MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eff1o Structured version   Visualization version   GIF version

Theorem eff1o 24516
Description: The exponential function maps the set 𝑆, of complex numbers with imaginary part in the closed-above, open-below interval from to π one-to-one onto the nonzero complex numbers. (Contributed by Paul Chapman, 16-Apr-2008.) (Revised by Mario Carneiro, 13-May-2014.)
Hypothesis
Ref Expression
eff1o.1 𝑆 = (ℑ “ (-π(,]π))
Assertion
Ref Expression
eff1o (exp ↾ 𝑆):𝑆1-1-onto→(ℂ ∖ {0})

Proof of Theorem eff1o
Dummy variables 𝑥 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pire 24431 . . 3 π ∈ ℝ
21renegcli 10544 . 2 -π ∈ ℝ
3 eqid 2771 . . 3 (𝑤 ∈ (-π(,]π) ↦ (exp‘(i · 𝑤))) = (𝑤 ∈ (-π(,]π) ↦ (exp‘(i · 𝑤)))
4 eff1o.1 . . 3 𝑆 = (ℑ “ (-π(,]π))
5 rexr 10287 . . . 4 (-π ∈ ℝ → -π ∈ ℝ*)
6 iocssre 12458 . . . 4 ((-π ∈ ℝ* ∧ π ∈ ℝ) → (-π(,]π) ⊆ ℝ)
75, 1, 6sylancl 574 . . 3 (-π ∈ ℝ → (-π(,]π) ⊆ ℝ)
8 picn 24432 . . . . . . . 8 π ∈ ℂ
982timesi 11349 . . . . . . 7 (2 · π) = (π + π)
109oveq2i 6804 . . . . . 6 (-π + (2 · π)) = (-π + (π + π))
11 negpicn 24435 . . . . . . 7 -π ∈ ℂ
128, 8addcli 10246 . . . . . . 7 (π + π) ∈ ℂ
1311, 12addcomi 10429 . . . . . 6 (-π + (π + π)) = ((π + π) + -π)
1412, 8negsubi 10561 . . . . . . 7 ((π + π) + -π) = ((π + π) − π)
158, 8pncan3oi 10499 . . . . . . 7 ((π + π) − π) = π
1614, 15eqtri 2793 . . . . . 6 ((π + π) + -π) = π
1710, 13, 163eqtrri 2798 . . . . 5 π = (-π + (2 · π))
1817oveq2i 6804 . . . 4 (-π(,]π) = (-π(,](-π + (2 · π)))
1918efif1olem1 24509 . . 3 ((-π ∈ ℝ ∧ (𝑥 ∈ (-π(,]π) ∧ 𝑦 ∈ (-π(,]π))) → (abs‘(𝑥𝑦)) < (2 · π))
2018efif1olem2 24510 . . 3 ((-π ∈ ℝ ∧ 𝑧 ∈ ℝ) → ∃𝑦 ∈ (-π(,]π)((𝑧𝑦) / (2 · π)) ∈ ℤ)
213, 4, 7, 19, 20eff1olem 24515 . 2 (-π ∈ ℝ → (exp ↾ 𝑆):𝑆1-1-onto→(ℂ ∖ {0}))
222, 21ax-mp 5 1 (exp ↾ 𝑆):𝑆1-1-onto→(ℂ ∖ {0})
Colors of variables: wff setvar class
Syntax hints:   = wceq 1631  wcel 2145  cdif 3720  wss 3723  {csn 4316  cmpt 4863  ccnv 5248  cres 5251  cima 5252  1-1-ontowf1o 6030  cfv 6031  (class class class)co 6793  cc 10136  cr 10137  0cc0 10138  ici 10140   + caddc 10141   · cmul 10143  *cxr 10275  cmin 10468  -cneg 10469  2c2 11272  (,]cioc 12381  cim 14046  expce 14998  πcpi 15003
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4904  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096  ax-inf2 8702  ax-cnex 10194  ax-resscn 10195  ax-1cn 10196  ax-icn 10197  ax-addcl 10198  ax-addrcl 10199  ax-mulcl 10200  ax-mulrcl 10201  ax-mulcom 10202  ax-addass 10203  ax-mulass 10204  ax-distr 10205  ax-i2m1 10206  ax-1ne0 10207  ax-1rid 10208  ax-rnegex 10209  ax-rrecex 10210  ax-cnre 10211  ax-pre-lttri 10212  ax-pre-lttrn 10213  ax-pre-ltadd 10214  ax-pre-mulgt0 10215  ax-pre-sup 10216  ax-addf 10217  ax-mulf 10218
