘𝐺) = (inv‘𝐺) | |
3 | grpdivf.3 | . . . 4 ⊢ 𝐷 = ( /𝑔 ‘𝐺) | |
4 | 1, 2, 3 | grpodivval 28089 | . . 3 ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋) → (𝐴𝐷𝐴) = (𝐴𝐺((inv‘𝐺)‘𝐴))) |
5 | 4 | 3anidm23 1401 | . 2 ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) → (𝐴𝐷𝐴) = (𝐴𝐺((inv‘𝐺)‘𝐴))) |
6 | grpdivid.3 | . . 3 ⊢ 𝑈 = (GId‘𝐺) | |
7 | 1, 6, 2 | grporinv 28081 | . 2 ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) → (𝐴𝐺((inv‘𝐺)‘𝐴)) = 𝑈) |
8 | 5, 7 | eqtrd 2815 | 1 ⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) → (𝐴𝐷𝐴) = 𝑈) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 387 = wceq 1507 ∈ wcel 2050 ran crn 5408 ‘cfv 6188 (class class class)co 6976 GrpOpcgr 28043 GIdcgi 28044 invcgn 28045 /𝑔 cgs 28046 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-13 2301 ax-ext 2751 ax-rep 5049 ax-sep 5060 ax-nul 5067 ax-pow 5119 ax-pr 5186 ax-un 7279 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2016 df-mo 2547 df-eu 2584 df-clab 2760 df-cleq 2772 df-clel 2847 df-nfc 2919 df-ne 2969 df-ral 3094 df-rex 3095 df-reu 3096 df-rab 3098 df-v 3418 df-sbc 3683 df-csb 3788 df-dif 3833 df-un 3835 df-in 3837 df-ss 3844 df-nul 4180 df-if 4351 df-pw 4424 df-sn 4442 df-pr 4444 df-op 4448 df-uni 4713 df-iun 4794 df-br 4930 df-opab 4992 df-mpt 5009 df-id 5312 df-xp 5413 df-rel 5414 df-cnv 5415 df-co 5416 df-dm 5417 df-rn 5418 df-res 5419 df-ima 5420 df-iota 6152 df-fun 6190 df-fn 6191 df-f 6192 df-f1 6193 df-fo 6194 df-f1o 6195 df-fv 6196 df-riota 6937 df-ov 6979 df-oprab 6980 df-mpo 6981 df-1st 7501 df-2nd 7502 df-grpo 28047 df-gid 28048 df-ginv 28049 df-gdiv 28050 |
This theorem is referenced by: ablonncan 28110 grpoeqdivid 34598 |
Copyright terms: Public domain | W3C validator |