| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > acni3 | Structured version Visualization version GIF version | ||
| Description: The property of being a choice set of length 𝐴. (Contributed by Mario Carneiro, 31-Aug-2015.) |
| Ref | Expression |
|---|---|
| acni3.1 | ⊢ (𝑦 = (𝑔‘𝑥) → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| acni3 | ⊢ ((𝑋 ∈ AC 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝑋 𝜑) → ∃𝑔(𝑔:𝐴⟶𝑋 ∧ ∀𝑥 ∈ 𝐴 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rabn0 4369 | . . . . . 6 ⊢ ({𝑦 ∈ 𝑋 ∣ 𝜑} ≠ ∅ ↔ ∃𝑦 ∈ 𝑋 𝜑) | |
| 2 | 1 | biimpri 228 | . . . . 5 ⊢ (∃𝑦 ∈ 𝑋 𝜑 → {𝑦 ∈ 𝑋 ∣ 𝜑} ≠ ∅) |
| 3 | ssrab2 4060 | . . . . 5 ⊢ {𝑦 ∈ 𝑋 ∣ 𝜑} ⊆ 𝑋 | |
| 4 | 2, 3 | jctil 519 | . . . 4 ⊢ (∃𝑦 ∈ 𝑋 𝜑 → ({𝑦 ∈ 𝑋 ∣ 𝜑} ⊆ 𝑋 ∧ {𝑦 ∈ 𝑋 ∣ 𝜑} ≠ ∅)) |
| 5 | 4 | ralimi 3074 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝑋 𝜑 → ∀𝑥 ∈ 𝐴 ({𝑦 ∈ 𝑋 ∣ 𝜑} ⊆ 𝑋 ∧ {𝑦 ∈ 𝑋 ∣ 𝜑} ≠ ∅)) |
| 6 | acni2 10065 | . . 3 ⊢ ((𝑋 ∈ AC 𝐴 ∧ ∀𝑥 ∈ 𝐴 ({𝑦 ∈ 𝑋 ∣ 𝜑} ⊆ 𝑋 ∧ {𝑦 ∈ 𝑋 ∣ 𝜑} ≠ ∅)) → ∃𝑔(𝑔:𝐴⟶𝑋 ∧ ∀𝑥 ∈ 𝐴 (𝑔‘𝑥) ∈ {𝑦 ∈ 𝑋 ∣ 𝜑})) | |
| 7 | 5, 6 | sylan2 593 | . 2 ⊢ ((𝑋 ∈ AC 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝑋 𝜑) → ∃𝑔(𝑔:𝐴⟶𝑋 ∧ ∀𝑥 ∈ 𝐴 (𝑔‘𝑥) ∈ {𝑦 ∈ 𝑋 ∣ 𝜑})) |
| 8 | acni3.1 | . . . . . . 7 ⊢ (𝑦 = (𝑔‘𝑥) → (𝜑 ↔ 𝜓)) | |
| 9 | 8 | elrab 3676 | . . . . . 6 ⊢ ((𝑔‘𝑥) ∈ {𝑦 ∈ 𝑋 ∣ 𝜑} ↔ ((𝑔‘𝑥) ∈ 𝑋 ∧ 𝜓)) |
| 10 | 9 | simprbi 496 | . . . . 5 ⊢ ((𝑔‘𝑥) ∈ {𝑦 ∈ 𝑋 ∣ 𝜑} → 𝜓) |
| 11 | 10 | ralimi 3074 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 (𝑔‘𝑥) ∈ {𝑦 ∈ 𝑋 ∣ 𝜑} → ∀𝑥 ∈ 𝐴 𝜓) |
| 12 | 11 | anim2i 617 | . . 3 ⊢ ((𝑔:𝐴⟶𝑋 ∧ ∀𝑥 ∈ 𝐴 (𝑔‘𝑥) ∈ {𝑦 ∈ 𝑋 ∣ 𝜑}) → (𝑔:𝐴⟶𝑋 ∧ ∀𝑥 ∈ 𝐴 𝜓)) |
| 13 | 12 | eximi 1835 | . 2 ⊢ (∃𝑔(𝑔:𝐴⟶𝑋 ∧ ∀𝑥 ∈ 𝐴 (𝑔‘𝑥) ∈ {𝑦 ∈ 𝑋 ∣ 𝜑}) → ∃𝑔(𝑔:𝐴⟶𝑋 ∧ ∀𝑥 ∈ 𝐴 𝜓)) |
| 14 | 7, 13 | syl 17 | 1 ⊢ ((𝑋 ∈ AC 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝑋 𝜑) → ∃𝑔(𝑔:𝐴⟶𝑋 ∧ ∀𝑥 ∈ 𝐴 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2109 ≠ wne 2933 ∀wral 3052 ∃wrex 3061 {crab 3420 ⊆ wss 3931 ∅c0 4313 ⟶wf 6532 ‘cfv 6536 AC wacn 9957 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-fv 6544 df-ov 7413 df-oprab 7414 df-mpo 7415 df-map 8847 df-acn 9961 |
| This theorem is referenced by: fodomacn 10075 iundom2g 10559 ptclsg 23558 |
| Copyright terms: Public domain | W3C validator |