MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulgmodid Structured version   Visualization version   GIF version

Theorem mulgmodid 19144
Description: Casting out multiples of the identity element leaves the group multiple unchanged. (Contributed by Paul Chapman, 17-Apr-2009.) (Revised by AV, 30-Aug-2021.)
Hypotheses
Ref Expression
mulgmodid.b 𝐵 = (Base‘𝐺)
mulgmodid.o 0 = (0g𝐺)
mulgmodid.t · = (.g𝐺)
Assertion
Ref Expression
mulgmodid ((𝐺 ∈ Grp ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ) ∧ (𝑋𝐵 ∧ (𝑀 · 𝑋) = 0 )) → ((𝑁 mod 𝑀) · 𝑋) = (𝑁 · 𝑋))

Proof of Theorem mulgmodid
StepHypRef Expression
1 zre 12615 . . . . . 6 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
2 nnrp 13044 . . . . . 6 (𝑀 ∈ ℕ → 𝑀 ∈ ℝ+)
3 modval 13908 . . . . . 6 ((𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ+) → (𝑁 mod 𝑀) = (𝑁 − (𝑀 · (⌊‘(𝑁 / 𝑀)))))
41, 2, 3syl2an 596 . . . . 5 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ) → (𝑁 mod 𝑀) = (𝑁 − (𝑀 · (⌊‘(𝑁 / 𝑀)))))
543ad2ant2 1133 . . . 4 ((𝐺 ∈ Grp ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ) ∧ (𝑋𝐵 ∧ (𝑀 · 𝑋) = 0 )) → (𝑁 mod 𝑀) = (𝑁 − (𝑀 · (⌊‘(𝑁 / 𝑀)))))
65oveq1d 7446 . . 3 ((𝐺 ∈ Grp ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ) ∧ (𝑋𝐵 ∧ (𝑀 · 𝑋) = 0 )) → ((𝑁 mod 𝑀) · 𝑋) = ((𝑁 − (𝑀 · (⌊‘(𝑁 / 𝑀)))) · 𝑋))
7 zcn 12616 . . . . . . 7 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
87adantr 480 . . . . . 6 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ) → 𝑁 ∈ ℂ)
9 nnz 12632 . . . . . . . . 9 (𝑀 ∈ ℕ → 𝑀 ∈ ℤ)
109adantl 481 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ) → 𝑀 ∈ ℤ)
11 nnre 12271 . . . . . . . . . . 11 (𝑀 ∈ ℕ → 𝑀 ∈ ℝ)
12 nnne0 12298 . . . . . . . . . . 11 (𝑀 ∈ ℕ → 𝑀 ≠ 0)
13 redivcl 11984 . . . . . . . . . . 11 ((𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑀 ≠ 0) → (𝑁 / 𝑀) ∈ ℝ)
141, 11, 12, 13syl3an 1159 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ ∧ 𝑀 ∈ ℕ) → (𝑁 / 𝑀) ∈ ℝ)
15143anidm23 1420 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ) → (𝑁 / 𝑀) ∈ ℝ)
1615flcld 13835 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ) → (⌊‘(𝑁 / 𝑀)) ∈ ℤ)
