MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nn0opthlem1 Structured version   Visualization version   GIF version

Theorem nn0opthlem1 13304
Description: A rather pretty lemma for nn0opthi 13306. (Contributed by Raph Levien, 10-Dec-2002.)
Hypotheses
Ref Expression
nn0opthlem1.1 𝐴 ∈ ℕ0
nn0opthlem1.2 𝐶 ∈ ℕ0
Assertion
Ref Expression
nn0opthlem1 (𝐴 < 𝐶 ↔ ((𝐴 · 𝐴) + (2 · 𝐴)) < (𝐶 · 𝐶))

Proof of Theorem nn0opthlem1
StepHypRef Expression
1 nn0opthlem1.1 . . . 4 𝐴 ∈ ℕ0
2 1nn0 11594 . . . 4 1 ∈ ℕ0
31, 2nn0addcli 11615 . . 3 (𝐴 + 1) ∈ ℕ0
4 nn0opthlem1.2 . . 3 𝐶 ∈ ℕ0
53, 4nn0le2msqi 13303 . 2 ((𝐴 + 1) ≤ 𝐶 ↔ ((𝐴 + 1) · (𝐴 + 1)) ≤ (𝐶 · 𝐶))
6 nn0ltp1le 11721 . . 3 ((𝐴 ∈ ℕ0𝐶 ∈ ℕ0) → (𝐴 < 𝐶 ↔ (𝐴 + 1) ≤ 𝐶))
71, 4, 6mp2an 684 . 2 (𝐴 < 𝐶 ↔ (𝐴 + 1) ≤ 𝐶)
81, 1nn0mulcli 11616 . . . . 5 (𝐴 · 𝐴) ∈ ℕ0
9 2nn0 11595 . . . . . 6 2 ∈ ℕ0
109, 1nn0mulcli 11616 . . . . 5 (2 · 𝐴) ∈ ℕ0
118, 10nn0addcli 11615 . . . 4 ((𝐴 · 𝐴) + (2 · 𝐴)) ∈ ℕ0
124, 4nn0mulcli 11616 . . . 4 (𝐶 · 𝐶) ∈ ℕ0
13 nn0ltp1le 11721 . . . 4 ((((𝐴 · 𝐴) + (2 · 𝐴)) ∈ ℕ0 ∧ (𝐶 · 𝐶) ∈ ℕ0) → (((𝐴 · 𝐴) + (2 · 𝐴)) < (𝐶 · 𝐶) ↔ (((𝐴 · 𝐴) + (2 · 𝐴)) + 1) ≤ (𝐶 · 𝐶)))
1411, 12, 13mp2an 684 . . 3 (((𝐴 · 𝐴) + (2 · 𝐴)) < (𝐶 · 𝐶) ↔ (((𝐴 · 𝐴) + (2 · 𝐴)) + 1) ≤ (𝐶 · 𝐶))
151nn0cni 11589 . . . . . . 7 𝐴 ∈ ℂ
16 ax-1cn 10280 . . . . . . 7 1 ∈ ℂ
1715, 16binom2i 13224 . . . . . 6 ((𝐴 + 1)↑2) = (((𝐴↑2) + (2 · (𝐴 · 1))) + (1↑2))
1815, 16addcli 10333 . . . . . . 7 (𝐴 + 1) ∈ ℂ
1918sqvali 13193 . . . . . 6 ((𝐴 + 1)↑2) = ((𝐴 + 1) · (𝐴 + 1))
2015sqvali 13193 . . . . . . . 8 (𝐴↑2) = (𝐴 · 𝐴)
2120oveq1i 6886 . . . . . . 7 ((𝐴↑2) + (2 · (𝐴 · 1))) = ((𝐴 · 𝐴) + (2 · (𝐴 · 1)))
2216sqvali 13193 . . . . . . 7 (1↑2) = (1 · 1)
2321, 22oveq12i 6888 . . . . . 6 (((𝐴↑2) + (2 · (𝐴 · 1))) + (1↑2)) = (((𝐴 · 𝐴) + (2 · (𝐴 · 1))) + (1 · 1))
2417, 19, 233eqtr3i 2827 . . . . 5 ((𝐴 + 1) · (𝐴 + 1)) = (((𝐴 · 𝐴) + (2 · (𝐴 · 1))) + (1 · 1))
2515mulid1i 10331 . . . . . . . 8 (𝐴 · 1) = 𝐴
2625oveq2i 6887 . . . . . . 7 (2 · (𝐴 · 1)) = (2 · 𝐴)
2726oveq2i 6887 . . . . . 6 ((𝐴 · 𝐴) + (2 · (𝐴 · 1))) = ((𝐴 · 𝐴) + (2 · 𝐴))
2816mulid1i 10331 . . . . . 6 (1 · 1) = 1
2927, 28oveq12i 6888 . . . . 5 (((𝐴 · 𝐴) + (2 · (𝐴 · 1))) + (1 · 1)) = (((𝐴 · 𝐴) + (2 · 𝐴)) + 1)
3024, 29eqtri 2819 . . . 4 ((𝐴 + 1) · (𝐴 + 1)) = (((𝐴 · 𝐴) + (2 · 𝐴)) + 1)
