MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nummac Structured version   Visualization version   GIF version

Theorem nummac 12670
Description: Perform a multiply-add of two decimal integers 𝑀 and 𝑁 against a fixed multiplicand 𝑃 (with carry). (Contributed by Mario Carneiro, 18-Feb-2014.)
Hypotheses
Ref Expression
numma.1 𝑇 ∈ ℕ0
numma.2 𝐴 ∈ ℕ0
numma.3 𝐵 ∈ ℕ0
numma.4 𝐶 ∈ ℕ0
numma.5 𝐷 ∈ ℕ0
numma.6 𝑀 = ((𝑇 · 𝐴) + 𝐵)
numma.7 𝑁 = ((𝑇 · 𝐶) + 𝐷)
nummac.8 𝑃 ∈ ℕ0
nummac.9 𝐹 ∈ ℕ0
nummac.10 𝐺 ∈ ℕ0
nummac.11 ((𝐴 · 𝑃) + (𝐶 + 𝐺)) = 𝐸
nummac.12 ((𝐵 · 𝑃) + 𝐷) = ((𝑇 · 𝐺) + 𝐹)
Assertion
Ref Expression
nummac ((𝑀 · 𝑃) + 𝑁) = ((𝑇 · 𝐸) + 𝐹)

Proof of Theorem nummac
StepHypRef Expression
1 numma.1 . . . . 5 𝑇 ∈ ℕ0
21nn0cni 12430 . . . 4 𝑇 ∈ ℂ
3 numma.2 . . . . . . . . 9 𝐴 ∈ ℕ0
43nn0cni 12430 . . . . . . . 8 𝐴 ∈ ℂ
5 nummac.8 . . . . . . . . 9 𝑃 ∈ ℕ0
65nn0cni 12430 . . . . . . . 8 𝑃 ∈ ℂ
74, 6mulcli 11157 . . . . . . 7 (𝐴 · 𝑃) ∈ ℂ
8 numma.4 . . . . . . . 8 𝐶 ∈ ℕ0
98nn0cni 12430 . . . . . . 7 𝐶 ∈ ℂ
10 nummac.10 . . . . . . . 8 𝐺 ∈ ℕ0
1110nn0cni 12430 . . . . . . 7 𝐺 ∈ ℂ
127, 9, 11addassi 11160 . . . . . 6 (((𝐴 · 𝑃) + 𝐶) + 𝐺) = ((𝐴 · 𝑃) + (𝐶 + 𝐺))
13 nummac.11 . . . . . 6 ((𝐴 · 𝑃) + (𝐶 + 𝐺)) = 𝐸
1412, 13eqtri 2752 . . . . 5 (((𝐴 · 𝑃) + 𝐶) + 𝐺) = 𝐸
157, 9addcli 11156 . . . . . 6 ((𝐴 · 𝑃) + 𝐶) ∈ ℂ
1615, 11addcli 11156 . . . . 5 (((𝐴 · 𝑃) + 𝐶) + 𝐺) ∈ ℂ
1714, 16eqeltrri 2825 . . . 4 𝐸 ∈ ℂ
182, 17, 11subdii 11603 . . 3 (𝑇 · (𝐸𝐺)) = ((𝑇 · 𝐸) − (𝑇 · 𝐺))
1918oveq1i 7379 . 2 ((𝑇 · (𝐸𝐺)) + ((𝑇 · 𝐺) + 𝐹)) = (((𝑇 · 𝐸) − (𝑇 · 𝐺)) + ((𝑇 · 𝐺) + 𝐹))
20 numma.3 . . 3 𝐵 ∈ ℕ0
21 numma.5 . . 3 𝐷 ∈ ℕ0
22 numma.6 . . 3 𝑀 = ((𝑇 · 𝐴) + 𝐵)
23 numma.7 . . 3 𝑁 = ((𝑇 · 𝐶) + 𝐷)
2417, 11, 15subadd2i 11486 . . . . 5 ((𝐸𝐺) = ((𝐴 · 𝑃) + 𝐶) ↔ (((𝐴 · 𝑃) + 𝐶) + 𝐺) = 𝐸)
2514, 24mpbir 231 . . . 4 (𝐸𝐺) = ((𝐴 · 𝑃) + 𝐶)
2625eqcomi 2738 . . 3 ((𝐴 · 𝑃) + 𝐶) = (𝐸𝐺)
27 nummac.12 . . 3 ((𝐵 · 𝑃) + 𝐷) = ((𝑇 · 𝐺) + 𝐹)
281, 3, 20, 8, 21, 22, 23, 5, 26, 27numma 12669 . 2 ((𝑀 · 𝑃) + 𝑁) = ((𝑇 · (𝐸𝐺)) + ((𝑇 · 𝐺) + 𝐹))
292, 17mulcli 11157 . . . . 5 (𝑇 · 𝐸) ∈ ℂ
302, 11mulcli 11157 . . . . 5 (𝑇 · 𝐺) ∈ ℂ
31 npcan 11406 . . . . 5 (((𝑇 · 𝐸) ∈ ℂ ∧ (𝑇 · 𝐺) ∈ ℂ) → (((𝑇 · 𝐸) − (𝑇 · 𝐺)) + (𝑇 · 𝐺)) = (𝑇 · 𝐸))
3229, 30, 31mp2an 692 . . . 4 (((𝑇 · 𝐸) − (𝑇 · 𝐺)) + (𝑇 · 𝐺)) = (𝑇 · 𝐸)
3332oveq1i 7379 . . 3 ((((𝑇 · 𝐸) − (𝑇 · 𝐺)) + (𝑇 · 𝐺)) + 𝐹) = ((𝑇 · 𝐸) + 𝐹)
3429, 30subcli 11474 . . . 4 ((𝑇 · 𝐸) − (𝑇 · 𝐺)) ∈ ℂ
35 nummac.9 . . . . 5 𝐹 ∈ ℕ0
3635nn0cni 12430 . . . 4 𝐹 ∈ ℂ
3734, 30, 36addassi 11160 . . 3 ((((𝑇 · 𝐸) − (𝑇 · 𝐺)) + (𝑇 · 𝐺)) + 𝐹) = (((𝑇 · 𝐸) − (𝑇 · 𝐺)) + ((𝑇 · 𝐺) + 𝐹))
3833, 37eqtr3i 2754 . 2 ((𝑇 · 𝐸) + 𝐹) = (((𝑇 · 𝐸) − (𝑇 · 𝐺)) + ((𝑇 · 𝐺) + 𝐹))
3919, 28, 383eqtr4i 2762 1 ((𝑀 · 𝑃) + 𝑁) = ((𝑇 · 𝐸) + 𝐹)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2109  (class class class)co 7369  cc 11042   + caddc 11047   · cmul 11049  cmin 11381  0cn0 12418
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-pnf 11186  df-mnf 11187  df-ltxr 11189  df-sub 11383  df-nn 12163  df-n0 12419
This theorem is referenced by:  numma2c  12671  numaddc  12673  nummul1c  12674  decmac  12677
  Copyright terms: Public domain W3C validator