HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hmopre Structured version   Visualization version   GIF version

Theorem hmopre 31825
Description: The inner product of the value and argument of a Hermitian operator is real. (Contributed by NM, 23-Jul-2006.) (New usage is discouraged.)
Assertion
Ref Expression
hmopre ((𝑇 ∈ HrmOp ∧ 𝐴 ∈ ℋ) → ((𝑇𝐴) ·ih 𝐴) ∈ ℝ)

Proof of Theorem hmopre
StepHypRef Expression
1 hmop 31824 . . . 4 ((𝑇 ∈ HrmOp ∧ 𝐴 ∈ ℋ ∧ 𝐴 ∈ ℋ) → (𝐴 ·ih (𝑇𝐴)) = ((𝑇𝐴) ·ih 𝐴))
213anidm23 1423 . . 3 ((𝑇 ∈ HrmOp ∧ 𝐴 ∈ ℋ) → (𝐴 ·ih (𝑇𝐴)) = ((𝑇𝐴) ·ih 𝐴))
32eqcomd 2735 . 2 ((𝑇 ∈ HrmOp ∧ 𝐴 ∈ ℋ) → ((𝑇𝐴) ·ih 𝐴) = (𝐴 ·ih (𝑇𝐴)))
4 hmopf 31776 . . . 4 (𝑇 ∈ HrmOp → 𝑇: ℋ⟶ ℋ)
54ffvelcdmda 7038 . . 3 ((𝑇 ∈ HrmOp ∧ 𝐴 ∈ ℋ) → (𝑇𝐴) ∈ ℋ)
6 hire 30996 . . 3 (((𝑇𝐴) ∈ ℋ ∧ 𝐴 ∈ ℋ) → (((𝑇𝐴) ·ih 𝐴) ∈ ℝ ↔ ((𝑇𝐴) ·ih 𝐴) = (𝐴 ·ih (𝑇𝐴))))
75, 6sylancom 588 . 2 ((𝑇 ∈ HrmOp ∧ 𝐴 ∈ ℋ) → (((𝑇𝐴) ·ih 𝐴) ∈ ℝ ↔ ((𝑇𝐴) ·ih 𝐴) = (𝐴 ·ih (𝑇𝐴))))
83, 7mpbird 257 1 ((𝑇 ∈ HrmOp ∧ 𝐴 ∈ ℋ) → ((𝑇𝐴) ·ih 𝐴) ∈ ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  cfv 6499  (class class class)co 7369  cr 11043  chba 30821   ·ih csp 30824  HrmOpcho 30852
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-hilex 30901  ax-hfi 30981  ax-his1 30984
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-er 8648  df-map 8778  df-en 8896  df-dom 8897  df-sdom 8898  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-cj 15041  df-re 15042  df-im 15043  df-hmop 31746
This theorem is referenced by:  leop2  32026  leopadd  32034  leopmuli  32035  leoptri  32038  leoptr  32039  leopnmid  32040
  Copyright terms: Public domain W3C validator