![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > addcli | Structured version Visualization version GIF version |
Description: Closure law for addition. (Contributed by NM, 23-Nov-1994.) |
Ref | Expression |
---|---|
axi.1 | ⊢ 𝐴 ∈ ℂ |
axi.2 | ⊢ 𝐵 ∈ ℂ |
Ref | Expression |
---|---|
addcli | ⊢ (𝐴 + 𝐵) ∈ ℂ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | axi.1 | . 2 ⊢ 𝐴 ∈ ℂ | |
2 | axi.2 | . 2 ⊢ 𝐵 ∈ ℂ | |
3 | addcl 11235 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) ∈ ℂ) | |
4 | 1, 2, 3 | mp2an 692 | 1 ⊢ (𝐴 + 𝐵) ∈ ℂ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2106 (class class class)co 7431 ℂcc 11151 + caddc 11156 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-addcl 11213 |
This theorem depends on definitions: df-bi 207 df-an 396 |
This theorem is referenced by: eqneg 11985 2cn 12339 3cn 12345 4cn 12349 5cn 12352 6cn 12355 7cn 12358 8cn 12361 9cn 12364 nummac 12776 binom2i 14248 sqeqori 14250 crreczi 14264 nn0opthlem1 14304 nn0opth2i 14307 3dvds2dec 16367 mod2xnegi 17105 karatsuba 17118 pige3ALT 26577 eff1o 26606 1cubrlem 26899 1cubr 26900 bposlem8 27350 ax5seglem7 28965 ipidsq 30739 ip1ilem 30855 pythi 30879 normlem2 31140 normlem3 31141 normlem7 31145 normlem9 31147 bcseqi 31149 norm-ii-i 31166 normpythi 31171 normpari 31183 polid2i 31186 lnopunilem1 32039 lnophmlem2 32046 dpmul100 32864 dpadd3 32879 dpmul4 32881 ballotlem2 34470 hgt750lem2 34646 quad3 35655 faclimlem1 35723 itg2addnclem3 37660 sqmid3api 42297 235t711 42318 sn-0tie0 42446 fltnltalem 42649 areaquad 43205 resqrtvalex 43635 imsqrtvalex 43636 fourierswlem 46186 fouriersw 46187 2t6m3t4e0 48193 |
Copyright terms: Public domain | W3C validator |