Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  eff1o Structured version   Visualization version   GIF version

Theorem eff1o 25132
 Description: The exponential function maps the set 𝑆, of complex numbers with imaginary part in the closed-above, open-below interval from -π to π one-to-one onto the nonzero complex numbers. (Contributed by Paul Chapman, 16-Apr-2008.) (Revised by Mario Carneiro, 13-May-2014.)
Hypothesis
Ref Expression
eff1o.1 𝑆 = (ℑ “ (-π(,]π))
Assertion
Ref Expression
eff1o (exp ↾ 𝑆):𝑆1-1-onto→(ℂ ∖ {0})

Proof of Theorem eff1o
Dummy variables 𝑥 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pire 25043 . . 3 π ∈ ℝ
21renegcli 10946 . 2 -π ∈ ℝ
3 eqid 2821 . . 3 (𝑤 ∈ (-π(,]π) ↦ (exp‘(i · 𝑤))) = (𝑤 ∈ (-π(,]π) ↦ (exp‘(i · 𝑤)))
4 eff1o.1 . . 3 𝑆 = (ℑ “ (-π(,]π))
5 rexr 10686 . . . 4 (-π ∈ ℝ → -π ∈ ℝ*)
6 iocssre 12815 . . . 4 ((-π ∈ ℝ* ∧ π ∈ ℝ) → (-π(,]π) ⊆ ℝ)
75, 1, 6sylancl 588 . . 3 (-π ∈ ℝ → (-π(,]π) ⊆ ℝ)
8 picn 25044 . . . . . . . 8 π ∈ ℂ
982timesi 11774 . . . . . . 7 (2 · π) = (π + π)
109oveq2i 7166 . . . . . 6 (-π + (2 · π)) = (-π + (π + π))
11 negpicn 25047 . . . . . . 7 -π ∈ ℂ
128, 8addcli 10646 . . . . . . 7 (π + π) ∈ ℂ
1311, 12addcomi 10830 . . . . . 6 (-π + (π + π)) = ((π + π) + -π)
1412, 8negsubi 10963 . . . . . . 7 ((π + π) + -π) = ((π + π) − π)
158, 8pncan3oi 10901 . . . . . . 7 ((π + π) − π) = π
1614, 15eqtri 2844 . . . . . 6 ((π + π) + -π) = π
1710, 13, 163eqtrri 2849 . . . . 5 π = (-π + (2 · π))
1817oveq2i 7166 . . . 4 (-π(,]π) = (-π(,](-π + (2 · π)))
1918efif1olem1 25125 . . 3 ((-π ∈ ℝ ∧ (𝑥 ∈ (-π(,]π) ∧ 𝑦 ∈ (-π(,]π))) → (abs‘(𝑥𝑦)) < (2 · π))
2018efif1olem2 25126 . . 3 ((-π ∈ ℝ ∧ 𝑧 ∈ ℝ) → ∃𝑦 ∈ (-π(,]π)((𝑧𝑦) / (2 · π)) ∈ ℤ)
213, 4, 7, 19, 20eff1olem 25131 . 2 (-π ∈ ℝ → (exp ↾ 𝑆):𝑆1-1-onto→(ℂ ∖ {0}))
222, 21ax-mp 5 1 (exp ↾ 𝑆):𝑆1-1-onto→(ℂ ∖ {0})
 Colors of variables: wff setvar class Syntax hints:   = wceq 1533   ∈ wcel 2110   ∖ cdif 3932   ⊆ wss 3935  {csn 4566   ↦ cmpt 5145  ◡ccnv 5553   ↾ cres 5556   “ cima 5557  –1-1-onto→wf1o 6353  ‘cfv 6354  (class class class)co 7155  ℂcc 10534  ℝcr 10535  0cc0 10536  ici 10538   + caddc 10539   · cmul 10541  ℝ*cxr 10673   − cmin 10869  -cneg 10870  2c2 11691  (,]cioc 12738  ℑcim 14456  expce 15414  πcpi 15419 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5189  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460  ax-inf2 9103  ax-cnex 10592  ax-resscn 10593  ax-1cn 10594  ax-icn 10595  ax-addcl 10596  ax-addrcl 10597  ax-mulcl 10598  ax-mulrcl 10599  ax-mulcom 10600  ax-addass 10601  ax-mulass 10602  ax-distr 10603  ax-i2m1 10604  ax-1ne0 10605  ax-1rid 10606  ax-rnegex 10607  ax-rrecex 10608  ax-cnre 10609  ax-pre-lttri 10610  ax-pre-lttrn 10611  ax-pre-ltadd 10612  ax-pre-mulgt0 