| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > acni3 | Structured version Visualization version GIF version | ||
| Description: The property of being a choice set of length 𝐴. (Contributed by Mario Carneiro, 31-Aug-2015.) |
| Ref | Expression |
|---|---|
| acni3.1 | ⊢ (𝑦 = (𝑔‘𝑥) → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| acni3 | ⊢ ((𝑋 ∈ AC 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝑋 𝜑) → ∃𝑔(𝑔:𝐴⟶𝑋 ∧ ∀𝑥 ∈ 𝐴 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rabn0 4336 | . . . . . 6 ⊢ ({𝑦 ∈ 𝑋 ∣ 𝜑} ≠ ∅ ↔ ∃𝑦 ∈ 𝑋 𝜑) | |
| 2 | 1 | biimpri 228 | . . . . 5 ⊢ (∃𝑦 ∈ 𝑋 𝜑 → {𝑦 ∈ 𝑋 ∣ 𝜑} ≠ ∅) |
| 3 | ssrab2 4027 | . . . . 5 ⊢ {𝑦 ∈ 𝑋 ∣ 𝜑} ⊆ 𝑋 | |
| 4 | 2, 3 | jctil 519 | . . . 4 ⊢ (∃𝑦 ∈ 𝑋 𝜑 → ({𝑦 ∈ 𝑋 ∣ 𝜑} ⊆ 𝑋 ∧ {𝑦 ∈ 𝑋 ∣ 𝜑} ≠ ∅)) |
| 5 | 4 | ralimi 3069 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝑋 𝜑 → ∀𝑥 ∈ 𝐴 ({𝑦 ∈ 𝑋 ∣ 𝜑} ⊆ 𝑋 ∧ {𝑦 ∈ 𝑋 ∣ 𝜑} ≠ ∅)) |
| 6 | acni2 9937 | . . 3 ⊢ ((𝑋 ∈ AC 𝐴 ∧ ∀𝑥 ∈ 𝐴 ({𝑦 ∈ 𝑋 ∣ 𝜑} ⊆ 𝑋 ∧ {𝑦 ∈ 𝑋 ∣ 𝜑} ≠ ∅)) → ∃𝑔(𝑔:𝐴⟶𝑋 ∧ ∀𝑥 ∈ 𝐴 (𝑔‘𝑥) ∈ {𝑦 ∈ 𝑋 ∣ 𝜑})) | |
| 7 | 5, 6 | sylan2 593 | . 2 ⊢ ((𝑋 ∈ AC 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝑋 𝜑) → ∃𝑔(𝑔:𝐴⟶𝑋 ∧ ∀𝑥 ∈ 𝐴 (𝑔‘𝑥) ∈ {𝑦 ∈ 𝑋 ∣ 𝜑})) |
| 8 | acni3.1 | . . . . . . 7 ⊢ (𝑦 = (𝑔‘𝑥) → (𝜑 ↔ 𝜓)) | |
| 9 | 8 | elrab 3642 | . . . . . 6 ⊢ ((𝑔‘𝑥) ∈ {𝑦 ∈ 𝑋 ∣ 𝜑} ↔ ((𝑔‘𝑥) ∈ 𝑋 ∧ 𝜓)) |
| 10 | 9 | simprbi 496 | . . . . 5 ⊢ ((𝑔‘𝑥) ∈ {𝑦 ∈ 𝑋 ∣ 𝜑} → 𝜓) |
| 11 | 10 | ralimi 3069 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 (𝑔‘𝑥) ∈ {𝑦 ∈ 𝑋 ∣ 𝜑} → ∀𝑥 ∈ 𝐴 𝜓) |
| 12 | 11 | anim2i 617 | . . 3 ⊢ ((𝑔:𝐴⟶𝑋 ∧ ∀𝑥 ∈ 𝐴 (𝑔‘𝑥) ∈ {𝑦 ∈ 𝑋 ∣ 𝜑}) → (𝑔:𝐴⟶𝑋 ∧ ∀𝑥 ∈ 𝐴 𝜓)) |
| 13 | 12 | eximi 1836 | . 2 ⊢ (∃𝑔(𝑔:𝐴⟶𝑋 ∧ ∀𝑥 ∈ 𝐴 (𝑔‘𝑥) ∈ {𝑦 ∈ 𝑋 ∣ 𝜑}) → ∃𝑔(𝑔:𝐴⟶𝑋 ∧ ∀𝑥 ∈ 𝐴 𝜓)) |
| 14 | 7, 13 | syl 17 | 1 ⊢ ((𝑋 ∈ AC 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝑋 𝜑) → ∃𝑔(𝑔:𝐴⟶𝑋 ∧ ∀𝑥 ∈ 𝐴 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∃wex 1780 ∈ wcel 2111 ≠ wne 2928 ∀wral 3047 ∃wrex 3056 {crab 3395 ⊆ wss 3897 ∅c0 4280 ⟶wf 6477 ‘cfv 6481 AC wacn 9831 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-map 8752 df-acn 9835 |
| This theorem is referenced by: fodomacn 9947 iundom2g 10431 ptclsg 23530 |
| Copyright terms: Public domain | W3C validator |