| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > addcli | Structured version Visualization version GIF version | ||
| Description: Closure law for addition. (Contributed by NM, 23-Nov-1994.) |
| Ref | Expression |
|---|---|
| axi.1 | ⊢ 𝐴 ∈ ℂ |
| axi.2 | ⊢ 𝐵 ∈ ℂ |
| Ref | Expression |
|---|---|
| addcli | ⊢ (𝐴 + 𝐵) ∈ ℂ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | axi.1 | . 2 ⊢ 𝐴 ∈ ℂ | |
| 2 | axi.2 | . 2 ⊢ 𝐵 ∈ ℂ | |
| 3 | addcl 11219 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) ∈ ℂ) | |
| 4 | 1, 2, 3 | mp2an 692 | 1 ⊢ (𝐴 + 𝐵) ∈ ℂ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2107 (class class class)co 7413 ℂcc 11135 + caddc 11140 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-addcl 11197 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: eqneg 11969 2cn 12323 3cn 12329 4cn 12333 5cn 12336 6cn 12339 7cn 12342 8cn 12345 9cn 12348 nummac 12761 binom2i 14233 sqeqori 14235 crreczi 14249 nn0opthlem1 14289 nn0opth2i 14292 3dvds2dec 16352 mod2xnegi 17091 karatsuba 17103 pige3ALT 26498 eff1o 26527 1cubrlem 26820 1cubr 26821 bposlem8 27271 ax5seglem7 28880 ipidsq 30657 ip1ilem 30773 pythi 30797 normlem2 31058 normlem3 31059 normlem7 31063 normlem9 31065 bcseqi 31067 norm-ii-i 31084 normpythi 31089 normpari 31101 polid2i 31104 lnopunilem1 31957 lnophmlem2 31964 dpmul100 32819 dpadd3 32834 dpmul4 32836 ballotlem2 34450 hgt750lem2 34626 quad3 35634 faclimlem1 35702 itg2addnclem3 37639 sqmid3api 42281 235t711 42302 sn-0tie0 42432 fltnltalem 42635 areaquad 43191 resqrtvalex 43620 imsqrtvalex 43621 fourierswlem 46202 fouriersw 46203 2t6m3t4e0 48222 |
| Copyright terms: Public domain | W3C validator |