Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nummac | Structured version Visualization version GIF version |
Description: Perform a multiply-add of two decimal integers 𝑀 and 𝑁 against a fixed multiplicand 𝑃 (with carry). (Contributed by Mario Carneiro, 18-Feb-2014.) |
Ref | Expression |
---|---|
numma.1 | ⊢ 𝑇 ∈ ℕ0 |
numma.2 | ⊢ 𝐴 ∈ ℕ0 |
numma.3 | ⊢ 𝐵 ∈ ℕ0 |
numma.4 | ⊢ 𝐶 ∈ ℕ0 |
numma.5 | ⊢ 𝐷 ∈ ℕ0 |
numma.6 | ⊢ 𝑀 = ((𝑇 · 𝐴) + 𝐵) |
numma.7 | ⊢ 𝑁 = ((𝑇 · 𝐶) + 𝐷) |
nummac.8 | ⊢ 𝑃 ∈ ℕ0 |
nummac.9 | ⊢ 𝐹 ∈ ℕ0 |
nummac.10 | ⊢ 𝐺 ∈ ℕ0 |
nummac.11 | ⊢ ((𝐴 · 𝑃) + (𝐶 + 𝐺)) = 𝐸 |
nummac.12 | ⊢ ((𝐵 · 𝑃) + 𝐷) = ((𝑇 · 𝐺) + 𝐹) |
Ref | Expression |
---|---|
nummac | ⊢ ((𝑀 · 𝑃) + 𝑁) = ((𝑇 · 𝐸) + 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | numma.1 | . . . . 5 ⊢ 𝑇 ∈ ℕ0 | |
2 | 1 | nn0cni 12175 | . . . 4 ⊢ 𝑇 ∈ ℂ |
3 | numma.2 | . . . . . . . . 9 ⊢ 𝐴 ∈ ℕ0 | |
4 | 3 | nn0cni 12175 | . . . . . . . 8 ⊢ 𝐴 ∈ ℂ |
5 | nummac.8 | . . . . . . . . 9 ⊢ 𝑃 ∈ ℕ0 | |
6 | 5 | nn0cni 12175 | . . . . . . . 8 ⊢ 𝑃 ∈ ℂ |
7 | 4, 6 | mulcli 10913 | . . . . . . 7 ⊢ (𝐴 · 𝑃) ∈ ℂ |
8 | numma.4 | . . . . . . . 8 ⊢ 𝐶 ∈ ℕ0 | |
9 | 8 | nn0cni 12175 | . . . . . . 7 ⊢ 𝐶 ∈ ℂ |
10 | nummac.10 | . . . . . . . 8 ⊢ 𝐺 ∈ ℕ0 | |
11 | 10 | nn0cni 12175 | . . . . . . 7 ⊢ 𝐺 ∈ ℂ |
12 | 7, 9, 11 | addassi 10916 | . . . . . 6 ⊢ (((𝐴 · 𝑃) + 𝐶) + 𝐺) = ((𝐴 · 𝑃) + (𝐶 + 𝐺)) |
13 | nummac.11 | . . . . . 6 ⊢ ((𝐴 · 𝑃) + (𝐶 + 𝐺)) = 𝐸 | |
14 | 12, 13 | eqtri 2766 | . . . . 5 ⊢ (((𝐴 · 𝑃) + 𝐶) + 𝐺) = 𝐸 |
15 | 7, 9 | addcli 10912 | . . . . . 6 ⊢ ((𝐴 · 𝑃) + 𝐶) ∈ ℂ |
16 | 15, 11 | addcli 10912 | . . . . 5 ⊢ (((𝐴 · 𝑃) + 𝐶) + 𝐺) ∈ ℂ |
17 | 14, 16 | eqeltrri 2836 | . . . 4 ⊢ 𝐸 ∈ ℂ |
18 | 2, 17, 11 | subdii 11354 | . . 3 ⊢ (𝑇 · (𝐸 − 𝐺)) = ((𝑇 · 𝐸) − (𝑇 · 𝐺)) |
19 | 18 | oveq1i 7265 | . 2 ⊢ ((𝑇 · (𝐸 − 𝐺)) + ((𝑇 · 𝐺) + 𝐹)) = (((𝑇 · 𝐸) − (𝑇 · 𝐺)) + ((𝑇 · 𝐺) + 𝐹)) |
