MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  acni3 Structured version   Visualization version   GIF version

Theorem acni3 9734
Description: The property of being a choice set of length 𝐴. (Contributed by Mario Carneiro, 31-Aug-2015.)
Hypothesis
Ref Expression
acni3.1 (𝑦 = (𝑔𝑥) → (𝜑𝜓))
Assertion
Ref Expression
acni3 ((𝑋AC 𝐴 ∧ ∀𝑥𝐴𝑦𝑋 𝜑) → ∃𝑔(𝑔:𝐴𝑋 ∧ ∀𝑥𝐴 𝜓))
Distinct variable groups:   𝑥,𝑔,𝑦,𝐴   𝜑,𝑔   𝜓,𝑦   𝑔,𝑋,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑔)

Proof of Theorem acni3
StepHypRef Expression
1 rabn0 4316 . . . . . 6 ({𝑦𝑋𝜑} ≠ ∅ ↔ ∃𝑦𝑋 𝜑)
21biimpri 227 . . . . 5 (∃𝑦𝑋 𝜑 → {𝑦𝑋𝜑} ≠ ∅)
3 ssrab2 4009 . . . . 5 {𝑦𝑋𝜑} ⊆ 𝑋
42, 3jctil 519 . . . 4 (∃𝑦𝑋 𝜑 → ({𝑦𝑋𝜑} ⊆ 𝑋 ∧ {𝑦𝑋𝜑} ≠ ∅))
54ralimi 3086 . . 3 (∀𝑥𝐴𝑦𝑋 𝜑 → ∀𝑥𝐴 ({𝑦𝑋𝜑} ⊆ 𝑋 ∧ {𝑦𝑋𝜑} ≠ ∅))
6 acni2 9733 . . 3 ((𝑋AC 𝐴 ∧ ∀𝑥𝐴 ({𝑦𝑋𝜑} ⊆ 𝑋 ∧ {𝑦𝑋𝜑} ≠ ∅)) → ∃𝑔(𝑔:𝐴𝑋 ∧ ∀𝑥𝐴 (𝑔𝑥) ∈ {𝑦𝑋𝜑}))
75, 6sylan2 592 . 2 ((𝑋AC 𝐴 ∧ ∀𝑥𝐴𝑦𝑋 𝜑) → ∃𝑔(𝑔:𝐴𝑋 ∧ ∀𝑥𝐴 (𝑔𝑥) ∈ {𝑦𝑋𝜑}))
8 acni3.1 . . . . . . 7 (𝑦 = (𝑔𝑥) → (𝜑𝜓))
98elrab 3617 . . . . . 6 ((𝑔𝑥) ∈ {𝑦𝑋𝜑} ↔ ((𝑔𝑥) ∈ 𝑋𝜓))
109simprbi 496 . . . . 5 ((𝑔𝑥) ∈ {𝑦𝑋𝜑} → 𝜓)
1110ralimi 3086 . . . 4 (∀𝑥𝐴 (𝑔𝑥) ∈ {𝑦𝑋𝜑} → ∀𝑥𝐴 𝜓)
1211anim2i 616 . . 3 ((𝑔:𝐴𝑋 ∧ ∀𝑥𝐴 (𝑔𝑥) ∈ {𝑦𝑋𝜑}) → (𝑔:𝐴𝑋 ∧ ∀𝑥𝐴 𝜓))
1312eximi 1838 . 2 (∃𝑔(𝑔:𝐴𝑋 ∧ ∀𝑥𝐴 (𝑔𝑥) ∈ {𝑦𝑋𝜑}) → ∃𝑔(𝑔:𝐴𝑋 ∧ ∀𝑥𝐴 𝜓))
147, 13syl 17 1 ((𝑋AC 𝐴 ∧ ∀𝑥𝐴𝑦𝑋 𝜑) → ∃𝑔(𝑔:𝐴𝑋 ∧ ∀𝑥𝐴 𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wex 1783  wcel 2108  wne 2942  wral 3063  wrex 3064  {crab 3067  wss 3883  c0 4253  wf 6414  cfv 6418  AC wacn 9627
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-map 8575  df-acn 9631
This theorem is referenced by:  fodomacn  9743  iundom2g  10227  ptclsg  22674
  Copyright terms: Public domain W3C validator