Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  faclimlem1 Structured version   Visualization version   GIF version

Theorem faclimlem1 34316
Description: Lemma for faclim 34319. Closed form for a particular sequence. (Contributed by Scott Fenton, 15-Dec-2017.)
Assertion
Ref Expression
faclimlem1 (𝑀 ∈ ℕ0 → seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (𝑀 / 𝑛)) · (1 + (1 / 𝑛))) / (1 + ((𝑀 + 1) / 𝑛))))) = (𝑥 ∈ ℕ ↦ ((𝑀 + 1) · ((𝑥 + 1) / (𝑥 + (𝑀 + 1))))))
Distinct variable groups:   𝑛,𝑀   𝑥,𝑀

Proof of Theorem faclimlem1
Dummy variables 𝑎 𝑏 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6842 . . . . . . . . 9 (𝑎 = 1 → (seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (𝑀 / 𝑛)) · (1 + (1 / 𝑛))) / (1 + ((𝑀 + 1) / 𝑛)))))‘𝑎) = (seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (𝑀 / 𝑛)) · (1 + (1 / 𝑛))) / (1 + ((𝑀 + 1) / 𝑛)))))‘1))
2 1z 12533 . . . . . . . . . 10 1 ∈ ℤ
3 seq1 13919 . . . . . . . . . 10 (1 ∈ ℤ → (seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (𝑀 / 𝑛)) · (1 + (1 / 𝑛))) / (1 + ((𝑀 + 1) / 𝑛)))))‘1) = ((𝑛 ∈ ℕ ↦ (((1 + (𝑀 / 𝑛)) · (1 + (1 / 𝑛))) / (1 + ((𝑀 + 1) / 𝑛))))‘1))
42, 3ax-mp 5 . . . . . . . . 9 (seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (𝑀 / 𝑛)) · (1 + (1 / 𝑛))) / (1 + ((𝑀 + 1) / 𝑛)))))‘1) = ((𝑛 ∈ ℕ ↦ (((1 + (𝑀 / 𝑛)) · (1 + (1 / 𝑛))) / (1 + ((𝑀 + 1) / 𝑛))))‘1)
51, 4eqtrdi 2792 . . . . . . . 8 (𝑎 = 1 → (seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (𝑀 / 𝑛)) · (1 + (1 / 𝑛))) / (1 + ((𝑀 + 1) / 𝑛)))))‘𝑎) = ((𝑛 ∈ ℕ ↦ (((1 + (𝑀 / 𝑛)) · (1 + (1 / 𝑛))) / (1 + ((𝑀 + 1) / 𝑛))))‘1))
6 oveq1 7364 . . . . . . . . . 10 (𝑎 = 1 → (𝑎 + 1) = (1 + 1))
7 oveq1 7364 . . . . . . . . . 10 (𝑎 = 1 → (𝑎 + (𝑀 + 1)) = (1 + (𝑀 + 1)))
86, 7oveq12d 7375 . . . . . . . . 9 (𝑎 = 1 → ((𝑎 + 1) / (𝑎 + (𝑀 + 1))) = ((1 + 1) / (1 + (𝑀 + 1))))
98oveq2d 7373 . . . . . . . 8 (𝑎 = 1 → ((𝑀 + 1) · ((𝑎 + 1) / (𝑎 + (𝑀 + 1)))) = ((𝑀 + 1) · ((1 + 1) / (1 + (𝑀 + 1)))))
