MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nummac Structured version   Visualization version   GIF version

Theorem nummac 12761
Description: Perform a multiply-add of two decimal integers 𝑀 and 𝑁 against a fixed multiplicand 𝑃 (with carry). (Contributed by Mario Carneiro, 18-Feb-2014.)
Hypotheses
Ref Expression
numma.1 𝑇 ∈ ℕ0
numma.2 𝐴 ∈ ℕ0
numma.3 𝐵 ∈ ℕ0
numma.4 𝐶 ∈ ℕ0
numma.5 𝐷 ∈ ℕ0
numma.6 𝑀 = ((𝑇 · 𝐴) + 𝐵)
numma.7 𝑁 = ((𝑇 · 𝐶) + 𝐷)
nummac.8 𝑃 ∈ ℕ0
nummac.9 𝐹 ∈ ℕ0
nummac.10 𝐺 ∈ ℕ0
nummac.11 ((𝐴 · 𝑃) + (𝐶 + 𝐺)) = 𝐸
nummac.12 ((𝐵 · 𝑃) + 𝐷) = ((𝑇 · 𝐺) + 𝐹)
Assertion
Ref Expression
nummac ((𝑀 · 𝑃) + 𝑁) = ((𝑇 · 𝐸) + 𝐹)

Proof of Theorem nummac
StepHypRef Expression
1 numma.1 . . . . 5 𝑇 ∈ ℕ0
21nn0cni 12521 . . . 4 𝑇 ∈ ℂ
3 numma.2 . . . . . . . . 9 𝐴 ∈ ℕ0
43nn0cni 12521 . . . . . . . 8 𝐴 ∈ ℂ
5 nummac.8 . . . . . . . . 9 𝑃 ∈ ℕ0
65nn0cni 12521 . . . . . . . 8 𝑃 ∈ ℂ
74, 6mulcli 11250 . . . . . . 7 (𝐴 · 𝑃) ∈ ℂ
8 numma.4 . . . . . . . 8 𝐶 ∈ ℕ0
98nn0cni 12521 . . . . . . 7 𝐶 ∈ ℂ
10 nummac.10 . . . . . . . 8 𝐺 ∈ ℕ0
1110nn0cni 12521 . . . . . . 7 𝐺 ∈ ℂ
127, 9, 11addassi 11253 . . . . . 6 (((𝐴 · 𝑃) + 𝐶) + 𝐺) = ((𝐴 · 𝑃) + (𝐶 + 𝐺))
13 nummac.11 . . . . . 6 ((𝐴 · 𝑃) + (𝐶 + 𝐺)) = 𝐸
1412, 13eqtri 2757 . . . . 5 (((𝐴 · 𝑃) + 𝐶) + 𝐺) = 𝐸
157, 9addcli 11249 . . . . . 6 ((𝐴 · 𝑃) + 𝐶) ∈ ℂ
1615, 11addcli 11249 . . . . 5 (((𝐴 · 𝑃) + 𝐶) + 𝐺) ∈ ℂ
1714, 16eqeltrri 2830 . . . 4 𝐸 ∈ ℂ
182, 17, 11subdii 11694 . . 3 (𝑇 · (𝐸𝐺)) = ((𝑇 · 𝐸) − (𝑇 · 𝐺))
1918oveq1i 7423 . 2 ((𝑇 · (𝐸𝐺)) + ((𝑇 · 𝐺) + 𝐹)) = (((𝑇 · 𝐸) − (𝑇 · 𝐺)) + ((𝑇 · 𝐺) + 𝐹))
20 numma.3 . . 3 𝐵 ∈ ℕ0
21 numma.5 . . 3 𝐷 ∈ ℕ0
22 numma.6 . . 3 𝑀 = ((𝑇 · 𝐴) + 𝐵)
23 numma.7 . . 3 𝑁 = ((𝑇 · 𝐶) + 𝐷)
2417, 11, 15subadd2i 11579 . . . . 5 ((𝐸𝐺) = ((𝐴 · 𝑃) + 𝐶) ↔ (((𝐴 · 𝑃) + 𝐶) + 𝐺) = 𝐸)
2514, 24mpbir 231 . . . 4 (𝐸𝐺) = ((𝐴 · 𝑃) + 𝐶)
2625eqcomi 2743 . . 3 ((𝐴 · 𝑃) + 𝐶) = (𝐸𝐺)
27 nummac.12 . . 3 ((𝐵 · 𝑃) + 𝐷) = ((𝑇 · 𝐺) + 𝐹)
281, 3, 20, 8, 21, 22, 23, 5, 26, 27numma 12760 . 2 ((𝑀 · 𝑃) + 𝑁) = ((𝑇 · (𝐸𝐺)) + ((𝑇 · 𝐺) + 𝐹))
