| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nn0opthlem1 | Structured version Visualization version GIF version | ||
| Description: A rather pretty lemma for nn0opthi 14293. (Contributed by Raph Levien, 10-Dec-2002.) |
| Ref | Expression |
|---|---|
| nn0opthlem1.1 | ⊢ 𝐴 ∈ ℕ0 |
| nn0opthlem1.2 | ⊢ 𝐶 ∈ ℕ0 |
| Ref | Expression |
|---|---|
| nn0opthlem1 | ⊢ (𝐴 < 𝐶 ↔ ((𝐴 · 𝐴) + (2 · 𝐴)) < (𝐶 · 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn0opthlem1.1 | . . . 4 ⊢ 𝐴 ∈ ℕ0 | |
| 2 | 1nn0 12522 | . . . 4 ⊢ 1 ∈ ℕ0 | |
| 3 | 1, 2 | nn0addcli 12543 | . . 3 ⊢ (𝐴 + 1) ∈ ℕ0 |
| 4 | nn0opthlem1.2 | . . 3 ⊢ 𝐶 ∈ ℕ0 | |
| 5 | 3, 4 | nn0le2msqi 14290 | . 2 ⊢ ((𝐴 + 1) ≤ 𝐶 ↔ ((𝐴 + 1) · (𝐴 + 1)) ≤ (𝐶 · 𝐶)) |
| 6 | nn0ltp1le 12656 | . . 3 ⊢ ((𝐴 ∈ ℕ0 ∧ 𝐶 ∈ ℕ0) → (𝐴 < 𝐶 ↔ (𝐴 + 1) ≤ 𝐶)) | |
| 7 | 1, 4, 6 | mp2an 692 | . 2 ⊢ (𝐴 < 𝐶 ↔ (𝐴 + 1) ≤ 𝐶) |
| 8 | 1, 1 | nn0mulcli 12544 | . . . . 5 ⊢ (𝐴 · 𝐴) ∈ ℕ0 |
| 9 | 2nn0 12523 | . . . . . 6 ⊢ 2 ∈ ℕ0 | |
| 10 | 9, 1 | nn0mulcli 12544 | . . . . 5 ⊢ (2 · 𝐴) ∈ ℕ0 |
| 11 | 8, 10 | nn0addcli 12543 | . . . 4 ⊢ ((𝐴 · 𝐴) + (2 · 𝐴)) ∈ ℕ0 |
| 12 | 4, 4 | nn0mulcli 12544 | . . . 4 ⊢ (𝐶 · 𝐶) ∈ ℕ0 |
| 13 | nn0ltp1le 12656 | . . . 4 ⊢ ((((𝐴 · 𝐴) + (2 · 𝐴)) ∈ ℕ0 ∧ (𝐶 · 𝐶) ∈ ℕ0) → (((𝐴 · 𝐴) + (2 · 𝐴)) < (𝐶 · 𝐶) ↔ (((𝐴 · 𝐴) + (2 · 𝐴)) + 1) ≤ (𝐶 · 𝐶))) | |
| 14 | 11, 12, 13 | mp2an 692 | . . 3 ⊢ (((𝐴 · 𝐴) + (2 · 𝐴)) < (𝐶 · 𝐶) ↔ (((𝐴 · 𝐴) + (2 · 𝐴)) + 1) ≤ (𝐶 · 𝐶)) |
| 15 | 1 | nn0cni 12518 | . . . . . . 7 ⊢ 𝐴 ∈ ℂ |
| 16 | ax-1cn 11192 | . . . . . . 7 ⊢ 1 ∈ ℂ | |
| 17 | 15, 16 | binom2i 14235 | . . . . . 6 ⊢ ((𝐴 + 1)↑2) = (((𝐴↑2) + (2 · (𝐴 · 1))) + (1↑2)) |
| 18 | 15, 16 | addcli 11246 | . . . . . . 7 ⊢ (𝐴 + 1) ∈ ℂ |
| 19 | 18 | sqvali 14203 | . . . . . 6 ⊢ ((𝐴 + 1)↑2) = ((𝐴 + 1) · (𝐴 + 1)) |
| 20 | 15 | sqvali 14203 | . . . . . . . 8 ⊢ (𝐴↑2) = (𝐴 · 𝐴) |
| 21 | 20 | oveq1i 7420 | . . . . . . 7 ⊢ ((𝐴↑2) + (2 · (𝐴 · 1))) = ((𝐴 · 𝐴) + (2 · (𝐴 · 1))) |
| 22 | 16 | sqvali 14203 | . . . . . . 7 ⊢ (1↑2) = (1 · 1) |
| 23 | 21, 22 | oveq12i 7422 | . . . . . 6 ⊢ (((𝐴↑2) + (2 · (𝐴 · 1))) + (1↑2)) = (((𝐴 · 𝐴) + (2 · (𝐴 · 1))) + (1 · 1)) |
| 24 | 17, 19, 23 | 3eqtr3i 2767 | . . . . 5 ⊢ ((𝐴 + 1) · (𝐴 + 1)) = (((𝐴 · 𝐴) + (2 · (𝐴 · 1))) + (1 · 1)) |
| 25 | 15 | mulridi 11244 | . . . . . . . 8 ⊢ (𝐴 · 1) = 𝐴 |
| 26 | 25 | oveq2i 7421 | . . . . . . 7 ⊢ (2 · (𝐴 · 1)) = (2 · 𝐴) |
| 27 | 26 | oveq2i 7421 | . . . . . 6 ⊢ ((𝐴 · 𝐴) + (2 · (𝐴 · 1))) = ((𝐴 · 𝐴) + (2 · 𝐴)) |
| 28 | 16 | mulridi 11244 | . . . . . 6 ⊢ (1 · 1) = 1 |
| 29 | 27, 28 | oveq12i 7422 | . . . . 5 ⊢ (((𝐴 · 𝐴) + (2 · (𝐴 · 1))) + (1 · 1)) = (((𝐴 · 𝐴) + (2 · 𝐴)) + 1) |
| 30 | 24, 29 | eqtri 2759 | . . . 4 ⊢ ((𝐴 + 1) · (𝐴 + 1)) = (((𝐴 · 𝐴) + (2 · 𝐴)) + 1) |
| 31 | 30 | breq1i 5131 | . . 3 ⊢ (((𝐴 + 1) · (𝐴 + 1)) ≤ (𝐶 · 𝐶) ↔ (((𝐴 · 𝐴) + (2 · 𝐴)) + 1) ≤ (𝐶 · 𝐶)) |
| 32 | 14, 31 | bitr4i 278 | . 2 ⊢ (((𝐴 · 𝐴) + (2 · 𝐴)) < (𝐶 · 𝐶) ↔ ((𝐴 + 1) · (𝐴 + 1)) ≤ (𝐶 · 𝐶)) |
| 33 | 5, 7, 32 | 3bitr4i 303 | 1 ⊢ (𝐴 < 𝐶 ↔ ((𝐴 · 𝐴) + (2 · 𝐴)) < (𝐶 · 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∈ wcel 2109 class class class wbr 5124 (class class class)co 7410 1c1 11135 + caddc 11137 · cmul 11139 < clt 11274 ≤ cle 11275 2c2 12300 ℕ0cn0 12506 ↑cexp 14084 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-er 8724 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-nn 12246 df-2 12308 df-n0 12507 df-z 12594 df-uz 12858 df-seq 14025 df-exp 14085 |
| This theorem is referenced by: nn0opthlem2 14292 |
| Copyright terms: Public domain | W3C validator |