105, 9eqeq12d 2752 . . . . . . 7 (𝑎 = 1 → ((seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (𝑀 / 𝑛)) · (1 + (1 / 𝑛))) / (1 + ((𝑀 + 1) / 𝑛)))))‘𝑎) = ((𝑀 + 1) · ((𝑎 + 1) / (𝑎 + (𝑀 + 1)))) ↔ ((𝑛 ∈ ℕ ↦ (((1 + (𝑀 / 𝑛)) · (1 + (1 / 𝑛))) / (1 + ((𝑀 + 1) / 𝑛))))‘1) = ((𝑀 + 1) · ((1 + 1) / (1 + (𝑀 + 1))))))
1110imbi2d 340 . . . . . 6 (𝑎 = 1 → ((𝑀 ∈ ℕ0 → (seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (𝑀 / 𝑛)) · (1 + (1 / 𝑛))) / (1 + ((𝑀 + 1) / 𝑛)))))‘𝑎) = ((𝑀 + 1) · ((𝑎 + 1) / (𝑎 + (𝑀 + 1))))) ↔ (𝑀 ∈ ℕ0 → ((𝑛 ∈ ℕ ↦ (((1 + (𝑀 / 𝑛)) · (1 + (1 / 𝑛))) / (1 + ((𝑀 + 1) / 𝑛))))‘1) = ((𝑀 + 1) · ((1 + 1) / (1 + (𝑀 + 1)))))))
12 fveq2 6842 . . . . . . . 8 (𝑎 = 𝑘 → (seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (𝑀 / 𝑛)) · (1 + (1 / 𝑛))) / (1 + ((𝑀 + 1) / 𝑛)))))‘𝑎) = (seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (𝑀 / 𝑛)) · (1 + (1 / 𝑛))) / (1 + ((𝑀 + 1) / 𝑛)))))‘𝑘))
13 oveq1 7364 . . . . . . . . . 10 (𝑎 = 𝑘 → (𝑎 + 1) = (𝑘 + 1))
14 oveq1 7364 . . . . . . . . . 10 (𝑎 = 𝑘 → (𝑎 + (𝑀 + 1)) = (𝑘 + (𝑀 + 1)))
1513, 14oveq12d 7375 . . . . . . . . 9 (𝑎 = 𝑘 → ((𝑎 + 1) / (𝑎 + (𝑀 + 1))) = ((𝑘 + 1) / (𝑘 + (𝑀 + 1))))
1615oveq2d 7373 . . . . . . . 8 (𝑎 = 𝑘 → ((𝑀 + 1) · ((𝑎 + 1) / (𝑎 + (𝑀 + 1)))) = ((𝑀 + 1) · ((𝑘 + 1) / (𝑘 + (𝑀 + 1)))))
1712, 16eqeq12d 2752 . . . . . . 7 (𝑎 = 𝑘 → ((seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (𝑀 / 𝑛)) · (1 + (1 / 𝑛))) / (1 + ((𝑀 + 1) / 𝑛)))))‘𝑎) = ((𝑀 + 1) · ((𝑎 + 1) / (𝑎 + (𝑀 + 1)))) ↔ (seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (𝑀 / 𝑛)) · (1 + (1 / 𝑛))) / (1 + ((𝑀 + 1) / 𝑛)))))‘𝑘) = ((𝑀 + 1) · ((𝑘 + 1) / (𝑘 + (𝑀 + 1))))))
1817imbi2d 340 . . . . . 6 (𝑎 = 𝑘 → ((𝑀 ∈ ℕ0 → (seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (𝑀 / 𝑛)) · (1 + (1 / 𝑛))) / (1 + ((𝑀 + 1) / 𝑛)))))‘𝑎) = ((𝑀 + 1) · ((𝑎 + 1) / (𝑎 + (𝑀 + 1))))) ↔ (𝑀 ∈ ℕ0 → (seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (𝑀 / 𝑛)) · (1 + (1 / 𝑛))) / (1 + ((𝑀 + 1) / 𝑛)))))‘𝑘) = ((𝑀 + 1) · ((𝑘 + 1) / (𝑘 + (𝑀 + 1)))))))
19 fveq2 6842 . . . . . . . 8 (𝑎 = (𝑘 + 1) → (seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (𝑀 / 𝑛)) · (1 + (1 / 𝑛))) / (1 + ((𝑀 + 1) / 𝑛)))))‘𝑎) = (seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (𝑀 / 𝑛)) · (1 + (1 / 𝑛))) / (1 + ((𝑀 + 1) / 𝑛)))))‘(𝑘 + 1)))