1710, 16zmulcld 12726 . . . . . . 7 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ) → (𝑀 · (⌊‘(𝑁 / 𝑀))) ∈ ℤ)
1817zcnd 12721 . . . . . 6 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ) → (𝑀 · (⌊‘(𝑁 / 𝑀))) ∈ ℂ)
198, 18negsubd 11624 . . . . 5 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ) → (𝑁 + -(𝑀 · (⌊‘(𝑁 / 𝑀)))) = (𝑁 − (𝑀 · (⌊‘(𝑁 / 𝑀)))))
20193ad2ant2 1133 . . . 4 ((𝐺 ∈ Grp ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ) ∧ (𝑋𝐵 ∧ (𝑀 · 𝑋) = 0 )) → (𝑁 + -(𝑀 · (⌊‘(𝑁 / 𝑀)))) = (𝑁 − (𝑀 · (⌊‘(𝑁 / 𝑀)))))
2120oveq1d 7446 . . 3 ((𝐺 ∈ Grp ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ) ∧ (𝑋𝐵 ∧ (𝑀 · 𝑋) = 0 )) → ((𝑁 + -(𝑀 · (⌊‘(𝑁 / 𝑀)))) · 𝑋) = ((𝑁 − (𝑀 · (⌊‘(𝑁 / 𝑀)))) · 𝑋))
22 simp1 1135 . . . 4 ((𝐺 ∈ Grp ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ) ∧ (𝑋𝐵 ∧ (𝑀 · 𝑋) = 0 )) → 𝐺 ∈ Grp)
23 simpl 482 . . . . 5 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ) → 𝑁 ∈ ℤ)
24233ad2ant2 1133 . . . 4 ((𝐺 ∈ Grp ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ) ∧ (𝑋𝐵 ∧ (𝑀 · 𝑋) = 0 )) → 𝑁 ∈ ℤ)
25103ad2ant2 1133 . . . . . 6 ((𝐺 ∈ Grp ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ) ∧ (𝑋𝐵 ∧ (𝑀 · 𝑋) = 0 )) → 𝑀 ∈ ℤ)
26163ad2ant2 1133 . . . . . 6 ((𝐺 ∈ Grp ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ) ∧ (𝑋𝐵 ∧ (𝑀 · 𝑋) = 0 )) → (⌊‘(𝑁 / 𝑀)) ∈ ℤ)
2725, 26zmulcld 12726 . . . . 5 ((𝐺 ∈ Grp ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ) ∧ (𝑋𝐵 ∧ (𝑀 · 𝑋) = 0 )) → (𝑀 · (⌊‘(𝑁 / 𝑀))) ∈ ℤ)
2827znegcld 12722 . . . 4 ((𝐺 ∈ Grp ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ) ∧ (𝑋𝐵 ∧ (𝑀 · 𝑋) = 0 )) → -(𝑀 · (⌊‘(𝑁 / 𝑀))) ∈ ℤ)
29 simpl 482 . . . . 5 ((𝑋𝐵 ∧ (𝑀 · 𝑋) = 0 ) → 𝑋𝐵)
30293ad2ant3 1134 . . . 4 ((𝐺 ∈ Grp ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ) ∧ (𝑋𝐵 ∧ (𝑀 · 𝑋) = 0 )) → 𝑋𝐵)
31 mulgmodid.b . . . . 5 𝐵 = (Base‘𝐺)
32 mulgmodid.t . . . . 5 · = (.g𝐺)
33 eqid 2735 . . . . 5 (+g𝐺) = (+g𝐺)
3431, 32, 33mulgdir 19137 . . . 4 ((𝐺 ∈ Grp ∧ (𝑁 ∈ ℤ ∧ -(𝑀 · (⌊‘(𝑁 / 𝑀))) ∈ ℤ ∧ 𝑋𝐵)) → ((𝑁 + -(𝑀 · (⌊‘(𝑁 / 𝑀)))) · 𝑋) = ((𝑁 · 𝑋)(+g𝐺)(-(𝑀 · (⌊‘(𝑁 / 𝑀))) · 𝑋)))
3522, 24, 28, 30, 34syl13anc 1371 . . 3 ((𝐺 ∈ Grp ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ) ∧ (𝑋𝐵 ∧ (𝑀 · 𝑋) = 0 )) → ((𝑁 + -(𝑀 · (⌊‘(𝑁 / 𝑀)))) · 𝑋) = ((𝑁 · 𝑋)(+g𝐺)(-(𝑀 · (⌊‘(𝑁 / 𝑀))) · 𝑋)))
