| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > addcli | Structured version Visualization version GIF version | ||
| Description: Closure law for addition. (Contributed by NM, 23-Nov-1994.) |
| Ref | Expression |
|---|---|
| axi.1 | ⊢ 𝐴 ∈ ℂ |
| axi.2 | ⊢ 𝐵 ∈ ℂ |
| Ref | Expression |
|---|---|
| addcli | ⊢ (𝐴 + 𝐵) ∈ ℂ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | axi.1 | . 2 ⊢ 𝐴 ∈ ℂ | |
| 2 | axi.2 | . 2 ⊢ 𝐵 ∈ ℂ | |
| 3 | addcl 11156 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) ∈ ℂ) | |
| 4 | 1, 2, 3 | mp2an 692 | 1 ⊢ (𝐴 + 𝐵) ∈ ℂ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 (class class class)co 7389 ℂcc 11072 + caddc 11077 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-addcl 11134 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: eqneg 11908 2cn 12262 3cn 12268 4cn 12272 5cn 12275 6cn 12278 7cn 12281 8cn 12284 9cn 12287 nummac 12700 binom2i 14183 sqeqori 14185 crreczi 14199 nn0opthlem1 14239 nn0opth2i 14242 3dvds2dec 16309 mod2xnegi 17048 karatsuba 17060 pige3ALT 26435 eff1o 26464 1cubrlem 26757 1cubr 26758 bposlem8 27208 ax5seglem7 28868 ipidsq 30645 ip1ilem 30761 pythi 30785 normlem2 31046 normlem3 31047 normlem7 31051 normlem9 31053 bcseqi 31055 norm-ii-i 31072 normpythi 31077 normpari 31089 polid2i 31092 lnopunilem1 31945 lnophmlem2 31952 dpmul100 32823 dpadd3 32838 dpmul4 32840 cos9thpiminplylem4 33781 cos9thpiminplylem5 33782 ballotlem2 34486 hgt750lem2 34649 quad3 35657 faclimlem1 35725 itg2addnclem3 37662 sqmid3api 42266 235t711 42288 sn-0tie0 42434 fltnltalem 42643 areaquad 43198 resqrtvalex 43627 imsqrtvalex 43628 fourierswlem 46221 fouriersw 46222 2t6m3t4e0 48326 |
| Copyright terms: Public domain | W3C validator |