| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > addcli | Structured version Visualization version GIF version | ||
| Description: Closure law for addition. (Contributed by NM, 23-Nov-1994.) |
| Ref | Expression |
|---|---|
| axi.1 | ⊢ 𝐴 ∈ ℂ |
| axi.2 | ⊢ 𝐵 ∈ ℂ |
| Ref | Expression |
|---|---|
| addcli | ⊢ (𝐴 + 𝐵) ∈ ℂ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | axi.1 | . 2 ⊢ 𝐴 ∈ ℂ | |
| 2 | axi.2 | . 2 ⊢ 𝐵 ∈ ℂ | |
| 3 | addcl 11088 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) ∈ ℂ) | |
| 4 | 1, 2, 3 | mp2an 692 | 1 ⊢ (𝐴 + 𝐵) ∈ ℂ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2111 (class class class)co 7346 ℂcc 11004 + caddc 11009 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-addcl 11066 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: eqneg 11841 2cn 12200 3cn 12206 4cn 12210 5cn 12213 6cn 12216 7cn 12219 8cn 12222 9cn 12225 nummac 12633 binom2i 14119 sqeqori 14121 crreczi 14135 nn0opthlem1 14175 nn0opth2i 14178 3dvds2dec 16244 mod2xnegi 16983 karatsuba 16995 pige3ALT 26456 eff1o 26485 1cubrlem 26778 1cubr 26779 bposlem8 27229 ax5seglem7 28913 ipidsq 30690 ip1ilem 30806 pythi 30830 normlem2 31091 normlem3 31092 normlem7 31096 normlem9 31098 bcseqi 31100 norm-ii-i 31117 normpythi 31122 normpari 31134 polid2i 31137 lnopunilem1 31990 lnophmlem2 31997 dpmul100 32877 dpadd3 32892 dpmul4 32894 cos9thpiminplylem4 33798 cos9thpiminplylem5 33799 ballotlem2 34502 hgt750lem2 34665 quad3 35714 faclimlem1 35787 itg2addnclem3 37723 sqmid3api 42386 235t711 42408 sn-0tie0 42554 fltnltalem 42765 areaquad 43319 resqrtvalex 43748 imsqrtvalex 43749 fourierswlem 46338 fouriersw 46339 2t6m3t4e0 48458 |
| Copyright terms: Public domain | W3C validator |