![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nummac | Structured version Visualization version GIF version |
Description: Perform a multiply-add of two decimal integers 𝑀 and 𝑁 against a fixed multiplicand 𝑃 (with carry). (Contributed by Mario Carneiro, 18-Feb-2014.) |
Ref | Expression |
---|---|
numma.1 | ⊢ 𝑇 ∈ ℕ0 |
numma.2 | ⊢ 𝐴 ∈ ℕ0 |
numma.3 | ⊢ 𝐵 ∈ ℕ0 |
numma.4 | ⊢ 𝐶 ∈ ℕ0 |
numma.5 | ⊢ 𝐷 ∈ ℕ0 |
numma.6 | ⊢ 𝑀 = ((𝑇 · 𝐴) + 𝐵) |
numma.7 | ⊢ 𝑁 = ((𝑇 · 𝐶) + 𝐷) |
nummac.8 | ⊢ 𝑃 ∈ ℕ0 |
nummac.9 | ⊢ 𝐹 ∈ ℕ0 |
nummac.10 | ⊢ 𝐺 ∈ ℕ0 |
nummac.11 | ⊢ ((𝐴 · 𝑃) + (𝐶 + 𝐺)) = 𝐸 |
nummac.12 | ⊢ ((𝐵 · 𝑃) + 𝐷) = ((𝑇 · 𝐺) + 𝐹) |
Ref | Expression |
---|---|
nummac | ⊢ ((𝑀 · 𝑃) + 𝑁) = ((𝑇 · 𝐸) + 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | numma.1 | . . . . 5 ⊢ 𝑇 ∈ ℕ0 | |
2 | 1 | nn0cni 12517 | . . . 4 ⊢ 𝑇 ∈ ℂ |
3 | numma.2 | . . . . . . . . 9 ⊢ 𝐴 ∈ ℕ0 | |
4 | 3 | nn0cni 12517 | . . . . . . . 8 ⊢ 𝐴 ∈ ℂ |
5 | nummac.8 | . . . . . . . . 9 ⊢ 𝑃 ∈ ℕ0 | |
6 | 5 | nn0cni 12517 | . . . . . . . 8 ⊢ 𝑃 ∈ ℂ |
7 | 4, 6 | mulcli 11253 | . . . . . . 7 ⊢ (𝐴 · 𝑃) ∈ ℂ |
8 | numma.4 | . . . . . . . 8 ⊢ 𝐶 ∈ ℕ0 | |
9 | 8 | nn0cni 12517 | . . . . . . 7 ⊢ 𝐶 ∈ ℂ |
10 | nummac.10 | . . . . . . . 8 ⊢ 𝐺 ∈ ℕ0 | |
11 | 10 | nn0cni 12517 | . . . . . . 7 ⊢ 𝐺 ∈ ℂ |
12 | 7, 9, 11 | addassi 11256 | . . . . . 6 ⊢ (((𝐴 · 𝑃) + 𝐶) + 𝐺) = ((𝐴 · 𝑃) + (𝐶 + 𝐺)) |
13 | nummac.11 | . . . . . 6 ⊢ ((𝐴 · 𝑃) + (𝐶 + 𝐺)) = 𝐸 | |
14 | 12, 13 | eqtri 2753 | . . . . 5 ⊢ (((𝐴 · 𝑃) + 𝐶) + 𝐺) = 𝐸 |
15 | 7, 9 | addcli 11252 | . . . . . 6 ⊢ ((𝐴 · 𝑃) + 𝐶) ∈ ℂ |
16 | 15, 11 | addcli 11252 | . . . . 5 ⊢ (((𝐴 · 𝑃) + 𝐶) + 𝐺) ∈ ℂ |
17 | 14, 16 | eqeltrri 2822 | . . . 4 ⊢ 𝐸 ∈ ℂ |
18 | 2, 17, 11 | subdii 11695 | . . 3 ⊢ (𝑇 · (𝐸 − 𝐺)) = ((𝑇 · 𝐸) − (𝑇 · 𝐺)) |
19 | 18 | oveq1i 7429 | . 2 ⊢ ((𝑇 · (𝐸 − 𝐺)) + ((𝑇 · 𝐺) + 𝐹)) = (((𝑇 · 𝐸) − (𝑇 · 𝐺)) + ((𝑇 · 𝐺) + 𝐹)) |
20 | numma.3 | . . 3 ⊢ 𝐵 ∈ ℕ0 | |
21 | numma.5 | . . 3 ⊢ 𝐷 ∈ ℕ0 | |
22 | numma.6 | . . 3 ⊢ 𝑀 = ((𝑇 · 𝐴) + 𝐵) | |
23 | numma.7 | . . 3 ⊢ 𝑁 = ((𝑇 · 𝐶) + 𝐷) | |
24 | 17, 11, 15 | subadd2i 11580 | . . . . 5 ⊢ ((𝐸 − 𝐺) = ((𝐴 · 𝑃) + 𝐶) ↔ (((𝐴 · 𝑃) + 𝐶) + 𝐺) = 𝐸) |
25 | 14, 24 | mpbir 230 | . . . 4 ⊢ (𝐸 − 𝐺) = ((𝐴 · 𝑃) + 𝐶) |
26 | 25 | eqcomi 2734 | . . 3 ⊢ ((𝐴 · 𝑃) + 𝐶) = (𝐸 − 𝐺) |
27 | nummac.12 | . . 3 ⊢ ((𝐵 · 𝑃) + 𝐷) = ((𝑇 · 𝐺) + 𝐹) | |