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 835  df-3or 1072  df-3an 1073  df-tru 1634  df-fal 1637  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-int 4612  df-iun 4656  df-iin 4657  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-se 5209  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-isom 6040  df-riota 6754  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-of 7044  df-om 7213  df-1st 7315  df-2nd 7316  df-supp 7447  df-wrecs 7559  df-recs 7621  df-rdg 7659  df-1o 7713  df-2o 7714  df-oadd 7717  df-er 7896  df-map 8011  df-pm 8012  df-ixp 8063  df-en 8110  df-dom 8111  df-sdom 8112  df-fin 8113  df-fsupp 8432  df-fi 8473  df-sup 8504  df-inf 8505  df-oi 8571  df-card 8965  df-cda 9192  df-pnf 10278  df-mnf 10279  df-xr 10280  df-ltxr 10281  df-le 10282  df-sub 10470  df-neg 10471  df-div 10887  df-nn 11223  df-2 11281  df-3 11282  df-4 11283  df-5 11284  df-6 11285  df-7 11286  df-8 11287  df-9 11288  df-n0 11495  df-z 11580  df-dec 11696  df-uz 11889  df-q 11992  df-rp 12036  df-xneg 12151  df-xadd 12152  df-xmul 12153  df-ioo 12384  df-ioc 12385  df-ico 12386  df-icc 12387  df-fz 12534  df-fzo 12674  df-fl 12801  df-mod 12877  df-seq 13009  df-exp 13068  df-fac 13265  df-bc 13294  df-hash 13322  df-shft 14015  df-cj 14047  df-re 14048  df-im 14049  df-sqrt 14183  df-abs 14184  df-limsup 14410  df-clim 14427  df-rlim 14428  df-sum 14625  df-ef 15004  df-sin 15006  df-cos 15007  df-pi 15009  df-struct 16066  df-ndx 16067  df-slot 16068  df-base 16070  df-sets 16071  df-ress 16072  df-plusg 16162  df-mulr 16163  df-starv 16164  df-sca 16165  df-vsca 16166  df-ip 16167  df-tset 16168  df-ple 16169  df-ds 16172  df-unif 16173  df-hom 16174  df-cco 16175  df-rest 16291  df-topn 16292  df-0g 16310  df-gsum 16311  df-topgen 16312  df-pt 16313  df-prds 16316  df-xrs 16370  df-qtop 16375  df-imas 16376  df-xps 16378  df-mre 16454  df-mrc 16455  df-acs 16457  df-mgm 17450  df-sgrp 17492  df-mnd 17503  df-submnd 17544  df-mulg 17749  df-cntz 17957  df-cmn 18402  df-psmet 19953  df-xmet 19954  df-met 19955  df-bl 19956  df-mopn 19957  df-fbas 19958  df-fg 19959  df-cnfld 19962  df-top 20919  df-topon 20936  df-topsp 20958  df-bases 20971  df-cld 21044  df-ntr 21045  df-cls 21046  df-nei 21123  df-lp 21161  df-perf 21162  df-cn 21252  df-cnp 21253  df-haus 21340  df-tx 21586  df-hmeo 21779  df-fil 21870  df-fm 21962  df-flim 21963  df-flf 21964  df-xms 22345  df-ms 22346  df-tms 22347  df-cncf 22901  df-limc 23850  df-dv 23851
This theorem is referenced by:  logrn  24526  eff1o2  24531
  Copyright terms: Public domain W3C validator