![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > acni3 | Structured version Visualization version GIF version |
Description: The property of being a choice set of length 𝐴. (Contributed by Mario Carneiro, 31-Aug-2015.) |
Ref | Expression |
---|---|
acni3.1 | ⊢ (𝑦 = (𝑔‘𝑥) → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
acni3 | ⊢ ((𝑋 ∈ AC 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝑋 𝜑) → ∃𝑔(𝑔:𝐴⟶𝑋 ∧ ∀𝑥 ∈ 𝐴 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rabn0 4220 | . . . . . 6 ⊢ ({𝑦 ∈ 𝑋 ∣ 𝜑} ≠ ∅ ↔ ∃𝑦 ∈ 𝑋 𝜑) | |
2 | 1 | biimpri 220 | . . . . 5 ⊢ (∃𝑦 ∈ 𝑋 𝜑 → {𝑦 ∈ 𝑋 ∣ 𝜑} ≠ ∅) |
3 | ssrab2 3941 | . . . . 5 ⊢ {𝑦 ∈ 𝑋 ∣ 𝜑} ⊆ 𝑋 | |
4 | 2, 3 | jctil 512 | . . . 4 ⊢ (∃𝑦 ∈ 𝑋 𝜑 → ({𝑦 ∈ 𝑋 ∣ 𝜑} ⊆ 𝑋 ∧ {𝑦 ∈ 𝑋 ∣ 𝜑} ≠ ∅)) |
5 | 4 | ralimi 3105 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝑋 𝜑 → ∀𝑥 ∈ 𝐴 ({𝑦 ∈ 𝑋 ∣ 𝜑} ⊆ 𝑋 ∧ {𝑦 ∈ 𝑋 ∣ 𝜑} ≠ ∅)) |
6 | acni2 9265 | . . 3 ⊢ ((𝑋 ∈ AC 𝐴 ∧ ∀𝑥 ∈ 𝐴 ({𝑦 ∈ 𝑋 ∣ 𝜑} ⊆ 𝑋 ∧ {𝑦 ∈ 𝑋 ∣ 𝜑} ≠ ∅)) → ∃𝑔(𝑔:𝐴⟶𝑋 ∧ ∀𝑥 ∈ 𝐴 (𝑔‘𝑥) ∈ {𝑦 ∈ 𝑋 ∣ 𝜑})) | |
7 | 5, 6 | sylan2 584 | . 2 ⊢ ((𝑋 ∈ AC 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝑋 𝜑) → ∃𝑔(𝑔:𝐴⟶𝑋 ∧ ∀𝑥 ∈ 𝐴 (𝑔‘𝑥) ∈ {𝑦 ∈ 𝑋 ∣ 𝜑})) |
8 | acni3.1 | . . . . . . 7 ⊢ (𝑦 = (𝑔‘𝑥) → (𝜑 ↔ 𝜓)) | |
9 | 8 | elrab 3590 | . . . . . 6 ⊢ ((𝑔‘𝑥) ∈ {𝑦 ∈ 𝑋 ∣ 𝜑} ↔ ((𝑔‘𝑥) ∈ 𝑋 ∧ 𝜓)) |
10 | 9 | simprbi 489 | . . . . 5 ⊢ ((𝑔‘𝑥) ∈ {𝑦 ∈ 𝑋 ∣ 𝜑} → 𝜓) |
11 | 10 | ralimi 3105 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 (𝑔‘𝑥) ∈ {𝑦 ∈ 𝑋 ∣ 𝜑} → ∀𝑥 ∈ 𝐴 𝜓) |
12 | 11 | anim2i 608 | . . 3 ⊢ ((𝑔:𝐴⟶𝑋 ∧ ∀𝑥 ∈ 𝐴 (𝑔‘𝑥) ∈ {𝑦 ∈ 𝑋 ∣ 𝜑}) → (𝑔:𝐴⟶𝑋 ∧ ∀𝑥 ∈ 𝐴 𝜓)) |
13 | 12 | eximi 1798 | . 2 ⊢ (∃𝑔(𝑔:𝐴⟶𝑋 ∧ ∀𝑥 ∈ 𝐴 (𝑔‘𝑥) ∈ {𝑦 ∈ 𝑋 ∣ 𝜑}) → ∃𝑔(𝑔:𝐴⟶𝑋 ∧ ∀𝑥 ∈ 𝐴 𝜓)) |
14 | 7, 13 | syl 17 | 1 ⊢ ((𝑋 ∈ AC 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝑋 𝜑) → ∃𝑔(𝑔:𝐴⟶𝑋 ∧ ∀𝑥 ∈ 𝐴 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 387 = wceq 1508 ∃wex 1743 ∈ wcel 2051 ≠ wne 2962 ∀wral 3083 ∃wrex 3084 {crab 3087 ⊆ wss 3824 ∅c0 4173 ⟶wf 6182 ‘cfv 6186 AC wacn 9160 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1759 ax-4 1773 ax-5 1870 ax-6 1929 ax-7 1966 ax-8 2053 ax-9 2060 ax-10 2080 ax-11 2094 ax-12 2107 ax-13 2302 ax-ext 2745 ax-sep 5057 ax-nul 5064 ax-pow 5116 ax-pr 5183 ax-un 7278 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 835 df-3an 1071 df-tru 1511 df-ex 1744 df-nf 1748 df-sb 2017 df-mo 2548 df-eu 2585 df-clab 2754 df-cleq 2766 df-clel 2841 df-nfc 2913 df-ne 2963 df-ral 3088 df-rex 3089 df-rab 3092 df-v 3412 df-sbc 3677 df-csb 3782 df-dif 3827 df-un 3829 df-in 3831 df-ss 3838 df-nul 4174 df-if 4346 df-pw 4419 df-sn 4437 df-pr 4439 df-op 4443 df-uni 4710 df-br 4927 df-opab 4989 df-mpt 5006 df-id 5309 df-xp 5410 df-rel 5411 df-cnv 5412 df-co 5413 df-dm 5414 df-rn 5415 df-res 5416 df-ima 5417 df-iota 6150 df-fun 6188 df-fn 6189 df-f 6190 df-fv 6194 df-ov 6978 df-oprab 6979 df-mpo 6980 df-map 8207 df-acn 9164 |
This theorem is referenced by: fodomacn 9275 iundom2g 9759 ptclsg 21943 |
Copyright terms: Public domain | W3C validator |