MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nn0opthlem1 Structured version   Visualization version   GIF version

Theorem nn0opthlem1 13624
Description: A rather pretty lemma for nn0opthi 13626. (Contributed by Raph Levien, 10-Dec-2002.)
Hypotheses
Ref Expression
nn0opthlem1.1 𝐴 ∈ ℕ0
nn0opthlem1.2 𝐶 ∈ ℕ0
Assertion
Ref Expression
nn0opthlem1 (𝐴 < 𝐶 ↔ ((𝐴 · 𝐴) + (2 · 𝐴)) < (𝐶 · 𝐶))

Proof of Theorem nn0opthlem1
StepHypRef Expression
1 nn0opthlem1.1 . . . 4 𝐴 ∈ ℕ0
2 1nn0 11901 . . . 4 1 ∈ ℕ0
31, 2nn0addcli 11922 . . 3 (𝐴 + 1) ∈ ℕ0
4 nn0opthlem1.2 . . 3 𝐶 ∈ ℕ0
53, 4nn0le2msqi 13623 . 2 ((𝐴 + 1) ≤ 𝐶 ↔ ((𝐴 + 1) · (𝐴 + 1)) ≤ (𝐶 · 𝐶))
6 nn0ltp1le 12028 . . 3 ((𝐴 ∈ ℕ0𝐶 ∈ ℕ0) → (𝐴 < 𝐶 ↔ (𝐴 + 1) ≤ 𝐶))
71, 4, 6mp2an 691 . 2 (𝐴 < 𝐶 ↔ (𝐴 + 1) ≤ 𝐶)
81, 1nn0mulcli 11923 . . . . 5 (𝐴 · 𝐴) ∈ ℕ0
9 2nn0 11902 . . . . . 6 2 ∈ ℕ0
109, 1nn0mulcli 11923 . . . . 5 (2 · 𝐴) ∈ ℕ0
118, 10nn0addcli 11922 . . . 4 ((𝐴 · 𝐴) + (2 · 𝐴)) ∈ ℕ0
124, 4nn0mulcli 11923 . . . 4 (𝐶 · 𝐶) ∈ ℕ0
13 nn0ltp1le 12028 . . . 4 ((((𝐴 · 𝐴) + (2 · 𝐴)) ∈ ℕ0 ∧ (𝐶 · 𝐶) ∈ ℕ0) → (((𝐴 · 𝐴) + (2 · 𝐴)) < (𝐶 · 𝐶) ↔ (((𝐴 · 𝐴) + (2 · 𝐴)) + 1) ≤ (𝐶 · 𝐶)))
1411, 12, 13mp2an 691 . . 3 (((𝐴 · 𝐴) + (2 · 𝐴)) < (𝐶 · 𝐶) ↔ (((𝐴 · 𝐴) + (2 · 𝐴)) + 1) ≤ (𝐶 · 𝐶))
151nn0cni 11897 . . . . . . 7 𝐴 ∈ ℂ
16 ax-1cn 10584 . . . . . . 7 1 ∈ ℂ
1715, 16binom2i 13570 . . . . . 6 ((𝐴 + 1)↑2) = (((𝐴↑2) + (2 · (𝐴 · 1))) + (1↑2))
1815, 16addcli 10636 . . . . . . 7 (𝐴 + 1) ∈ ℂ
1918sqvali 13539 . . . . . 6 ((𝐴 + 1)↑2) = ((𝐴 + 1) · (𝐴 + 1))
2015sqvali 13539 . . . . . . . 8 (𝐴↑2) = (𝐴 · 𝐴)
2120oveq1i 7150 . . . . . . 7 ((𝐴↑2) + (2 · (𝐴 · 1))) = ((𝐴 · 𝐴) + (2 · (𝐴 · 1)))
2216sqvali 13539 . . . . . . 7 (1↑2) = (1 · 1)
2321, 22oveq12i 7152 . . . . . 6 (((𝐴↑2) + (2 · (𝐴 · 1))) + (1↑2)) = (((𝐴 · 𝐴) + (2 · (𝐴 · 1))) + (1 · 1))
2417, 19, 233eqtr3i 2853 . . . . 5 ((𝐴 + 1) · (𝐴 + 1)) = (((𝐴 · 𝐴) + (2 · (𝐴 · 1))) + (1 · 1))
2515mulid1i 10634 . . . . . . . 8 (𝐴 · 1) = 𝐴
2625oveq2i 7151 . . . . . . 7 (2 · (𝐴 · 1)) = (2 · 𝐴)
2726oveq2i 7151 . . . . . 6 ((𝐴 · 𝐴) + (2 · (𝐴 · 1))) = ((𝐴 · 𝐴) + (2 · 𝐴))
