Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > addcli | Structured version Visualization version GIF version |
Description: Closure law for addition. (Contributed by NM, 23-Nov-1994.) |
Ref | Expression |
---|---|
axi.1 | ⊢ 𝐴 ∈ ℂ |
axi.2 | ⊢ 𝐵 ∈ ℂ |
Ref | Expression |
---|---|
addcli | ⊢ (𝐴 + 𝐵) ∈ ℂ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | axi.1 | . 2 ⊢ 𝐴 ∈ ℂ | |
2 | axi.2 | . 2 ⊢ 𝐵 ∈ ℂ | |
3 | addcl 10953 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) ∈ ℂ) | |
4 | 1, 2, 3 | mp2an 689 | 1 ⊢ (𝐴 + 𝐵) ∈ ℂ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2106 (class class class)co 7275 ℂcc 10869 + caddc 10874 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-addcl 10931 |
This theorem depends on definitions: df-bi 206 df-an 397 |
This theorem is referenced by: eqneg 11695 2cn 12048 3cn 12054 4cn 12058 5cn 12061 6cn 12064 7cn 12067 8cn 12070 9cn 12073 nummac 12482 binom2i 13928 sqeqori 13930 crreczi 13943 nn0opthlem1 13982 nn0opth2i 13985 3dvds2dec 16042 mod2xnegi 16772 karatsuba 16785 pige3ALT 25676 eff1o 25705 1cubrlem 25991 1cubr 25992 bposlem8 26439 ax5seglem7 27303 ipidsq 29072 ip1ilem 29188 pythi 29212 normlem2 29473 normlem3 29474 normlem7 29478 normlem9 29480 bcseqi 29482 norm-ii-i 29499 normpythi 29504 normpari 29516 polid2i 29519 lnopunilem1 30372 lnophmlem2 30379 dpmul100 31171 dpadd3 31186 dpmul4 31188 ballotlem2 32455 hgt750lem2 32632 quad3 33628 faclimlem1 33709 itg2addnclem3 35830 sqmid3api 40311 235t711 40319 sn-0tie0 40421 fltnltalem 40499 areaquad 41047 resqrtvalex 41253 imsqrtvalex 41254 fourierswlem 43771 fouriersw 43772 2t6m3t4e0 45684 |
Copyright terms: Public domain | W3C validator |