Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > addcli | Structured version Visualization version GIF version |
Description: Closure law for addition. (Contributed by NM, 23-Nov-1994.) |
Ref | Expression |
---|---|
axi.1 | ⊢ 𝐴 ∈ ℂ |
axi.2 | ⊢ 𝐵 ∈ ℂ |
Ref | Expression |
---|---|
addcli | ⊢ (𝐴 + 𝐵) ∈ ℂ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | axi.1 | . 2 ⊢ 𝐴 ∈ ℂ | |
2 | axi.2 | . 2 ⊢ 𝐵 ∈ ℂ | |
3 | addcl 10884 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) ∈ ℂ) | |
4 | 1, 2, 3 | mp2an 688 | 1 ⊢ (𝐴 + 𝐵) ∈ ℂ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2108 (class class class)co 7255 ℂcc 10800 + caddc 10805 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-addcl 10862 |
This theorem depends on definitions: df-bi 206 df-an 396 |
This theorem is referenced by: eqneg 11625 2cn 11978 3cn 11984 4cn 11988 5cn 11991 6cn 11994 7cn 11997 8cn 12000 9cn 12003 nummac 12411 binom2i 13856 sqeqori 13858 crreczi 13871 nn0opthlem1 13910 nn0opth2i 13913 3dvds2dec 15970 mod2xnegi 16700 karatsuba 16713 pige3ALT 25581 eff1o 25610 1cubrlem 25896 1cubr 25897 bposlem8 26344 ax5seglem7 27206 ipidsq 28973 ip1ilem 29089 pythi 29113 normlem2 29374 normlem3 29375 normlem7 29379 normlem9 29381 bcseqi 29383 norm-ii-i 29400 normpythi 29405 normpari 29417 polid2i 29420 lnopunilem1 30273 lnophmlem2 30280 dpmul100 31073 dpadd3 31088 dpmul4 31090 ballotlem2 32355 hgt750lem2 32532 quad3 33528 faclimlem1 33615 itg2addnclem3 35757 sqmid3api 40232 235t711 40240 sn-0tie0 40342 fltnltalem 40415 areaquad 40963 resqrtvalex 41142 imsqrtvalex 41143 fourierswlem 43661 fouriersw 43662 2t6m3t4e0 45572 |
Copyright terms: Public domain | W3C validator |