MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nn0opthlem1 Structured version   Visualization version   GIF version

Theorem nn0opthlem1 14228
Description: A rather pretty lemma for nn0opthi 14230. (Contributed by Raph Levien, 10-Dec-2002.)
Hypotheses
Ref Expression
nn0opthlem1.1 𝐴 ∈ ℕ0
nn0opthlem1.2 𝐶 ∈ ℕ0
Assertion
Ref Expression
nn0opthlem1 (𝐴 < 𝐶 ↔ ((𝐴 · 𝐴) + (2 · 𝐴)) < (𝐶 · 𝐶))

Proof of Theorem nn0opthlem1
StepHypRef Expression
1 nn0opthlem1.1 . . . 4 𝐴 ∈ ℕ0
2 1nn0 12488 . . . 4 1 ∈ ℕ0
31, 2nn0addcli 12509 . . 3 (𝐴 + 1) ∈ ℕ0
4 nn0opthlem1.2 . . 3 𝐶 ∈ ℕ0
53, 4nn0le2msqi 14227 . 2 ((𝐴 + 1) ≤ 𝐶 ↔ ((𝐴 + 1) · (𝐴 + 1)) ≤ (𝐶 · 𝐶))
6 nn0ltp1le 12620 . . 3 ((𝐴 ∈ ℕ0𝐶 ∈ ℕ0) → (𝐴 < 𝐶 ↔ (𝐴 + 1) ≤ 𝐶))
71, 4, 6mp2an 691 . 2 (𝐴 < 𝐶 ↔ (𝐴 + 1) ≤ 𝐶)
81, 1nn0mulcli 12510 . . . . 5 (𝐴 · 𝐴) ∈ ℕ0
9 2nn0 12489 . . . . . 6 2 ∈ ℕ0
109, 1nn0mulcli 12510 . . . . 5 (2 · 𝐴) ∈ ℕ0
118, 10nn0addcli 12509 . . . 4 ((𝐴 · 𝐴) + (2 · 𝐴)) ∈ ℕ0
124, 4nn0mulcli 12510 . . . 4 (𝐶 · 𝐶) ∈ ℕ0
13 nn0ltp1le 12620 . . . 4 ((((𝐴 · 𝐴) + (2 · 𝐴)) ∈ ℕ0 ∧ (𝐶 · 𝐶) ∈ ℕ0) → (((𝐴 · 𝐴) + (2 · 𝐴)) < (𝐶 · 𝐶) ↔ (((𝐴 · 𝐴) + (2 · 𝐴)) + 1) ≤ (𝐶 · 𝐶)))
1411, 12, 13mp2an 691 . . 3 (((𝐴 · 𝐴) + (2 · 𝐴)) < (𝐶 · 𝐶) ↔ (((𝐴 · 𝐴) + (2 · 𝐴)) + 1) ≤ (𝐶 · 𝐶))
151nn0cni 12484 . . . . . . 7 𝐴 ∈ ℂ
16 ax-1cn 11168 . . . . . . 7 1 ∈ ℂ
1715, 16binom2i 14176 . . . . . 6 ((𝐴 + 1)↑2) = (((𝐴↑2) + (2 · (𝐴 · 1))) + (1↑2))
1815, 16addcli 11220 . . . . . . 7 (𝐴 + 1) ∈ ℂ
1918sqvali 14144 . . . . . 6 ((𝐴 + 1)↑2) = ((𝐴 + 1) · (𝐴 + 1))
2015sqvali 14144 . . . . . . . 8 (𝐴↑2) = (𝐴 · 𝐴)
2120oveq1i 7419 . . . . . . 7 ((𝐴↑2) + (2 · (𝐴 · 1))) = ((𝐴 · 𝐴) + (2 · (𝐴 · 1)))
2216sqvali 14144 . . . . . . 7 (1↑2) = (1 · 1)
2321, 22oveq12i 7421 . . . . . 6 (((𝐴↑2) + (2 · (𝐴 · 1))) + (1↑2)) = (((𝐴 · 𝐴) + (2 · (𝐴 · 1))) + (1 · 1))
2417, 19, 233eqtr3i 2769 . . . . 5 ((𝐴 + 1) · (𝐴 + 1)) = (((𝐴 · 𝐴) + (2 · (𝐴 · 1))) + (1 · 1))
2515mulridi 11218 . . . . . . . 8 (𝐴 · 1) = 𝐴
2625oveq2i 7420 . . . . . . 7 (2 · (𝐴 · 1)) = (2 · 𝐴)
2726oveq2i 7420 . . . . . 6 ((𝐴 · 𝐴) + (2 · (𝐴 · 1))) = ((𝐴 · 𝐴) + (2 · 𝐴))
2816mulridi 11218 . . . . . 6 (1 · 1) = 1
2927, 28oveq12i 7421 . . . . 5 (((𝐴 · 𝐴) + (2 · (𝐴 · 1))) + (1 · 1)) = (((𝐴 · 𝐴) + (2 · 𝐴)) + 1)
3024, 29eqtri 2761 . . . 4 ((𝐴 + 1) · (𝐴 + 1)) = (((𝐴 · 𝐴) + (2 · 𝐴)) + 1)
3130breq1i 5156 . . 3 (((𝐴 + 1) · (𝐴 + 1)) ≤ (𝐶 · 𝐶) ↔ (((𝐴 · 𝐴) + (2 · 𝐴)) + 1) ≤ (𝐶 · 𝐶))
3214, 31bitr4i 278 . 2 (((𝐴 · 𝐴) + (2 · 𝐴)) < (𝐶 · 𝐶) ↔ ((𝐴 + 1) · (𝐴 + 1)) ≤ (𝐶 · 𝐶))
335, 7, 323bitr4i 303 1 (𝐴 < 𝐶 ↔ ((𝐴 · 𝐴) + (2 · 𝐴)) < (𝐶 · 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wcel 2107   class class class wbr 5149  (class class class)co 7409  1c1 11111   + caddc 11113   · cmul 11115   < clt 11248  cle 11249  2c2 12267  0cn0 12472  cexp 14027
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725  ax-cnex 11166  ax-resscn 11167  ax-1cn 11168  ax-icn 11169  ax-addcl 11170  ax-addrcl 11171  ax-mulcl 11172  ax-mulrcl 11173  ax-mulcom 11174  ax-addass 11175  ax-mulass 11176  ax-distr 11177  ax-i2m1 11178  ax-1ne0 11179  ax-1rid 11180  ax-rnegex 11181  ax-rrecex 11182  ax-cnre 11183  ax-pre-lttri 11184  ax-pre-lttrn 11185  ax-pre-ltadd 11186  ax-pre-mulgt0 11187
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-riota 7365  df-ov 7412  df-oprab 7413  df-mpo 7414  df-om 7856  df-2nd 7976  df-frecs 8266  df-wrecs 8297  df-recs 8371  df-rdg 8410  df-er 8703  df-en 8940  df-dom 8941  df-sdom 8942  df-pnf 11250  df-mnf 11251  df-xr 11252  df-ltxr 11253  df-le 11254  df-sub 11446  df-neg 11447  df-nn 12213  df-2 12275  df-n0 12473  df-z 12559  df-uz 12823  df-seq 13967  df-exp 14028
This theorem is referenced by:  nn0opthlem2  14229
  Copyright terms: Public domain W3C validator