20 oveq1 7364 . . . . . . . . . 10 (𝑎 = (𝑘 + 1) → (𝑎 + 1) = ((𝑘 + 1) + 1))
21 oveq1 7364 . . . . . . . . . 10 (𝑎 = (𝑘 + 1) → (𝑎 + (𝑀 + 1)) = ((𝑘 + 1) + (𝑀 + 1)))
2220, 21oveq12d 7375 . . . . . . . . 9 (𝑎 = (𝑘 + 1) → ((𝑎 + 1) / (𝑎 + (𝑀 + 1))) = (((𝑘 + 1) + 1) / ((𝑘 + 1) + (𝑀 + 1))))
2322oveq2d 7373 . . . . . . . 8 (𝑎 = (𝑘 + 1) → ((𝑀 + 1) · ((𝑎 + 1) / (𝑎 + (𝑀 + 1)))) = ((𝑀 + 1) · (((𝑘 + 1) + 1) / ((𝑘 + 1) + (𝑀 + 1)))))
2419, 23eqeq12d 2752 . . . . . . 7 (𝑎 = (𝑘 + 1) → ((seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (𝑀 / 𝑛)) · (1 + (1 / 𝑛))) / (1 + ((𝑀 + 1) / 𝑛)))))‘𝑎) = ((𝑀 + 1) · ((𝑎 + 1) / (𝑎 + (𝑀 + 1)))) ↔ (seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (𝑀 / 𝑛)) · (1 + (1 / 𝑛))) / (1 + ((𝑀 + 1) / 𝑛)))))‘(𝑘 + 1)) = ((𝑀 + 1) · (((𝑘 + 1) + 1) / ((𝑘 + 1) + (𝑀 + 1))))))
2524imbi2d 340 . . . . . 6 (𝑎 = (𝑘 + 1) → ((𝑀 ∈ ℕ0 → (seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (𝑀 / 𝑛)) · (1 + (1 / 𝑛))) / (1 + ((𝑀 + 1) / 𝑛)))))‘𝑎) = ((𝑀 + 1) · ((𝑎 + 1) / (𝑎 + (𝑀 + 1))))) ↔ (𝑀 ∈ ℕ0 → (seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (𝑀 / 𝑛)) · (1 + (1 / 𝑛))) / (1 + ((𝑀 + 1) / 𝑛)))))‘(𝑘 + 1)) = ((𝑀 + 1) · (((𝑘 + 1) + 1) / ((𝑘 + 1) + (𝑀 + 1)))))))
26 fveq2 6842 . . . . . . . 8 (𝑎 = 𝑏 → (seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (𝑀 / 𝑛)) · (1 + (1 / 𝑛))) / (1 + ((𝑀 + 1) / 𝑛)))))‘𝑎) = (seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (𝑀 / 𝑛)) · (1 + (1 / 𝑛))) / (1 + ((𝑀 + 1) / 𝑛)))))‘𝑏))
27 oveq1 7364 . . . . . . . . . 10 (𝑎 = 𝑏 → (𝑎 + 1) = (𝑏 + 1))
28 oveq1 7364 . . . . . . . . . 10 (𝑎 = 𝑏 → (𝑎 + (𝑀 + 1)) = (𝑏 + (𝑀 + 1)))
2927, 28oveq12d 7375 . . . . . . . . 9 (𝑎 = 𝑏 → ((𝑎 + 1) / (𝑎 + (𝑀 + 1))) = ((𝑏 + 1) / (𝑏 + (𝑀 + 1))))
3029oveq2d 7373 . . . . . . . 8 (𝑎 = 𝑏 → ((𝑀 + 1) · ((𝑎 + 1) / (𝑎 + (𝑀 + 1)))) = ((𝑀 + 1) · ((𝑏 + 1) / (𝑏 + (𝑀 + 1)))))