3130breq1i 4848 . . 3 (((𝐴 + 1) · (𝐴 + 1)) ≤ (𝐶 · 𝐶) ↔ (((𝐴 · 𝐴) + (2 · 𝐴)) + 1) ≤ (𝐶 · 𝐶))
3214, 31bitr4i 270 . 2 (((𝐴 · 𝐴) + (2 · 𝐴)) < (𝐶 · 𝐶) ↔ ((𝐴 + 1) · (𝐴 + 1)) ≤ (𝐶 · 𝐶))
335, 7, 323bitr4i 295 1 (𝐴 < 𝐶 ↔ ((𝐴 · 𝐴) + (2 · 𝐴)) < (𝐶 · 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wb 198  wcel 2157   class class class wbr 4841  (class class class)co 6876  1c1 10223   + caddc 10225   · cmul 10227   < clt 10361  cle 10362  2c2 11364  0cn0 11576  cexp 13110
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2375  ax-ext 2775  ax-sep 4973  ax-nul 4981  ax-pow 5033  ax-pr 5095  ax-un 7181  ax-cnex 10278  ax-resscn 10279  ax-1cn 10280  ax-icn 10281  ax-addcl 10282  ax-addrcl 10283  ax-mulcl 10284  ax-mulrcl 10285  ax-mulcom 10286  ax-addass 10287  ax-mulass 10288  ax-distr 10289  ax-i2m1 10290  ax-1ne0 10291  ax-1rid 10292  ax-rnegex 10293  ax-rrecex 10294  ax-cnre 10295  ax-pre-lttri 10296  ax-pre-lttrn 10297  ax-pre-ltadd 10298  ax-pre-mulgt0 10299
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3or 1109  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2590  df-eu 2607  df-clab 2784  df-cleq 2790  df-clel 2793  df-nfc 2928  df-ne 2970  df-nel 3073  df-ral 3092  df-rex 3093  df-reu 3094  df-rab 3096  df-v 3385  df-sbc 3632  df-csb 3727  df-dif 3770  df-un 3772  df-in 3774  df-ss 3781  df-pss 3783  df-nul 4114  df-if 4276  df-pw 4349  df-sn 4367  df-pr 4369  df-tp 4371  df-op 4373  df-uni 4627  df-iun 4710  df-br 4842  df-opab 4904  df-mpt 4921  df-tr 4944  df-id 5218  df-eprel 5223  df-po 5231  df-so 5232  df-fr 5269  df-we 5271  df-xp 5316  df-rel 5317  df-cnv 5318  df-co 5319  df-dm 5320  df-rn 5321  df-res 5322  df-ima 5323  df-pred 5896  df-ord 5942  df-on 5943  df-lim 5944  df-suc 5945  df-iota 6062  df-fun 6101  df-fn 6102  df-f 6103  df-f1 6104  df-fo 6105  df-f1o 6106  df-fv 6107  df-riota 6837  df-ov 6879  df-oprab 6880  df-mpt2 6881  df-om 7298  df-2nd 7400  df-wrecs 7643  df-recs 7705  df-rdg 7743  df-er 7980  df-en 8194  df-dom 8195  df-sdom 8196  df-pnf 10363  df-mnf 10364  df-xr 10365  df-ltxr 10366  df-le 10367  df-sub 10556  df-neg 10557  df-nn 11311  df-2 11372  df-n0 11577  df-z 11663  df-uz 11927  df-seq 13052  df-exp 13111
This theorem is referenced by:  nn0opthlem2  13305
  Copyright terms: Public domain W3C validator