| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > acni3 | Structured version Visualization version GIF version | ||
| Description: The property of being a choice set of length 𝐴. (Contributed by Mario Carneiro, 31-Aug-2015.) |
| Ref | Expression |
|---|---|
| acni3.1 | ⊢ (𝑦 = (𝑔‘𝑥) → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| acni3 | ⊢ ((𝑋 ∈ AC 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝑋 𝜑) → ∃𝑔(𝑔:𝐴⟶𝑋 ∧ ∀𝑥 ∈ 𝐴 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rabn0 4340 | . . . . . 6 ⊢ ({𝑦 ∈ 𝑋 ∣ 𝜑} ≠ ∅ ↔ ∃𝑦 ∈ 𝑋 𝜑) | |
| 2 | 1 | biimpri 228 | . . . . 5 ⊢ (∃𝑦 ∈ 𝑋 𝜑 → {𝑦 ∈ 𝑋 ∣ 𝜑} ≠ ∅) |
| 3 | ssrab2 4031 | . . . . 5 ⊢ {𝑦 ∈ 𝑋 ∣ 𝜑} ⊆ 𝑋 | |
| 4 | 2, 3 | jctil 519 | . . . 4 ⊢ (∃𝑦 ∈ 𝑋 𝜑 → ({𝑦 ∈ 𝑋 ∣ 𝜑} ⊆ 𝑋 ∧ {𝑦 ∈ 𝑋 ∣ 𝜑} ≠ ∅)) |
| 5 | 4 | ralimi 3066 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝑋 𝜑 → ∀𝑥 ∈ 𝐴 ({𝑦 ∈ 𝑋 ∣ 𝜑} ⊆ 𝑋 ∧ {𝑦 ∈ 𝑋 ∣ 𝜑} ≠ ∅)) |
| 6 | acni2 9940 | . . 3 ⊢ ((𝑋 ∈ AC 𝐴 ∧ ∀𝑥 ∈ 𝐴 ({𝑦 ∈ 𝑋 ∣ 𝜑} ⊆ 𝑋 ∧ {𝑦 ∈ 𝑋 ∣ 𝜑} ≠ ∅)) → ∃𝑔(𝑔:𝐴⟶𝑋 ∧ ∀𝑥 ∈ 𝐴 (𝑔‘𝑥) ∈ {𝑦 ∈ 𝑋 ∣ 𝜑})) | |
| 7 | 5, 6 | sylan2 593 | . 2 ⊢ ((𝑋 ∈ AC 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝑋 𝜑) → ∃𝑔(𝑔:𝐴⟶𝑋 ∧ ∀𝑥 ∈ 𝐴 (𝑔‘𝑥) ∈ {𝑦 ∈ 𝑋 ∣ 𝜑})) |
| 8 | acni3.1 | . . . . . . 7 ⊢ (𝑦 = (𝑔‘𝑥) → (𝜑 ↔ 𝜓)) | |
| 9 | 8 | elrab 3648 | . . . . . 6 ⊢ ((𝑔‘𝑥) ∈ {𝑦 ∈ 𝑋 ∣ 𝜑} ↔ ((𝑔‘𝑥) ∈ 𝑋 ∧ 𝜓)) |
| 10 | 9 | simprbi 496 | . . . . 5 ⊢ ((𝑔‘𝑥) ∈ {𝑦 ∈ 𝑋 ∣ 𝜑} → 𝜓) |
| 11 | 10 | ralimi 3066 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 (𝑔‘𝑥) ∈ {𝑦 ∈ 𝑋 ∣ 𝜑} → ∀𝑥 ∈ 𝐴 𝜓) |
| 12 | 11 | anim2i 617 | . . 3 ⊢ ((𝑔:𝐴⟶𝑋 ∧ ∀𝑥 ∈ 𝐴 (𝑔‘𝑥) ∈ {𝑦 ∈ 𝑋 ∣ 𝜑}) → (𝑔:𝐴⟶𝑋 ∧ ∀𝑥 ∈ 𝐴 𝜓)) |
| 13 | 12 | eximi 1835 | . 2 ⊢ (∃𝑔(𝑔:𝐴⟶𝑋 ∧ ∀𝑥 ∈ 𝐴 (𝑔‘𝑥) ∈ {𝑦 ∈ 𝑋 ∣ 𝜑}) → ∃𝑔(𝑔:𝐴⟶𝑋 ∧ ∀𝑥 ∈ 𝐴 𝜓)) |
| 14 | 7, 13 | syl 17 | 1 ⊢ ((𝑋 ∈ AC 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝑋 𝜑) → ∃𝑔(𝑔:𝐴⟶𝑋 ∧ ∀𝑥 ∈ 𝐴 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2109 ≠ wne 2925 ∀wral 3044 ∃wrex 3053 {crab 3394 ⊆ wss 3903 ∅c0 4284 ⟶wf 6478 ‘cfv 6482 AC wacn 9834 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-fv 6490 df-ov 7352 df-oprab 7353 df-mpo 7354 df-map 8755 df-acn 9838 |
| This theorem is referenced by: fodomacn 9950 iundom2g 10434 ptclsg 23500 |
| Copyright terms: Public domain | W3C validator |