| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nummac | Structured version Visualization version GIF version | ||
| Description: Perform a multiply-add of two decimal integers 𝑀 and 𝑁 against a fixed multiplicand 𝑃 (with carry). (Contributed by Mario Carneiro, 18-Feb-2014.) |
| Ref | Expression |
|---|---|
| numma.1 | ⊢ 𝑇 ∈ ℕ0 |
| numma.2 | ⊢ 𝐴 ∈ ℕ0 |
| numma.3 | ⊢ 𝐵 ∈ ℕ0 |
| numma.4 | ⊢ 𝐶 ∈ ℕ0 |
| numma.5 | ⊢ 𝐷 ∈ ℕ0 |
| numma.6 | ⊢ 𝑀 = ((𝑇 · 𝐴) + 𝐵) |
| numma.7 | ⊢ 𝑁 = ((𝑇 · 𝐶) + 𝐷) |
| nummac.8 | ⊢ 𝑃 ∈ ℕ0 |
| nummac.9 | ⊢ 𝐹 ∈ ℕ0 |
| nummac.10 | ⊢ 𝐺 ∈ ℕ0 |
| nummac.11 | ⊢ ((𝐴 · 𝑃) + (𝐶 + 𝐺)) = 𝐸 |
| nummac.12 | ⊢ ((𝐵 · 𝑃) + 𝐷) = ((𝑇 · 𝐺) + 𝐹) |
| Ref | Expression |
|---|---|
| nummac | ⊢ ((𝑀 · 𝑃) + 𝑁) = ((𝑇 · 𝐸) + 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | numma.1 | . . . . 5 ⊢ 𝑇 ∈ ℕ0 | |
| 2 | 1 | nn0cni 12521 | . . . 4 ⊢ 𝑇 ∈ ℂ |
| 3 | numma.2 | . . . . . . . . 9 ⊢ 𝐴 ∈ ℕ0 | |
| 4 | 3 | nn0cni 12521 | . . . . . . . 8 ⊢ 𝐴 ∈ ℂ |
| 5 | nummac.8 | . . . . . . . . 9 ⊢ 𝑃 ∈ ℕ0 | |
| 6 | 5 | nn0cni 12521 | . . . . . . . 8 ⊢ 𝑃 ∈ ℂ |
| 7 | 4, 6 | mulcli 11250 | . . . . . . 7 ⊢ (𝐴 · 𝑃) ∈ ℂ |
| 8 | numma.4 | . . . . . . . 8 ⊢ 𝐶 ∈ ℕ0 | |
| 9 | 8 | nn0cni 12521 | . . . . . . 7 ⊢ 𝐶 ∈ ℂ |
| 10 | nummac.10 | . . . . . . . 8 ⊢ 𝐺 ∈ ℕ0 | |
| 11 | 10 | nn0cni 12521 | . . . . . . 7 ⊢ 𝐺 ∈ ℂ |
| 12 | 7, 9, 11 | addassi 11253 | . . . . . 6 ⊢ (((𝐴 · 𝑃) + 𝐶) + 𝐺) = ((𝐴 · 𝑃) + (𝐶 + 𝐺)) |
| 13 | nummac.11 | . . . . . 6 ⊢ ((𝐴 · 𝑃) + (𝐶 + 𝐺)) = 𝐸 | |
| 14 | 12, 13 | eqtri 2757 | . . . . 5 ⊢ (((𝐴 · 𝑃) + 𝐶) + 𝐺) = 𝐸 |
| 15 | 7, 9 | addcli 11249 | . . . . . 6 ⊢ ((𝐴 · 𝑃) + 𝐶) ∈ ℂ |
| 16 | 15, 11 | addcli 11249 | . . . . 5 ⊢ (((𝐴 · 𝑃) + 𝐶) + 𝐺) ∈ ℂ |
| 17 | 14, 16 | eqeltrri 2830 | . . . 4 ⊢ 𝐸 ∈ ℂ |
| 18 | 2, 17, 11 | subdii 11694 | . . 3 ⊢ (𝑇 · (𝐸 − 𝐺)) = ((𝑇 · 𝐸) − (𝑇 · 𝐺)) |
| 19 | 18 | oveq1i 7423 | . 2 ⊢ ((𝑇 · (𝐸 − 𝐺)) + ((𝑇 · 𝐺) + 𝐹)) = (((𝑇 · 𝐸) − (𝑇 · 𝐺)) + ((𝑇 · 𝐺) + 𝐹)) |
| 20 | numma.3 | . . 3 ⊢ 𝐵 ∈ ℕ0 | |
| 21 | numma.5 | . . 3 ⊢ 𝐷 ∈ ℕ0 | |
| 22 | numma.6 | . . 3 ⊢ 𝑀 = ((𝑇 · 𝐴) + 𝐵) | |
| 23 | numma.7 | . . 3 ⊢ 𝑁 = ((𝑇 · 𝐶) + 𝐷) | |
| 24 | 17, 11, 15 | subadd2i 11579 | . . . . 5 ⊢ ((𝐸 − 𝐺) = ((𝐴 · 𝑃) + 𝐶) ↔ (((𝐴 · 𝑃) + 𝐶) + 𝐺) = 𝐸) |