2816mulid1i 10634 . . . . . 6 (1 · 1) = 1
2927, 28oveq12i 7152 . . . . 5 (((𝐴 · 𝐴) + (2 · (𝐴 · 1))) + (1 · 1)) = (((𝐴 · 𝐴) + (2 · 𝐴)) + 1)
3024, 29eqtri 2845 . . . 4 ((𝐴 + 1) · (𝐴 + 1)) = (((𝐴 · 𝐴) + (2 · 𝐴)) + 1)
3130breq1i 5049 . . 3 (((𝐴 + 1) · (𝐴 + 1)) ≤ (𝐶 · 𝐶) ↔ (((𝐴 · 𝐴) + (2 · 𝐴)) + 1) ≤ (𝐶 · 𝐶))
3214, 31bitr4i 281 . 2 (((𝐴 · 𝐴) + (2 · 𝐴)) < (𝐶 · 𝐶) ↔ ((𝐴 + 1) · (𝐴 + 1)) ≤ (𝐶 · 𝐶))
335, 7, 323bitr4i 306 1 (𝐴 < 𝐶 ↔ ((𝐴 · 𝐴) + (2 · 𝐴)) < (𝐶 · 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wb 209  wcel 2114   class class class wbr 5042  (class class class)co 7140  1c1 10527   + caddc 10529   · cmul 10531   < clt 10664  cle 10665  2c2 11680  0cn0 11885  cexp 13425
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2178  ax-ext 2794  ax-sep 5179  ax-nul 5186  ax-pow 5243  ax-pr 5307  ax-un 7446  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2801  df-cleq 2815  df-clel 2894  df-nfc 2962  df-ne 3012  df-nel 3116  df-ral 3135  df-rex 3136  df-reu 3137  df-rab 3139  df-v 3471  df-sbc 3748  df-csb 3856  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-pss 3927  df-nul 4266  df-if 4440  df-pw 4513  df-sn 4540  df-pr 4542  df-tp 4544  df-op 4546  df-uni 4814  df-iun 4896  df-br 5043  df-opab 5105  df-mpt 5123  df-tr 5149  df-id 5437  df-eprel 5442  df-po 5451  df-so 5452  df-fr 5491  df-we 5493  df-xp 5538  df-rel 5539  df-cnv 5540  df-co 5541  df-dm 5542  df-rn 5543  df-res 5544  df-ima 5545  df-pred 6126  df-ord 6172  df-on 6173  df-lim 6174  df-suc 6175  df-iota 6293  df-fun 6336  df-fn 6337  df-f 6338  df-f1 6339  df-fo 6340  df-f1o 6341  df-fv 6342  df-riota 7098  df-ov 7143  df-oprab 7144  df-mpo 7145  df-om 7566  df-2nd 7676  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-er 8276  df-en 8497  df-dom 8498  df-sdom 8499  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-n0 11886  df-z 11970  df-uz 12232  df-seq 13365  df-exp 13426
This theorem is referenced by:  nn0opthlem2  13625
  Copyright terms: Public domain W3C validator