Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > acni3 | Structured version Visualization version GIF version |
Description: The property of being a choice set of length 𝐴. (Contributed by Mario Carneiro, 31-Aug-2015.) |
Ref | Expression |
---|---|
acni3.1 | ⊢ (𝑦 = (𝑔‘𝑥) → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
acni3 | ⊢ ((𝑋 ∈ AC 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝑋 𝜑) → ∃𝑔(𝑔:𝐴⟶𝑋 ∧ ∀𝑥 ∈ 𝐴 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rabn0 4332 | . . . . . 6 ⊢ ({𝑦 ∈ 𝑋 ∣ 𝜑} ≠ ∅ ↔ ∃𝑦 ∈ 𝑋 𝜑) | |
2 | 1 | biimpri 227 | . . . . 5 ⊢ (∃𝑦 ∈ 𝑋 𝜑 → {𝑦 ∈ 𝑋 ∣ 𝜑} ≠ ∅) |
3 | ssrab2 4025 | . . . . 5 ⊢ {𝑦 ∈ 𝑋 ∣ 𝜑} ⊆ 𝑋 | |
4 | 2, 3 | jctil 520 | . . . 4 ⊢ (∃𝑦 ∈ 𝑋 𝜑 → ({𝑦 ∈ 𝑋 ∣ 𝜑} ⊆ 𝑋 ∧ {𝑦 ∈ 𝑋 ∣ 𝜑} ≠ ∅)) |
5 | 4 | ralimi 3082 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝑋 𝜑 → ∀𝑥 ∈ 𝐴 ({𝑦 ∈ 𝑋 ∣ 𝜑} ⊆ 𝑋 ∧ {𝑦 ∈ 𝑋 ∣ 𝜑} ≠ ∅)) |
6 | acni2 9903 | . . 3 ⊢ ((𝑋 ∈ AC 𝐴 ∧ ∀𝑥 ∈ 𝐴 ({𝑦 ∈ 𝑋 ∣ 𝜑} ⊆ 𝑋 ∧ {𝑦 ∈ 𝑋 ∣ 𝜑} ≠ ∅)) → ∃𝑔(𝑔:𝐴⟶𝑋 ∧ ∀𝑥 ∈ 𝐴 (𝑔‘𝑥) ∈ {𝑦 ∈ 𝑋 ∣ 𝜑})) | |
7 | 5, 6 | sylan2 593 | . 2 ⊢ ((𝑋 ∈ AC 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝑋 𝜑) → ∃𝑔(𝑔:𝐴⟶𝑋 ∧ ∀𝑥 ∈ 𝐴 (𝑔‘𝑥) ∈ {𝑦 ∈ 𝑋 ∣ 𝜑})) |
8 | acni3.1 | . . . . . . 7 ⊢ (𝑦 = (𝑔‘𝑥) → (𝜑 ↔ 𝜓)) | |
9 | 8 | elrab 3634 | . . . . . 6 ⊢ ((𝑔‘𝑥) ∈ {𝑦 ∈ 𝑋 ∣ 𝜑} ↔ ((𝑔‘𝑥) ∈ 𝑋 ∧ 𝜓)) |
10 | 9 | simprbi 497 | . . . . 5 ⊢ ((𝑔‘𝑥) ∈ {𝑦 ∈ 𝑋 ∣ 𝜑} → 𝜓) |
11 | 10 | ralimi 3082 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 (𝑔‘𝑥) ∈ {𝑦 ∈ 𝑋 ∣ 𝜑} → ∀𝑥 ∈ 𝐴 𝜓) |
12 | 11 | anim2i 617 | . . 3 ⊢ ((𝑔:𝐴⟶𝑋 ∧ ∀𝑥 ∈ 𝐴 (𝑔‘𝑥) ∈ {𝑦 ∈ 𝑋 ∣ 𝜑}) → (𝑔:𝐴⟶𝑋 ∧ ∀𝑥 ∈ 𝐴 𝜓)) |
13 | 12 | eximi 1836 | . 2 ⊢ (∃𝑔(𝑔:𝐴⟶𝑋 ∧ ∀𝑥 ∈ 𝐴 (𝑔‘𝑥) ∈ {𝑦 ∈ 𝑋 ∣ 𝜑}) → ∃𝑔(𝑔:𝐴⟶𝑋 ∧ ∀𝑥 ∈ 𝐴 𝜓)) |
14 | 7, 13 | syl 17 | 1 ⊢ ((𝑋 ∈ AC 𝐴 ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝑋 𝜑) → ∃𝑔(𝑔:𝐴⟶𝑋 ∧ ∀𝑥 ∈ 𝐴 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1540 ∃wex 1780 ∈ wcel 2105 ≠ wne 2940 ∀wral 3061 ∃wrex 3070 {crab 3403 ⊆ wss 3898 ∅c0 4269 ⟶wf 6475 ‘cfv 6479 AC wacn 9795 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-sep 5243 ax-nul 5250 ax-pow 5308 ax-pr 5372 ax-un 7650 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3404 df-v 3443 df-sbc 3728 df-csb 3844 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4270 df-if 4474 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4853 df-br 5093 df-opab 5155 df-mpt 5176 df-id 5518 df-xp 5626 df-rel 5627 df-cnv 5628 df-co 5629 df-dm 5630 df-rn 5631 df-res 5632 df-ima 5633 df-iota 6431 df-fun 6481 df-fn 6482 df-f 6483 df-fv 6487 df-ov 7340 df-oprab 7341 df-mpo 7342 df-map 8688 df-acn 9799 |
This theorem is referenced by: fodomacn 9913 iundom2g 10397 ptclsg 22872 |
Copyright terms: Public domain | W3C validator |