3126, 30eqeq12d 2752 . . . . . . 7 (𝑎 = 𝑏 → ((seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (𝑀 / 𝑛)) · (1 + (1 / 𝑛))) / (1 + ((𝑀 + 1) / 𝑛)))))‘𝑎) = ((𝑀 + 1) · ((𝑎 + 1) / (𝑎 + (𝑀 + 1)))) ↔ (seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (𝑀 / 𝑛)) · (1 + (1 / 𝑛))) / (1 + ((𝑀 + 1) / 𝑛)))))‘𝑏) = ((𝑀 + 1) · ((𝑏 + 1) / (𝑏 + (𝑀 + 1))))))
3231imbi2d 340 . . . . . 6 (𝑎 = 𝑏 → ((𝑀 ∈ ℕ0 → (seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (𝑀 / 𝑛)) · (1 + (1 / 𝑛))) / (1 + ((𝑀 + 1) / 𝑛)))))‘𝑎) = ((𝑀 + 1) · ((𝑎 + 1) / (𝑎 + (𝑀 + 1))))) ↔ (𝑀 ∈ ℕ0 → (seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (𝑀 / 𝑛)) · (1 + (1 / 𝑛))) / (1 + ((𝑀 + 1) / 𝑛)))))‘𝑏) = ((𝑀 + 1) · ((𝑏 + 1) / (𝑏 + (𝑀 + 1)))))))
33 1nn 12164 . . . . . . . 8 1 ∈ ℕ
34 oveq2 7365 . . . . . . . . . . . 12 (𝑛 = 1 → (𝑀 / 𝑛) = (𝑀 / 1))
3534oveq2d 7373 . . . . . . . . . . 11 (𝑛 = 1 → (1 + (𝑀 / 𝑛)) = (1 + (𝑀 / 1)))
36 oveq2 7365 . . . . . . . . . . . 12 (𝑛 = 1 → (1 / 𝑛) = (1 / 1))
3736oveq2d 7373 . . . . . . . . . . 11 (𝑛 = 1 → (1 + (1 / 𝑛)) = (1 + (1 / 1)))
3835, 37oveq12d 7375 . . . . . . . . . 10 (𝑛 = 1 → ((1 + (𝑀 / 𝑛)) · (1 + (1 / 𝑛))) = ((1 + (𝑀 / 1)) · (1 + (1 / 1))))
39 oveq2 7365 . . . . . . . . . . 11 (𝑛 = 1 → ((𝑀 + 1) / 𝑛) = ((𝑀 + 1) / 1))
4039oveq2d 7373 . . . . . . . . . 10 (𝑛 = 1 → (1 + ((𝑀 + 1) / 𝑛)) = (1 + ((𝑀 + 1) / 1)))
4138, 40oveq12d 7375 . . . . . . . . 9 (𝑛 = 1 → (((1 + (𝑀 / 𝑛)) · (1 + (1 / 𝑛))) / (1 + ((𝑀 + 1) / 𝑛))) = (((1 + (𝑀 / 1)) · (1 + (1 / 1))) / (1 + ((𝑀 + 1) / 1))))
42 eqid 2736 . . . . . . . . 9 (𝑛 ∈ ℕ ↦ (((1 + (𝑀 / 𝑛)) · (1 + (1 / 𝑛))) / (1 + ((𝑀 + 1) / 𝑛)))) = (𝑛 ∈ ℕ ↦ (((1 + (𝑀 / 𝑛)) · (1 + (1 / 𝑛))) / (1 + ((𝑀 + 1) / 𝑛))))
43 ovex 7390 . . . . . . . . 9 (((1 + (𝑀 / 1)) · (1 + (1 / 1))) / (1 + ((𝑀 + 1) / 1))) ∈ V
4441, 42, 43fvmpt 6948 . . . . . . . 8 (1 ∈ ℕ → ((𝑛 ∈ ℕ ↦ (((1 + (𝑀 / 𝑛)) · (1 + (1 / 𝑛))) / (1 + ((𝑀 + 1) / 𝑛))))‘1) = (((1 + (𝑀 / 1)) · (1 + (1 / 1))) / (1 + ((𝑀 + 1) / 1))))
4533, 44ax-mp 5 . . . . . . 7 ((𝑛 ∈ ℕ ↦ (((1 + (𝑀 / 𝑛)) · (1 + (1 / 𝑛))) / (1 + ((𝑀 + 1) / 𝑛))))‘1) = (((1 + (𝑀 / 1)) · (1 + (1 / 1))) / (1 + ((𝑀 + 1) / 1)))
46 nn0cn 12423 . . . . . . . . . . . 12 (𝑀 ∈ ℕ0𝑀 ∈ ℂ)
