MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nummac Structured version   Visualization version   GIF version

Theorem nummac 12470
Description: Perform a multiply-add of two decimal integers 𝑀 and 𝑁 against a fixed multiplicand 𝑃 (with carry). (Contributed by Mario Carneiro, 18-Feb-2014.)
Hypotheses
Ref Expression
numma.1 𝑇 ∈ ℕ0
numma.2 𝐴 ∈ ℕ0
numma.3 𝐵 ∈ ℕ0
numma.4 𝐶 ∈ ℕ0
numma.5 𝐷 ∈ ℕ0
numma.6 𝑀 = ((𝑇 · 𝐴) + 𝐵)
numma.7 𝑁 = ((𝑇 · 𝐶) + 𝐷)
nummac.8 𝑃 ∈ ℕ0
nummac.9 𝐹 ∈ ℕ0
nummac.10 𝐺 ∈ ℕ0
nummac.11 ((𝐴 · 𝑃) + (𝐶 + 𝐺)) = 𝐸
nummac.12 ((𝐵 · 𝑃) + 𝐷) = ((𝑇 · 𝐺) + 𝐹)
Assertion
Ref Expression
nummac ((𝑀 · 𝑃) + 𝑁) = ((𝑇 · 𝐸) + 𝐹)

Proof of Theorem nummac
StepHypRef Expression
1 numma.1 . . . . 5 𝑇 ∈ ℕ0
21nn0cni 12233 . . . 4 𝑇 ∈ ℂ
3 numma.2 . . . . . . . . 9 𝐴 ∈ ℕ0
43nn0cni 12233 . . . . . . . 8 𝐴 ∈ ℂ
5 nummac.8 . . . . . . . . 9 𝑃 ∈ ℕ0
65nn0cni 12233 . . . . . . . 8 𝑃 ∈ ℂ
74, 6mulcli 10970 . . . . . . 7 (𝐴 · 𝑃) ∈ ℂ
8 numma.4 . . . . . . . 8 𝐶 ∈ ℕ0
98nn0cni 12233 . . . . . . 7 𝐶 ∈ ℂ
10 nummac.10 . . . . . . . 8 𝐺 ∈ ℕ0
1110nn0cni 12233 . . . . . . 7 𝐺 ∈ ℂ
127, 9, 11addassi 10973 . . . . . 6 (((𝐴 · 𝑃) + 𝐶) + 𝐺) = ((𝐴 · 𝑃) + (𝐶 + 𝐺))
13 nummac.11 . . . . . 6 ((𝐴 · 𝑃) + (𝐶 + 𝐺)) = 𝐸
1412, 13eqtri 2766 . . . . 5 (((𝐴 · 𝑃) + 𝐶) + 𝐺) = 𝐸
157, 9addcli 10969 . . . . . 6 ((𝐴 · 𝑃) + 𝐶) ∈ ℂ
1615, 11addcli 10969 . . . . 5 (((𝐴 · 𝑃) + 𝐶) + 𝐺) ∈ ℂ
1714, 16eqeltrri 2836 . . . 4 𝐸 ∈ ℂ
182, 17, 11subdii 11412 . . 3 (𝑇 · (𝐸𝐺)) = ((𝑇 · 𝐸) − (𝑇 · 𝐺))
1918oveq1i 7278 . 2 ((𝑇 · (𝐸𝐺)) + ((𝑇 · 𝐺) + 𝐹)) = (((𝑇 · 𝐸) − (𝑇 · 𝐺)) + ((𝑇 · 𝐺) + 𝐹))
20 numma.3 . . 3 𝐵 ∈ ℕ0
21 numma.5 . . 3 𝐷 ∈ ℕ0
22 numma.6 . . 3 𝑀 = ((𝑇 · 𝐴) + 𝐵)
23 numma.7 . . 3 𝑁 = ((𝑇 · 𝐶) + 𝐷)
2417, 11, 15subadd2i 11297 . . . . 5 ((𝐸𝐺) = ((𝐴 · 𝑃) + 𝐶) ↔ (((𝐴 · 𝑃) + 𝐶) + 𝐺) = 𝐸)
2514, 24mpbir 230 . . . 4 (𝐸𝐺) = ((𝐴 · 𝑃) + 𝐶)
2625eqcomi 2747 . . 3 ((𝐴 · 𝑃) + 𝐶) = (𝐸𝐺)
27 nummac.12 . . 3 ((𝐵 · 𝑃) + 𝐷) = ((𝑇 · 𝐺) + 𝐹)
281, 3, 20, 8, 21, 22, 23, 5, 26, 27numma 12469 . 2 ((𝑀 · 𝑃) + 𝑁) = ((𝑇 · (𝐸𝐺)) + ((𝑇 · 𝐺) + 𝐹))
292, 17mulcli 10970 . . . . 5 (𝑇 · 𝐸) ∈ ℂ
302, 11mulcli 10970 . . . . 5 (𝑇 · 𝐺) ∈ ℂ
31 npcan 11218 . . . . 5 (((𝑇 · 𝐸) ∈ ℂ ∧ (𝑇 · 𝐺) ∈ ℂ) → (((𝑇 · 𝐸) − (𝑇 · 𝐺)) + (𝑇 · 𝐺)) = (𝑇 · 𝐸))