366, 21, 353eqtr2d 2781 . 2 ((𝐺 ∈ Grp ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ) ∧ (𝑋𝐵 ∧ (𝑀 · 𝑋) = 0 )) → ((𝑁 mod 𝑀) · 𝑋) = ((𝑁 · 𝑋)(+g𝐺)(-(𝑀 · (⌊‘(𝑁 / 𝑀))) · 𝑋)))
37 nncn 12272 . . . . . . . 8 (𝑀 ∈ ℕ → 𝑀 ∈ ℂ)
3837adantl 481 . . . . . . 7 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ) → 𝑀 ∈ ℂ)
3916zcnd 12721 . . . . . . 7 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ) → (⌊‘(𝑁 / 𝑀)) ∈ ℂ)
4038, 39mulneg2d 11715 . . . . . 6 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ) → (𝑀 · -(⌊‘(𝑁 / 𝑀))) = -(𝑀 · (⌊‘(𝑁 / 𝑀))))
41403ad2ant2 1133 . . . . 5 ((𝐺 ∈ Grp ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ) ∧ (𝑋𝐵 ∧ (𝑀 · 𝑋) = 0 )) → (𝑀 · -(⌊‘(𝑁 / 𝑀))) = -(𝑀 · (⌊‘(𝑁 / 𝑀))))
4241oveq1d 7446 . . . 4 ((𝐺 ∈ Grp ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ) ∧ (𝑋𝐵 ∧ (𝑀 · 𝑋) = 0 )) → ((𝑀 · -(⌊‘(𝑁 / 𝑀))) · 𝑋) = (-(𝑀 · (⌊‘(𝑁 / 𝑀))) · 𝑋))
43153ad2ant2 1133 . . . . . . . 8 ((𝐺 ∈ Grp ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ) ∧ (𝑋𝐵 ∧ (𝑀 · 𝑋) = 0 )) → (𝑁 / 𝑀) ∈ ℝ)
4443flcld 13835 . . . . . . 7 ((𝐺 ∈ Grp ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ) ∧ (𝑋𝐵 ∧ (𝑀 · 𝑋) = 0 )) → (⌊‘(𝑁 / 𝑀)) ∈ ℤ)
4544znegcld 12722 . . . . . 6 ((𝐺 ∈ Grp ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ) ∧ (𝑋𝐵 ∧ (𝑀 · 𝑋) = 0 )) → -(⌊‘(𝑁 / 𝑀)) ∈ ℤ)
4631, 32mulgassr 19143 . . . . . 6 ((𝐺 ∈ Grp ∧ (-(⌊‘(𝑁 / 𝑀)) ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑋𝐵)) → ((𝑀 · -(⌊‘(𝑁 / 𝑀))) · 𝑋) = (-(⌊‘(𝑁 / 𝑀)) · (𝑀 · 𝑋)))
4722, 45, 25, 30, 46syl13anc 1371 . . . . 5 ((𝐺 ∈ Grp ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ) ∧ (𝑋𝐵 ∧ (𝑀 · 𝑋) = 0 )) → ((𝑀 · -(⌊‘(𝑁 / 𝑀))) · 𝑋) = (-(⌊‘(𝑁 / 𝑀)) · (𝑀 · 𝑋)))
48 oveq2 7439 . . . . . . 7 ((𝑀 · 𝑋) = 0 → (-(⌊‘(𝑁 / 𝑀)) · (𝑀 · 𝑋)) = (-(⌊‘(𝑁 / 𝑀)) · 0 ))
4948adantl 481 . . . . . 6 ((𝑋𝐵 ∧ (𝑀 · 𝑋) = 0 ) → (-(⌊‘(𝑁 / 𝑀)) · (𝑀 · 𝑋)) = (-(⌊‘(𝑁 / 𝑀)) · 0 ))
50493ad2ant3 1134 . . . . 5 ((𝐺 ∈ Grp ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ) ∧ (𝑋𝐵 ∧ (𝑀 · 𝑋) = 0 )) → (-(⌊‘(𝑁 / 𝑀)) · (𝑀 · 𝑋)) = (-(⌊‘(𝑁 / 𝑀)) · 0 ))
51 mulgmodid.o . . . . . . 7 0 = (0g𝐺)
