MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  acni3 Structured version   Visualization version   GIF version

Theorem acni3 9803
Description: The property of being a choice set of length 𝐴. (Contributed by Mario Carneiro, 31-Aug-2015.)
Hypothesis
Ref Expression
acni3.1 (𝑦 = (𝑔𝑥) → (𝜑𝜓))
Assertion
Ref Expression
acni3 ((𝑋AC 𝐴 ∧ ∀𝑥𝐴𝑦𝑋 𝜑) → ∃𝑔(𝑔:𝐴𝑋 ∧ ∀𝑥𝐴 𝜓))
Distinct variable groups:   𝑥,𝑔,𝑦,𝐴   𝜑,𝑔   𝜓,𝑦   𝑔,𝑋,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑔)

Proof of Theorem acni3
StepHypRef Expression
1 rabn0 4319 . . . . . 6 ({𝑦𝑋𝜑} ≠ ∅ ↔ ∃𝑦𝑋 𝜑)
21biimpri 227 . . . . 5 (∃𝑦𝑋 𝜑 → {𝑦𝑋𝜑} ≠ ∅)
3 ssrab2 4013 . . . . 5 {𝑦𝑋𝜑} ⊆ 𝑋
42, 3jctil 520 . . . 4 (∃𝑦𝑋 𝜑 → ({𝑦𝑋𝜑} ⊆ 𝑋 ∧ {𝑦𝑋𝜑} ≠ ∅))
54ralimi 3087 . . 3 (∀𝑥𝐴𝑦𝑋 𝜑 → ∀𝑥𝐴 ({𝑦𝑋𝜑} ⊆ 𝑋 ∧ {𝑦𝑋𝜑} ≠ ∅))
6 acni2 9802 . . 3 ((𝑋AC 𝐴 ∧ ∀𝑥𝐴 ({𝑦𝑋𝜑} ⊆ 𝑋 ∧ {𝑦𝑋𝜑} ≠ ∅)) → ∃𝑔(𝑔:𝐴𝑋 ∧ ∀𝑥𝐴 (𝑔𝑥) ∈ {𝑦𝑋𝜑}))
75, 6sylan2 593 . 2 ((𝑋AC 𝐴 ∧ ∀𝑥𝐴𝑦𝑋 𝜑) → ∃𝑔(𝑔:𝐴𝑋 ∧ ∀𝑥𝐴 (𝑔𝑥) ∈ {𝑦𝑋𝜑}))
8 acni3.1 . . . . . . 7 (𝑦 = (𝑔𝑥) → (𝜑𝜓))
98elrab 3624 . . . . . 6 ((𝑔𝑥) ∈ {𝑦𝑋𝜑} ↔ ((𝑔𝑥) ∈ 𝑋𝜓))
109simprbi 497 . . . . 5 ((𝑔𝑥) ∈ {𝑦𝑋𝜑} → 𝜓)
1110ralimi 3087 . . . 4 (∀𝑥𝐴 (𝑔𝑥) ∈ {𝑦𝑋𝜑} → ∀𝑥𝐴 𝜓)
1211anim2i 617 . . 3 ((𝑔:𝐴𝑋 ∧ ∀𝑥𝐴 (𝑔𝑥) ∈ {𝑦𝑋𝜑}) → (𝑔:𝐴𝑋 ∧ ∀𝑥𝐴 𝜓))
1312eximi 1837 . 2 (∃𝑔(𝑔:𝐴𝑋 ∧ ∀𝑥𝐴 (𝑔𝑥) ∈ {𝑦𝑋𝜑}) → ∃𝑔(𝑔:𝐴𝑋 ∧ ∀𝑥𝐴 𝜓))
147, 13syl 17 1 ((𝑋AC 𝐴 ∧ ∀𝑥𝐴𝑦𝑋 𝜑) → ∃𝑔(𝑔:𝐴𝑋 ∧ ∀𝑥𝐴 𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wex 1782  wcel 2106  wne 2943  wral 3064  wrex 3065  {crab 3068  wss 3887  c0 4256  wf 6429  cfv 6433  AC wacn 9696
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-map 8617  df-acn 9700
This theorem is referenced by:  fodomacn  9812  iundom2g  10296  ptclsg  22766
  Copyright terms: Public domain W3C validator