3229, 30, 31mp2an 689 . . . 4 (((𝑇 · 𝐸) − (𝑇 · 𝐺)) + (𝑇 · 𝐺)) = (𝑇 · 𝐸)
3332oveq1i 7278 . . 3 ((((𝑇 · 𝐸) − (𝑇 · 𝐺)) + (𝑇 · 𝐺)) + 𝐹) = ((𝑇 · 𝐸) + 𝐹)
3429, 30subcli 11285 . . . 4 ((𝑇 · 𝐸) − (𝑇 · 𝐺)) ∈ ℂ
35 nummac.9 . . . . 5 𝐹 ∈ ℕ0
3635nn0cni 12233 . . . 4 𝐹 ∈ ℂ
3734, 30, 36addassi 10973 . . 3 ((((𝑇 · 𝐸) − (𝑇 · 𝐺)) + (𝑇 · 𝐺)) + 𝐹) = (((𝑇 · 𝐸) − (𝑇 · 𝐺)) + ((𝑇 · 𝐺) + 𝐹))
3833, 37eqtr3i 2768 . 2 ((𝑇 · 𝐸) + 𝐹) = (((𝑇 · 𝐸) − (𝑇 · 𝐺)) + ((𝑇 · 𝐺) + 𝐹))
3919, 28, 383eqtr4i 2776 1 ((𝑀 · 𝑃) + 𝑁) = ((𝑇 · 𝐸) + 𝐹)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  wcel 2106  (class class class)co 7268  cc 10857   + caddc 10862   · cmul 10864  cmin 11193  0cn0 12221
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5222  ax-nul 5229  ax-pow 5287  ax-pr 5351  ax-un 7579  ax-resscn 10916  ax-1cn 10917  ax-icn 10918  ax-addcl 10919  ax-addrcl 10920  ax-mulcl 10921  ax-mulrcl 10922  ax-mulcom 10923  ax-addass 10924  ax-mulass 10925  ax-distr 10926  ax-i2m1 10927  ax-1ne0 10928  ax-1rid 10929  ax-rnegex 10930  ax-rrecex 10931  ax-cnre 10932  ax-pre-lttri 10933  ax-pre-lttrn 10934  ax-pre-ltadd 10935
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3071  df-rab 3073  df-v 3432  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4258  df-if 4461  df-pw 4536  df-sn 4563  df-pr 4565  df-op 4569  df-uni 4841  df-iun 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5485  df-eprel 5491  df-po 5499  df-so 5500  df-fr 5540  df-we 5542  df-xp 5591  df-rel 5592  df-cnv 5593  df-co 5594  df-dm 5595  df-rn 5596  df-res 5597  df-ima 5598  df-pred 6196  df-ord 6263  df-on 6264  df-lim 6265  df-suc 6266  df-iota 6385  df-fun 6429  df-fn 6430  df-f 6431  df-f1 6432  df-fo 6433  df-f1o 6434  df-fv 6435  df-riota 7225  df-ov 7271  df-oprab 7272  df-mpo 7273  df-om 7704  df-2nd 7822  df-frecs 8085  df-wrecs 8116  df-recs 8190  df-rdg 8229  df-er 8486  df-en 8722  df-dom 8723  df-sdom 8724  df-pnf 10999  df-mnf 11000  df-ltxr 11002  df-sub 11195  df-nn 11962  df-n0 12222
This theorem is referenced by:  numma2c  12471  numaddc  12473  nummul1c  12474  decmac  12477
  Copyright terms: Public domain W3C validator