| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > addcli | Structured version Visualization version GIF version | ||
| Description: Closure law for addition. (Contributed by NM, 23-Nov-1994.) |
| Ref | Expression |
|---|---|
| axi.1 | ⊢ 𝐴 ∈ ℂ |
| axi.2 | ⊢ 𝐵 ∈ ℂ |
| Ref | Expression |
|---|---|
| addcli | ⊢ (𝐴 + 𝐵) ∈ ℂ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | axi.1 | . 2 ⊢ 𝐴 ∈ ℂ | |
| 2 | axi.2 | . 2 ⊢ 𝐵 ∈ ℂ | |
| 3 | addcl 11216 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) ∈ ℂ) | |
| 4 | 1, 2, 3 | mp2an 692 | 1 ⊢ (𝐴 + 𝐵) ∈ ℂ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 (class class class)co 7410 ℂcc 11132 + caddc 11137 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-addcl 11194 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: eqneg 11966 2cn 12320 3cn 12326 4cn 12330 5cn 12333 6cn 12336 7cn 12339 8cn 12342 9cn 12345 nummac 12758 binom2i 14235 sqeqori 14237 crreczi 14251 nn0opthlem1 14291 nn0opth2i 14294 3dvds2dec 16357 mod2xnegi 17096 karatsuba 17108 pige3ALT 26486 eff1o 26515 1cubrlem 26808 1cubr 26809 bposlem8 27259 ax5seglem7 28919 ipidsq 30696 ip1ilem 30812 pythi 30836 normlem2 31097 normlem3 31098 normlem7 31102 normlem9 31104 bcseqi 31106 norm-ii-i 31123 normpythi 31128 normpari 31140 polid2i 31143 lnopunilem1 31996 lnophmlem2 32003 dpmul100 32876 dpadd3 32891 dpmul4 32893 cos9thpiminplylem4 33824 cos9thpiminplylem5 33825 ballotlem2 34526 hgt750lem2 34689 quad3 35697 faclimlem1 35765 itg2addnclem3 37702 sqmid3api 42300 235t711 42321 sn-0tie0 42449 fltnltalem 42652 areaquad 43207 resqrtvalex 43636 imsqrtvalex 43637 fourierswlem 46226 fouriersw 46227 2t6m3t4e0 48290 |
| Copyright terms: Public domain | W3C validator |