10613  ax-pre-sup 10614  ax-addf 10615  ax-mulf 10616 This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-fal 1546  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4838  df-int 4876  df-iun 4920  df-iin 4921  df-br 5066  df-opab 5128  df-mpt 5146  df-tr 5172  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-se 5514  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6147  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-isom 6363  df-riota 7113  df-ov 7158  df-oprab 7159  df-mpo 7160  df-of 7408  df-om 7580  df-1st 7688  df-2nd 7689  df-supp 7830  df-wrecs 7946  df-recs 8007  df-rdg 8045  df-1o 8101  df-2o 8102  df-oadd 8105  df-er 8288  df-map 8407  df-pm 8408  df-ixp 8461  df-en 8509  df-dom 8510  df-sdom 8511  df-fin 8512  df-fsupp 8833  df-fi 8874  df-sup 8905  df-inf 8906  df-oi 8973  df-card 9367  df-pnf 10676  df-mnf 10677  df-xr 10678  df-ltxr 10679  df-le 10680  df-sub 10871  df-neg 10872  df-div 11297  df-nn 11638  df-2 11699  df-3 11700  df-4 11701  df-5 11702  df-6 11703  df-7 11704  df-8 11705  df-9 11706  df-n0 11897  df-z 11981  df-dec 12098  df-uz 12243  df-q 12348  df-rp 12389  df-xneg 12506  df-xadd 12507  df-xmul 12508  df-ioo 12741  df-ioc 12742  df-ico 12743  df-icc 12744  df-fz 12892  df-fzo 13033  df-fl 13161  df-mod 13237  df-seq 13369  df-exp 13429  df-fac 13633  df-bc 13662  df-hash 13690  df-shft 14425  df-cj 14457  df-re 14458  df-im 14459  df-sqrt 14593  df-abs 14594  df-limsup 14827  df-clim 14844  df-rlim 14845  df-sum 15042  df-ef 15420  df-sin 15422  df-cos 15423  df-pi 15425  df-struct 16484  df-ndx 16485  df-slot 16486  df-base 16488  df-sets 16489  df-ress 16490  df-plusg 16577  df-mulr 16578  df-starv 16579  df-sca 16580  df-vsca 16581  df-ip 16582  df-tset 16583  df-ple 16584  df-ds 16586  df-unif 16587  df-hom 16588  df-cco 16589  df-rest 16695  df-topn 16696  df-0g 16714  df-gsum 16715  df-topgen 16716  df-pt 16717  df-prds 16720  df-xrs 16774  df-qtop 16779  df-imas 16780  df-xps 16782  df-mre 16856  df-mrc 16857  df-acs 16859  df-mgm 17851  df-sgrp 17900  df-mnd 17911  df-submnd 17956  df-mulg 18224  df-cntz 18446  df-cmn 18907  df-psmet 20536  df-xmet 20537  df-met 20538  df-bl 20539  df-mopn 20540  df-fbas 20541  df-fg 20542  df-cnfld 20545  df-top 21501  df-topon 21518  df-topsp 21540  df-bases 21553  df-cld 21626  df-ntr 21627  df-cls 21628  df-nei 21705  df-lp 21743  df-perf 21744  df-cn 21834  df-cnp 21835  df-haus 21922  df-tx 22169  df-hmeo 22362  df-fil 22453  df-fm 22545  df-flim 22546  df-flf 22547  df-xms 22929  df-ms 22930  df-tms 22931  df-cncf 23485  df-limc 24463  df-dv 24464 This theorem is referenced by:  logrn  25141  eff1o2  25146
 Copyright terms: Public domain W3C validator