4746div1d 11923 . . . . . . . . . . 11 (𝑀 ∈ ℕ0 → (𝑀 / 1) = 𝑀)
4847oveq2d 7373 . . . . . . . . . 10 (𝑀 ∈ ℕ0 → (1 + (𝑀 / 1)) = (1 + 𝑀))
49 1div1e1 11845 . . . . . . . . . . . 12 (1 / 1) = 1
5049oveq2i 7368 . . . . . . . . . . 11 (1 + (1 / 1)) = (1 + 1)
5150a1i 11 . . . . . . . . . 10 (𝑀 ∈ ℕ0 → (1 + (1 / 1)) = (1 + 1))
5248, 51oveq12d 7375 . . . . . . . . 9 (𝑀 ∈ ℕ0 → ((1 + (𝑀 / 1)) · (1 + (1 / 1))) = ((1 + 𝑀) · (1 + 1)))
53 nn0p1nn 12452 . . . . . . . . . . . 12 (𝑀 ∈ ℕ0 → (𝑀 + 1) ∈ ℕ)
5453nncnd 12169 . . . . . . . . . . 11 (𝑀 ∈ ℕ0 → (𝑀 + 1) ∈ ℂ)
5554div1d 11923 . . . . . . . . . 10 (𝑀 ∈ ℕ0 → ((𝑀 + 1) / 1) = (𝑀 + 1))
5655oveq2d 7373 . . . . . . . . 9 (𝑀 ∈ ℕ0 → (1 + ((𝑀 + 1) / 1)) = (1 + (𝑀 + 1)))
5752, 56oveq12d 7375 . . . . . . . 8 (𝑀 ∈ ℕ0 → (((1 + (𝑀 / 1)) · (1 + (1 / 1))) / (1 + ((𝑀 + 1) / 1))) = (((1 + 𝑀) · (1 + 1)) / (1 + (𝑀 + 1))))
58 1cnd 11150 . . . . . . . . . . 11 (𝑀 ∈ ℕ0 → 1 ∈ ℂ)
5958, 46addcomd 11357 . . . . . . . . . 10 (𝑀 ∈ ℕ0 → (1 + 𝑀) = (𝑀 + 1))
6059oveq1d 7372 . . . . . . . . 9 (𝑀 ∈ ℕ0 → ((1 + 𝑀) · (1 + 1)) = ((𝑀 + 1) · (1 + 1)))
6160oveq1d 7372 . . . . . . . 8 (𝑀 ∈ ℕ0 → (((1 + 𝑀) · (1 + 1)) / (1 + (𝑀 + 1))) = (((𝑀 + 1) · (1 + 1)) / (1 + (𝑀 + 1))))
62 ax-1cn 11109 . . . . . . . . . . 11 1 ∈ ℂ
6362, 62addcli 11161 . . . . . . . . . 10 (1 + 1) ∈ ℂ
6463a1i 11 . . . . . . . . 9 (𝑀 ∈ ℕ0 → (1 + 1) ∈ ℂ)
6533a1i 11 . . . . . . . . . . 11 (𝑀 ∈ ℕ0 → 1 ∈ ℕ)
6665, 53nnaddcld 12205 . . . . . . . . . 10 (𝑀 ∈ ℕ0 → (1 + (𝑀 + 1)) ∈ ℕ)
6766nncnd 12169 . . . . . . . . 9 (𝑀 ∈ ℕ0 → (1 + (𝑀 + 1)) ∈ ℂ)
6866nnne0d 12203 . . . . . . . . 9 (𝑀 ∈ ℕ0 → (1 + (𝑀 + 1)) ≠ 0)
6954, 64, 67, 68divassd 11966 . . . . . . . 8 (𝑀 ∈ ℕ0 → (((𝑀 + 1) · (1 + 1)) / (1 + (𝑀 + 1))) = ((𝑀 + 1) · ((1 + 1) / (1 + (𝑀 + 1)))))
7057, 61, 693eqtrd 2780 . . . . . . 7 (𝑀 ∈ ℕ0 → (((1 + (𝑀 / 1)) · (1 + (1 / 1))) / (1 + ((𝑀 + 1) / 1))) = ((𝑀 + 1) · ((1 + 1) / (1 + (𝑀 + 1)))))
7145, 70eqtrid 2788 . . . . . 6 (𝑀 ∈ ℕ0 → ((𝑛 ∈ ℕ ↦ (((1 + (𝑀 / 𝑛)) · (1 + (1 / 𝑛))) / (1 + ((𝑀 + 1) / 𝑛))))‘1) = ((𝑀 + 1) · ((1 + 1) / (1 + (𝑀 + 1)))))