20 | numma.3 | . . 3 ⊢ 𝐵 ∈ ℕ0 | |
21 | numma.5 | . . 3 ⊢ 𝐷 ∈ ℕ0 | |
22 | numma.6 | . . 3 ⊢ 𝑀 = ((𝑇 · 𝐴) + 𝐵) | |
23 | numma.7 | . . 3 ⊢ 𝑁 = ((𝑇 · 𝐶) + 𝐷) | |
24 | 17, 11, 15 | subadd2i 11239 | . . . . 5 ⊢ ((𝐸 − 𝐺) = ((𝐴 · 𝑃) + 𝐶) ↔ (((𝐴 · 𝑃) + 𝐶) + 𝐺) = 𝐸) |
25 | 14, 24 | mpbir 230 | . . . 4 ⊢ (𝐸 − 𝐺) = ((𝐴 · 𝑃) + 𝐶) |
26 | 25 | eqcomi 2747 | . . 3 ⊢ ((𝐴 · 𝑃) + 𝐶) = (𝐸 − 𝐺) |
27 | nummac.12 | . . 3 ⊢ ((𝐵 · 𝑃) + 𝐷) = ((𝑇 · 𝐺) + 𝐹) | |
28 | 1, 3, 20, 8, 21, 22, 23, 5, 26, 27 | numma 12410 | . 2 ⊢ ((𝑀 · 𝑃) + 𝑁) = ((𝑇 · (𝐸 − 𝐺)) + ((𝑇 · 𝐺) + 𝐹)) |
29 | 2, 17 | mulcli 10913 | . . . . 5 ⊢ (𝑇 · 𝐸) ∈ ℂ |
30 | 2, 11 | mulcli 10913 | . . . . 5 ⊢ (𝑇 · 𝐺) ∈ ℂ |
31 | npcan 11160 | . . . . 5 ⊢ (((𝑇 · 𝐸) ∈ ℂ ∧ (𝑇 · 𝐺) ∈ ℂ) → (((𝑇 · 𝐸) − (𝑇 · 𝐺)) + (𝑇 · 𝐺)) = (𝑇 · 𝐸)) | |
32 | 29, 30, 31 | mp2an 688 | . . . 4 ⊢ (((𝑇 · 𝐸) − (𝑇 · 𝐺)) + (𝑇 · 𝐺)) = (𝑇 · 𝐸) |
33 | 32 | oveq1i 7265 | . . 3 ⊢ ((((𝑇 · 𝐸) − (𝑇 · 𝐺)) + (𝑇 · 𝐺)) + 𝐹) = ((𝑇 · 𝐸) + 𝐹) |
34 | 29, 30 | subcli 11227 | . . . 4 ⊢ ((𝑇 · 𝐸) − (𝑇 · 𝐺)) ∈ ℂ |
35 | nummac.9 | . . . . 5 ⊢ 𝐹 ∈ ℕ0 | |
36 | 35 | nn0cni 12175 | . . . 4 ⊢ 𝐹 ∈ ℂ |
37 | 34, 30, 36 | addassi 10916 | . . 3 ⊢ ((((𝑇 · 𝐸) − (𝑇 · 𝐺)) + (𝑇 · 𝐺)) + 𝐹) = (((𝑇 · 𝐸) − (𝑇 · 𝐺)) + ((𝑇 · 𝐺) + 𝐹)) |
38 | 33, 37 | eqtr3i 2768 | . 2 ⊢ ((𝑇 · 𝐸) + 𝐹) = (((𝑇 · 𝐸) − (𝑇 · 𝐺)) + ((𝑇 · 𝐺) + 𝐹)) |
39 | 19, 28, 38 | 3eqtr4i 2776 | 1 ⊢ ((𝑀 · 𝑃) + 𝑁) = ((𝑇 · 𝐸) + 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∈ wcel 2108 (class class class)co 7255 ℂcc 10800 + caddc 10805 · cmul 10807 − cmin 11135 ℕ0cn0 12163 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-ltxr 10945 df-sub 11137 df-nn 11904 df-n0 12164 |
This theorem is referenced by: numma2c 12412 numaddc 12414 nummul1c 12415 decmac 12418 |
Copyright terms: Public domain | W3C validator |