292, 17mulcli 11250 . . . . 5 (𝑇 · 𝐸) ∈ ℂ
302, 11mulcli 11250 . . . . 5 (𝑇 · 𝐺) ∈ ℂ
31 npcan 11499 . . . . 5 (((𝑇 · 𝐸) ∈ ℂ ∧ (𝑇 · 𝐺) ∈ ℂ) → (((𝑇 · 𝐸) − (𝑇 · 𝐺)) + (𝑇 · 𝐺)) = (𝑇 · 𝐸))
3229, 30, 31mp2an 692 . . . 4 (((𝑇 · 𝐸) − (𝑇 · 𝐺)) + (𝑇 · 𝐺)) = (𝑇 · 𝐸)
3332oveq1i 7423 . . 3 ((((𝑇 · 𝐸) − (𝑇 · 𝐺)) + (𝑇 · 𝐺)) + 𝐹) = ((𝑇 · 𝐸) + 𝐹)
3429, 30subcli 11567 . . . 4 ((𝑇 · 𝐸) − (𝑇 · 𝐺)) ∈ ℂ
35 nummac.9 . . . . 5 𝐹 ∈ ℕ0
3635nn0cni 12521 . . . 4 𝐹 ∈ ℂ
3734, 30, 36addassi 11253 . . 3 ((((𝑇 · 𝐸) − (𝑇 · 𝐺)) + (𝑇 · 𝐺)) + 𝐹) = (((𝑇 · 𝐸) − (𝑇 · 𝐺)) + ((𝑇 · 𝐺) + 𝐹))
3833, 37eqtr3i 2759 . 2 ((𝑇 · 𝐸) + 𝐹) = (((𝑇 · 𝐸) − (𝑇 · 𝐺)) + ((𝑇 · 𝐺) + 𝐹))
3919, 28, 383eqtr4i 2767 1 ((𝑀 · 𝑃) + 𝑁) = ((𝑇 · 𝐸) + 𝐹)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  wcel 2107  (class class class)co 7413  cc 11135   + caddc 11140   · cmul 11142  cmin 11474  0cn0 12509
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737  ax-resscn 11194  ax-1cn 11195  ax-icn 11196  ax-addcl 11197  ax-addrcl 11198  ax-mulcl 11199  ax-mulrcl 11200  ax-mulcom 11201  ax-addass 11202  ax-mulass 11203  ax-distr 11204  ax-i2m1 11205  ax-1ne0 11206  ax-1rid 11207  ax-rnegex 11208  ax-rrecex 11209  ax-cnre 11210  ax-pre-lttri 11211  ax-pre-lttrn 11212  ax-pre-ltadd 11213
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-iun 4973  df-br 5124  df-opab 5186  df-mpt 5206  df-tr 5240  df-id 5558  df-eprel 5564  df-po 5572  df-so 5573  df-fr 5617  df-we 5619  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-pred 6301  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-riota 7370  df-ov 7416  df-oprab 7417  df-mpo 7418  df-om 7870  df-2nd 7997  df-frecs 8288  df-wrecs 8319  df-recs 8393  df-rdg 8432  df-er 8727  df-en 8968  df-dom 8969  df-sdom 8970  df-pnf 11279  df-mnf 11280  df-ltxr 11282  df-sub 11476  df-nn 12249  df-n0 12510
This theorem is referenced by:  numma2c  12762  numaddc  12764  nummul1c  12765  decmac  12768
  Copyright terms: Public domain W3C validator