| 25 | 14, 24 | mpbir 231 | . . . 4 ⊢ (𝐸 − 𝐺) = ((𝐴 · 𝑃) + 𝐶) |
| 26 | 25 | eqcomi 2743 | . . 3 ⊢ ((𝐴 · 𝑃) + 𝐶) = (𝐸 − 𝐺) |
| 27 | nummac.12 | . . 3 ⊢ ((𝐵 · 𝑃) + 𝐷) = ((𝑇 · 𝐺) + 𝐹) | |
| 28 | 1, 3, 20, 8, 21, 22, 23, 5, 26, 27 | numma 12760 | . 2 ⊢ ((𝑀 · 𝑃) + 𝑁) = ((𝑇 · (𝐸 − 𝐺)) + ((𝑇 · 𝐺) + 𝐹)) |
| 29 | 2, 17 | mulcli 11250 | . . . . 5 ⊢ (𝑇 · 𝐸) ∈ ℂ |
| 30 | 2, 11 | mulcli 11250 | . . . . 5 ⊢ (𝑇 · 𝐺) ∈ ℂ |
| 31 | npcan 11499 | . . . . 5 ⊢ (((𝑇 · 𝐸) ∈ ℂ ∧ (𝑇 · 𝐺) ∈ ℂ) → (((𝑇 · 𝐸) − (𝑇 · 𝐺)) + (𝑇 · 𝐺)) = (𝑇 · 𝐸)) | |
| 32 | 29, 30, 31 | mp2an 692 | . . . 4 ⊢ (((𝑇 · 𝐸) − (𝑇 · 𝐺)) + (𝑇 · 𝐺)) = (𝑇 · 𝐸) |
| 33 | 32 | oveq1i 7423 | . . 3 ⊢ ((((𝑇 · 𝐸) − (𝑇 · 𝐺)) + (𝑇 · 𝐺)) + 𝐹) = ((𝑇 · 𝐸) + 𝐹) |
| 34 | 29, 30 | subcli 11567 | . . . 4 ⊢ ((𝑇 · 𝐸) − (𝑇 · 𝐺)) ∈ ℂ |
| 35 | nummac.9 | . . . . 5 ⊢ 𝐹 ∈ ℕ0 | |
| 36 | 35 | nn0cni 12521 | . . . 4 ⊢ 𝐹 ∈ ℂ |
| 37 | 34, 30, 36 | addassi 11253 | . . 3 ⊢ ((((𝑇 · 𝐸) − (𝑇 · 𝐺)) + (𝑇 · 𝐺)) + 𝐹) = (((𝑇 · 𝐸) − (𝑇 · 𝐺)) + ((𝑇 · 𝐺) + 𝐹)) |
| 38 | 33, 37 | eqtr3i 2759 | . 2 ⊢ ((𝑇 · 𝐸) + 𝐹) = (((𝑇 · 𝐸) − (𝑇 · 𝐺)) + ((𝑇 · 𝐺) + 𝐹)) |
| 39 | 19, 28, 38 | 3eqtr4i 2767 | 1 ⊢ ((𝑀 · 𝑃) + 𝑁) = ((𝑇 · 𝐸) + 𝐹) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1539 ∈ wcel 2107 (class class class)co 7413 ℂcc 11135 + caddc 11140 · cmul 11142 − cmin 11474 ℕ0cn0 12509 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 ax-resscn 11194 ax-1cn 11195 ax-icn 11196 ax-addcl 11197 ax-addrcl 11198 ax-mulcl 11199 ax-mulrcl 11200 ax-mulcom 11201 ax-addass 11202 ax-mulass 11203 ax-distr 11204 ax-i2m1 11205 ax-1ne0 11206 ax-1rid 11207 ax-rnegex 11208 ax-rrecex 11209 ax-cnre 11210 ax-pre-lttri 11211 ax-pre-lttrn 11212 ax-pre-ltadd 11213 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-riota 7370 df-ov 7416 df-oprab 7417 df-mpo 7418 df-om 7870 df-2nd 7997 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-rdg 8432 df-er 8727 df-en 8968 df-dom 8969 df-sdom 8970 df-pnf 11279 df-mnf 11280 df-ltxr 11282 df-sub 11476 df-nn 12249 df-n0 12510 |
| This theorem is referenced by: numma2c 12762 numaddc 12764 nummul1c 12765 decmac 12768 |
| Copyright terms: Public domain | W3C validator |