5231, 32, 51mulgz 19133 . . . . . 6 ((𝐺 ∈ Grp ∧ -(⌊‘(𝑁 / 𝑀)) ∈ ℤ) → (-(⌊‘(𝑁 / 𝑀)) · 0 ) = 0 )
5322, 45, 52syl2anc 584 . . . . 5 ((𝐺 ∈ Grp ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ) ∧ (𝑋𝐵 ∧ (𝑀 · 𝑋) = 0 )) → (-(⌊‘(𝑁 / 𝑀)) · 0 ) = 0 )
5447, 50, 533eqtrd 2779 . . . 4 ((𝐺 ∈ Grp ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ) ∧ (𝑋𝐵 ∧ (𝑀 · 𝑋) = 0 )) → ((𝑀 · -(⌊‘(𝑁 / 𝑀))) · 𝑋) = 0 )
5542, 54eqtr3d 2777 . . 3 ((𝐺 ∈ Grp ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ) ∧ (𝑋𝐵 ∧ (𝑀 · 𝑋) = 0 )) → (-(𝑀 · (⌊‘(𝑁 / 𝑀))) · 𝑋) = 0 )
5655oveq2d 7447 . 2 ((𝐺 ∈ Grp ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ) ∧ (𝑋𝐵 ∧ (𝑀 · 𝑋) = 0 )) → ((𝑁 · 𝑋)(+g𝐺)(-(𝑀 · (⌊‘(𝑁 / 𝑀))) · 𝑋)) = ((𝑁 · 𝑋)(+g𝐺) 0 ))
57 id 22 . . . 4 (𝐺 ∈ Grp → 𝐺 ∈ Grp)
5831, 32mulgcl 19122 . . . 4 ((𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋𝐵) → (𝑁 · 𝑋) ∈ 𝐵)
5957, 23, 29, 58syl3an 1159 . . 3 ((𝐺 ∈ Grp ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ) ∧ (𝑋𝐵 ∧ (𝑀 · 𝑋) = 0 )) → (𝑁 · 𝑋) ∈ 𝐵)
6031, 33, 51grprid 18999 . . 3 ((𝐺 ∈ Grp ∧ (𝑁 · 𝑋) ∈ 𝐵) → ((𝑁 · 𝑋)(+g𝐺) 0 ) = (𝑁 · 𝑋))
6122, 59, 60syl2anc 584 . 2 ((𝐺 ∈ Grp ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ) ∧ (𝑋𝐵 ∧ (𝑀 · 𝑋) = 0 )) → ((𝑁 · 𝑋)(+g𝐺) 0 ) = (𝑁 · 𝑋))
6236, 56, 613eqtrd 2779 1 ((𝐺 ∈ Grp ∧ (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℕ) ∧ (𝑋𝐵 ∧ (𝑀 · 𝑋) = 0 )) → ((𝑁 mod 𝑀) · 𝑋) = (𝑁 · 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1537  wcel 2106  wne 2938  cfv 6563  (class class class)co 7431  cc 11151  cr 11152  0cc0 11153   + caddc 11156   · cmul 11158  cmin 11490  -cneg 11491   / cdiv 11918  cn 12264  cz 12611  +crp 13032  cfl 13827   mod cmo 13906  Basecbs 17245  +gcplusg 17298  0gc0g 17486  Grpcgrp 18964  .gcmg 19098
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-sup 9480  df-inf 9481  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-n0 12525  df-z 12612  df-uz 12877  df-rp 13033  df-fz 13545  df-fl 13829  df-mod 13907  df-seq 14040  df-0g 17488  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-grp 18967  df-minusg 18968  df-mulg 19099
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator