MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nn0opthlem1 Structured version   Visualization version   GIF version

Theorem nn0opthlem1 13980
Description: A rather pretty lemma for nn0opthi 13982. (Contributed by Raph Levien, 10-Dec-2002.)
Hypotheses
Ref Expression
nn0opthlem1.1 𝐴 ∈ ℕ0
nn0opthlem1.2 𝐶 ∈ ℕ0
Assertion
Ref Expression
nn0opthlem1 (𝐴 < 𝐶 ↔ ((𝐴 · 𝐴) + (2 · 𝐴)) < (𝐶 · 𝐶))

Proof of Theorem nn0opthlem1
StepHypRef Expression
1 nn0opthlem1.1 . . . 4 𝐴 ∈ ℕ0
2 1nn0 12247 . . . 4 1 ∈ ℕ0
31, 2nn0addcli 12268 . . 3 (𝐴 + 1) ∈ ℕ0
4 nn0opthlem1.2 . . 3 𝐶 ∈ ℕ0
53, 4nn0le2msqi 13979 . 2 ((𝐴 + 1) ≤ 𝐶 ↔ ((𝐴 + 1) · (𝐴 + 1)) ≤ (𝐶 · 𝐶))
6 nn0ltp1le 12376 . . 3 ((𝐴 ∈ ℕ0𝐶 ∈ ℕ0) → (𝐴 < 𝐶 ↔ (𝐴 + 1) ≤ 𝐶))
71, 4, 6mp2an 689 . 2 (𝐴 < 𝐶 ↔ (𝐴 + 1) ≤ 𝐶)
81, 1nn0mulcli 12269 . . . . 5 (𝐴 · 𝐴) ∈ ℕ0
9 2nn0 12248 . . . . . 6 2 ∈ ℕ0
109, 1nn0mulcli 12269 . . . . 5 (2 · 𝐴) ∈ ℕ0
118, 10nn0addcli 12268 . . . 4 ((𝐴 · 𝐴) + (2 · 𝐴)) ∈ ℕ0
124, 4nn0mulcli 12269 . . . 4 (𝐶 · 𝐶) ∈ ℕ0
13 nn0ltp1le 12376 . . . 4 ((((𝐴 · 𝐴) + (2 · 𝐴)) ∈ ℕ0 ∧ (𝐶 · 𝐶) ∈ ℕ0) → (((𝐴 · 𝐴) + (2 · 𝐴)) < (𝐶 · 𝐶) ↔ (((𝐴 · 𝐴) + (2 · 𝐴)) + 1) ≤ (𝐶 · 𝐶)))
1411, 12, 13mp2an 689 . . 3 (((𝐴 · 𝐴) + (2 · 𝐴)) < (𝐶 · 𝐶) ↔ (((𝐴 · 𝐴) + (2 · 𝐴)) + 1) ≤ (𝐶 · 𝐶))
151nn0cni 12243 . . . . . . 7 𝐴 ∈ ℂ
16 ax-1cn 10927 . . . . . . 7 1 ∈ ℂ
1715, 16binom2i 13926 . . . . . 6 ((𝐴 + 1)↑2) = (((𝐴↑2) + (2 · (𝐴 · 1))) + (1↑2))
1815, 16addcli 10979 . . . . . . 7 (𝐴 + 1) ∈ ℂ
1918sqvali 13895 . . . . . 6 ((𝐴 + 1)↑2) = ((𝐴 + 1) · (𝐴 + 1))
2015sqvali 13895 . . . . . . . 8 (𝐴↑2) = (𝐴 · 𝐴)
2120oveq1i 7287 . . . . . . 7 ((𝐴↑2) + (2 · (𝐴 · 1))) = ((𝐴 · 𝐴) + (2 · (𝐴 · 1)))
2216sqvali 13895 . . . . . . 7 (1↑2) = (1 · 1)
2321, 22oveq12i 7289 . . . . . 6 (((𝐴↑2) + (2 · (𝐴 · 1))) + (1↑2)) = (((𝐴 · 𝐴) + (2 · (𝐴 · 1))) + (1 · 1))
2417, 19, 233eqtr3i 2774 . . . . 5 ((𝐴 + 1) · (𝐴 + 1)) = (((𝐴 · 𝐴) + (2 · (𝐴 · 1))) + (1 · 1))
2515mulid1i 10977 . . . . . . . 8 (𝐴 · 1) = 𝐴
2625oveq2i 7288 . . . . . . 7 (2 · (𝐴 · 1)) = (2 · 𝐴)
2726oveq2i 7288 . . . . . 6 ((𝐴 · 𝐴) + (2 · (𝐴 · 1))) = ((𝐴 · 𝐴) + (2 · 𝐴))
2816mulid1i 10977 . . . . . 6 (1 · 1) = 1
2927, 28oveq12i 7289 . . . . 5 (((𝐴 · 𝐴) + (2 · (𝐴 · 1))) + (1 · 1)) = (((𝐴 · 𝐴) + (2 · 𝐴)) + 1)
3024, 29eqtri 2766 . . . 4 ((𝐴 + 1) · (𝐴 + 1)) = (((𝐴 · 𝐴) + (2 · 𝐴)) + 1)
3130breq1i 5083 . . 3 (((𝐴 + 1) · (𝐴 + 1)) ≤ (𝐶 · 𝐶) ↔ (((𝐴 · 𝐴) + (2 · 𝐴)) + 1) ≤ (𝐶 · 𝐶))
3214, 31bitr4i 277 . 2 (((𝐴 · 𝐴) + (2 · 𝐴)) < (𝐶 · 𝐶) ↔ ((𝐴 + 1) · (𝐴 + 1)) ≤ (𝐶 · 𝐶))
335, 7, 323bitr4i 303 1 (𝐴 < 𝐶 ↔ ((𝐴 · 𝐴) + (2 · 𝐴)) < (𝐶 · 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wcel 2106   class class class wbr 5076  (class class class)co 7277  1c1 10870   + caddc 10872   · cmul 10874   < clt 11007  cle 11008  2c2 12026  0cn0 12231  cexp 13780
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5225  ax-nul 5232  ax-pow 5290  ax-pr 5354  ax-un 7588  ax-cnex 10925  ax-resscn 10926  ax-1cn 10927  ax-icn 10928  ax-addcl 10929  ax-addrcl 10930  ax-mulcl 10931  ax-mulrcl 10932  ax-mulcom 10933  ax-addass 10934  ax-mulass 10935  ax-distr 10936  ax-i2m1 10937  ax-1ne0 10938  ax-1rid 10939  ax-rnegex 10940  ax-rrecex 10941  ax-cnre 10942  ax-pre-lttri 10943  ax-pre-lttrn 10944  ax-pre-ltadd 10945  ax-pre-mulgt0 10946
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3433  df-sbc 3718  df-csb 3834  df-dif 3891  df-un 3893  df-in 3895  df-ss 3905  df-pss 3907  df-nul 4259  df-if 4462  df-pw 4537  df-sn 4564  df-pr 4566  df-op 4570  df-uni 4842  df-iun 4928  df-br 5077  df-opab 5139  df-mpt 5160  df-tr 5194  df-id 5491  df-eprel 5497  df-po 5505  df-so 5506  df-fr 5546  df-we 5548  df-xp 5597  df-rel 5598  df-cnv 5599  df-co 5600  df-dm 5601  df-rn 5602  df-res 5603  df-ima 5604  df-pred 6204  df-ord 6271  df-on 6272  df-lim 6273  df-suc 6274  df-iota 6393  df-fun 6437  df-fn 6438  df-f 6439  df-f1 6440  df-fo 6441  df-f1o 6442  df-fv 6443  df-riota 7234  df-ov 7280  df-oprab 7281  df-mpo 7282  df-om 7713  df-2nd 7832  df-frecs 8095  df-wrecs 8126  df-recs 8200  df-rdg 8239  df-er 8496  df-en 8732  df-dom 8733  df-sdom 8734  df-pnf 11009  df-mnf 11010  df-xr 11011  df-ltxr 11012  df-le 11013  df-sub 11205  df-neg 11206  df-nn 11972  df-2 12034  df-n0 12232  df-z 12318  df-uz 12581  df-seq 13720  df-exp 13781
This theorem is referenced by:  nn0opthlem2  13981
  Copyright terms: Public domain W3C validator