| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > addcli | Structured version Visualization version GIF version | ||
| Description: Closure law for addition. (Contributed by NM, 23-Nov-1994.) |
| Ref | Expression |
|---|---|
| axi.1 | ⊢ 𝐴 ∈ ℂ |
| axi.2 | ⊢ 𝐵 ∈ ℂ |
| Ref | Expression |
|---|---|
| addcli | ⊢ (𝐴 + 𝐵) ∈ ℂ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | axi.1 | . 2 ⊢ 𝐴 ∈ ℂ | |
| 2 | axi.2 | . 2 ⊢ 𝐵 ∈ ℂ | |
| 3 | addcl 11091 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) ∈ ℂ) | |
| 4 | 1, 2, 3 | mp2an 692 | 1 ⊢ (𝐴 + 𝐵) ∈ ℂ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 (class class class)co 7349 ℂcc 11007 + caddc 11012 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-addcl 11069 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: eqneg 11844 2cn 12203 3cn 12209 4cn 12213 5cn 12216 6cn 12219 7cn 12222 8cn 12225 9cn 12228 nummac 12636 binom2i 14119 sqeqori 14121 crreczi 14135 nn0opthlem1 14175 nn0opth2i 14178 3dvds2dec 16244 mod2xnegi 16983 karatsuba 16995 pige3ALT 26427 eff1o 26456 1cubrlem 26749 1cubr 26750 bposlem8 27200 ax5seglem7 28880 ipidsq 30654 ip1ilem 30770 pythi 30794 normlem2 31055 normlem3 31056 normlem7 31060 normlem9 31062 bcseqi 31064 norm-ii-i 31081 normpythi 31086 normpari 31098 polid2i 31101 lnopunilem1 31954 lnophmlem2 31961 dpmul100 32838 dpadd3 32853 dpmul4 32855 cos9thpiminplylem4 33758 cos9thpiminplylem5 33759 ballotlem2 34463 hgt750lem2 34626 quad3 35653 faclimlem1 35726 itg2addnclem3 37663 sqmid3api 42266 235t711 42288 sn-0tie0 42434 fltnltalem 42645 areaquad 43199 resqrtvalex 43628 imsqrtvalex 43629 fourierswlem 46221 fouriersw 46222 2t6m3t4e0 48342 |
| Copyright terms: Public domain | W3C validator |