| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > addcli | Structured version Visualization version GIF version | ||
| Description: Closure law for addition. (Contributed by NM, 23-Nov-1994.) |
| Ref | Expression |
|---|---|
| axi.1 | ⊢ 𝐴 ∈ ℂ |
| axi.2 | ⊢ 𝐵 ∈ ℂ |
| Ref | Expression |
|---|---|
| addcli | ⊢ (𝐴 + 𝐵) ∈ ℂ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | axi.1 | . 2 ⊢ 𝐴 ∈ ℂ | |
| 2 | axi.2 | . 2 ⊢ 𝐵 ∈ ℂ | |
| 3 | addcl 11126 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) ∈ ℂ) | |
| 4 | 1, 2, 3 | mp2an 692 | 1 ⊢ (𝐴 + 𝐵) ∈ ℂ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 (class class class)co 7369 ℂcc 11042 + caddc 11047 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-addcl 11104 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: eqneg 11878 2cn 12237 3cn 12243 4cn 12247 5cn 12250 6cn 12253 7cn 12256 8cn 12259 9cn 12262 nummac 12670 binom2i 14153 sqeqori 14155 crreczi 14169 nn0opthlem1 14209 nn0opth2i 14212 3dvds2dec 16279 mod2xnegi 17018 karatsuba 17030 pige3ALT 26462 eff1o 26491 1cubrlem 26784 1cubr 26785 bposlem8 27235 ax5seglem7 28915 ipidsq 30689 ip1ilem 30805 pythi 30829 normlem2 31090 normlem3 31091 normlem7 31095 normlem9 31097 bcseqi 31099 norm-ii-i 31116 normpythi 31121 normpari 31133 polid2i 31136 lnopunilem1 31989 lnophmlem2 31996 dpmul100 32867 dpadd3 32882 dpmul4 32884 cos9thpiminplylem4 33768 cos9thpiminplylem5 33769 ballotlem2 34473 hgt750lem2 34636 quad3 35650 faclimlem1 35723 itg2addnclem3 37660 sqmid3api 42264 235t711 42286 sn-0tie0 42432 fltnltalem 42643 areaquad 43198 resqrtvalex 43627 imsqrtvalex 43628 fourierswlem 46221 fouriersw 46222 2t6m3t4e0 48329 |
| Copyright terms: Public domain | W3C validator |