MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  addcli Structured version   Visualization version   GIF version

Theorem addcli 11217
Description: Closure law for addition. (Contributed by NM, 23-Nov-1994.)
Hypotheses
Ref Expression
axi.1 𝐴 ∈ ℂ
axi.2 𝐵 ∈ ℂ
Assertion
Ref Expression
addcli (𝐴 + 𝐵) ∈ ℂ

Proof of Theorem addcli
StepHypRef Expression
1 axi.1 . 2 𝐴 ∈ ℂ
2 axi.2 . 2 𝐵 ∈ ℂ
3 addcl 11189 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) ∈ ℂ)
41, 2, 3mp2an 691 1 (𝐴 + 𝐵) ∈ ℂ
Colors of variables: wff setvar class
Syntax hints:  wcel 2107  (class class class)co 7406  cc 11105   + caddc 11110
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-addcl 11167
This theorem depends on definitions:  df-bi 206  df-an 398
This theorem is referenced by:  eqneg  11931  2cn  12284  3cn  12290  4cn  12294  5cn  12297  6cn  12300  7cn  12303  8cn  12306  9cn  12309  nummac  12719  binom2i  14173  sqeqori  14175  crreczi  14188  nn0opthlem1  14225  nn0opth2i  14228  3dvds2dec  16273  mod2xnegi  17001  karatsuba  17014  pige3ALT  26021  eff1o  26050  1cubrlem  26336  1cubr  26337  bposlem8  26784  ax5seglem7  28183  ipidsq  29951  ip1ilem  30067  pythi  30091  normlem2  30352  normlem3  30353  normlem7  30357  normlem9  30359  bcseqi  30361  norm-ii-i  30378  normpythi  30383  normpari  30395  polid2i  30398  lnopunilem1  31251  lnophmlem2  31258  dpmul100  32051  dpadd3  32066  dpmul4  32068  ballotlem2  33476  hgt750lem2  33653  quad3  34644  faclimlem1  34702  itg2addnclem3  36530  sqmid3api  41193  235t711  41201  sn-0tie0  41309  fltnltalem  41401  areaquad  41951  resqrtvalex  42382  imsqrtvalex  42383  fourierswlem  44933  fouriersw  44934  2t6m3t4e0  46978
  Copyright terms: Public domain W3C validator