28 | 1, 3, 20, 8, 21, 22, 23, 5, 26, 27 | numma 12754 | . 2 ⊢ ((𝑀 · 𝑃) + 𝑁) = ((𝑇 · (𝐸 − 𝐺)) + ((𝑇 · 𝐺) + 𝐹)) |
29 | 2, 17 | mulcli 11253 | . . . . 5 ⊢ (𝑇 · 𝐸) ∈ ℂ |
30 | 2, 11 | mulcli 11253 | . . . . 5 ⊢ (𝑇 · 𝐺) ∈ ℂ |
31 | npcan 11501 | . . . . 5 ⊢ (((𝑇 · 𝐸) ∈ ℂ ∧ (𝑇 · 𝐺) ∈ ℂ) → (((𝑇 · 𝐸) − (𝑇 · 𝐺)) + (𝑇 · 𝐺)) = (𝑇 · 𝐸)) | |
32 | 29, 30, 31 | mp2an 690 | . . . 4 ⊢ (((𝑇 · 𝐸) − (𝑇 · 𝐺)) + (𝑇 · 𝐺)) = (𝑇 · 𝐸) |
33 | 32 | oveq1i 7429 | . . 3 ⊢ ((((𝑇 · 𝐸) − (𝑇 · 𝐺)) + (𝑇 · 𝐺)) + 𝐹) = ((𝑇 · 𝐸) + 𝐹) |
34 | 29, 30 | subcli 11568 | . . . 4 ⊢ ((𝑇 · 𝐸) − (𝑇 · 𝐺)) ∈ ℂ |
35 | nummac.9 | . . . . 5 ⊢ 𝐹 ∈ ℕ0 | |
36 | 35 | nn0cni 12517 | . . . 4 ⊢ 𝐹 ∈ ℂ |
37 | 34, 30, 36 | addassi 11256 | . . 3 ⊢ ((((𝑇 · 𝐸) − (𝑇 · 𝐺)) + (𝑇 · 𝐺)) + 𝐹) = (((𝑇 · 𝐸) − (𝑇 · 𝐺)) + ((𝑇 · 𝐺) + 𝐹)) |
38 | 33, 37 | eqtr3i 2755 | . 2 ⊢ ((𝑇 · 𝐸) + 𝐹) = (((𝑇 · 𝐸) − (𝑇 · 𝐺)) + ((𝑇 · 𝐺) + 𝐹)) |
39 | 19, 28, 38 | 3eqtr4i 2763 | 1 ⊢ ((𝑀 · 𝑃) + 𝑁) = ((𝑇 · 𝐸) + 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1533 ∈ wcel 2098 (class class class)co 7419 ℂcc 11138 + caddc 11143 · cmul 11145 − cmin 11476 ℕ0cn0 12505 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5300 ax-nul 5307 ax-pow 5365 ax-pr 5429 ax-un 7741 ax-resscn 11197 ax-1cn 11198 ax-icn 11199 ax-addcl 11200 ax-addrcl 11201 ax-mulcl 11202 ax-mulrcl 11203 ax-mulcom 11204 ax-addass 11205 ax-mulass 11206 ax-distr 11207 ax-i2m1 11208 ax-1ne0 11209 ax-1rid 11210 ax-rnegex 11211 ax-rrecex 11212 ax-cnre 11213 ax-pre-lttri 11214 ax-pre-lttrn 11215 ax-pre-ltadd 11216 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-nel 3036 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3964 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-iun 4999 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6307 df-ord 6374 df-on 6375 df-lim 6376 df-suc 6377 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-f1 6554 df-fo 6555 df-f1o 6556 df-fv 6557 df-riota 7375 df-ov 7422 df-oprab 7423 df-mpo 7424 df-om 7872 df-2nd 7995 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-er 8725 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11282 df-mnf 11283 df-ltxr 11285 df-sub 11478 df-nn 12246 df-n0 12506 |
This theorem is referenced by: numma2c 12756 numaddc 12758 nummul1c 12759 decmac 12762 |
Copyright terms: Public domain | W3C validator |