| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > addcli | Structured version Visualization version GIF version | ||
| Description: Closure law for addition. (Contributed by NM, 23-Nov-1994.) |
| Ref | Expression |
|---|---|
| axi.1 | ⊢ 𝐴 ∈ ℂ |
| axi.2 | ⊢ 𝐵 ∈ ℂ |
| Ref | Expression |
|---|---|
| addcli | ⊢ (𝐴 + 𝐵) ∈ ℂ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | axi.1 | . 2 ⊢ 𝐴 ∈ ℂ | |
| 2 | axi.2 | . 2 ⊢ 𝐵 ∈ ℂ | |
| 3 | addcl 11238 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) ∈ ℂ) | |
| 4 | 1, 2, 3 | mp2an 692 | 1 ⊢ (𝐴 + 𝐵) ∈ ℂ |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2107 (class class class)co 7432 ℂcc 11154 + caddc 11159 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-addcl 11216 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: eqneg 11988 2cn 12342 3cn 12348 4cn 12352 5cn 12355 6cn 12358 7cn 12361 8cn 12364 9cn 12367 nummac 12780 binom2i 14252 sqeqori 14254 crreczi 14268 nn0opthlem1 14308 nn0opth2i 14311 3dvds2dec 16371 mod2xnegi 17110 karatsuba 17122 pige3ALT 26563 eff1o 26592 1cubrlem 26885 1cubr 26886 bposlem8 27336 ax5seglem7 28951 ipidsq 30730 ip1ilem 30846 pythi 30870 normlem2 31131 normlem3 31132 normlem7 31136 normlem9 31138 bcseqi 31140 norm-ii-i 31157 normpythi 31162 normpari 31174 polid2i 31177 lnopunilem1 32030 lnophmlem2 32037 dpmul100 32880 dpadd3 32895 dpmul4 32897 ballotlem2 34492 hgt750lem2 34668 quad3 35676 faclimlem1 35744 itg2addnclem3 37681 sqmid3api 42323 235t711 42344 sn-0tie0 42474 fltnltalem 42677 areaquad 43233 resqrtvalex 43663 imsqrtvalex 43664 fourierswlem 46250 fouriersw 46251 2t6m3t4e0 48269 |
| Copyright terms: Public domain | W3C validator |