72 seqp1 13921 . . . . . . . . . . . 12 (𝑘 ∈ (ℤ‘1) → (seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (𝑀 / 𝑛)) · (1 + (1 / 𝑛))) / (1 + ((𝑀 + 1) / 𝑛)))))‘(𝑘 + 1)) = ((seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (𝑀 / 𝑛)) · (1 + (1 / 𝑛))) / (1 + ((𝑀 + 1) / 𝑛)))))‘𝑘) · ((𝑛 ∈ ℕ ↦ (((1 + (𝑀 / 𝑛)) · (1 + (1 / 𝑛))) / (1 + ((𝑀 + 1) / 𝑛))))‘(𝑘 + 1))))
73 nnuz 12806 . . . . . . . . . . . 12 ℕ = (ℤ‘1)
7472, 73eleq2s 2856 . . . . . . . . . . 11 (𝑘 ∈ ℕ → (seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (𝑀 / 𝑛)) · (1 + (1 / 𝑛))) / (1 + ((𝑀 + 1) / 𝑛)))))‘(𝑘 + 1)) = ((seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (𝑀 / 𝑛)) · (1 + (1 / 𝑛))) / (1 + ((𝑀 + 1) / 𝑛)))))‘𝑘) · ((𝑛 ∈ ℕ ↦ (((1 + (𝑀 / 𝑛)) · (1 + (1 / 𝑛))) / (1 + ((𝑀 + 1) / 𝑛))))‘(𝑘 + 1))))
7574adantr 481 . . . . . . . . . 10 ((𝑘 ∈ ℕ ∧ 𝑀 ∈ ℕ0) → (seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (𝑀 / 𝑛)) · (1 + (1 / 𝑛))) / (1 + ((𝑀 + 1) / 𝑛)))))‘(𝑘 + 1)) = ((seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (𝑀 / 𝑛)) · (1 + (1 / 𝑛))) / (1 + ((𝑀 + 1) / 𝑛)))))‘𝑘) · ((𝑛 ∈ ℕ ↦ (((1 + (𝑀 / 𝑛)) · (1 + (1 / 𝑛))) / (1 + ((𝑀 + 1) / 𝑛))))‘(𝑘 + 1))))
7675adantr 481 . . . . . . . . 9 (((𝑘 ∈ ℕ ∧ 𝑀 ∈ ℕ0) ∧ (seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (𝑀 / 𝑛)) · (1 + (1 / 𝑛))) / (1 + ((𝑀 + 1) / 𝑛)))))‘𝑘) = ((𝑀 + 1) · ((𝑘 + 1) / (𝑘 + (𝑀 + 1))))) → (seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (𝑀 / 𝑛)) · (1 + (1 / 𝑛))) / (1 + ((𝑀 + 1) / 𝑛)))))‘(𝑘 + 1)) = ((seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (𝑀 / 𝑛)) · (1 + (1 / 𝑛))) / (1 + ((𝑀 + 1) / 𝑛)))))‘𝑘) · ((𝑛 ∈ ℕ ↦ (((1 + (𝑀 / 𝑛)) · (1 + (1 / 𝑛))) / (1 + ((𝑀 + 1) / 𝑛))))‘(𝑘 + 1))))
77 oveq1 7364 . . . . . . . . . 10 ((seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (𝑀 / 𝑛)) · (1 + (1 / 𝑛))) / (1 + ((𝑀 + 1) / 𝑛)))))‘𝑘) = ((𝑀 + 1) · ((𝑘 + 1) / (𝑘 + (𝑀 + 1)))) → ((seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (𝑀 / 𝑛)) · (1 + (1 / 𝑛))) / (1 + ((𝑀 + 1) / 𝑛)))))‘𝑘) · ((𝑛 ∈ ℕ ↦ (((1 + (𝑀 / 𝑛)) · (1 + (1 / 𝑛))) / (1 + ((𝑀 + 1) / 𝑛))))‘(𝑘 + 1))) = (((𝑀 + 1) · ((𝑘 + 1) / (𝑘 + (𝑀 + 1)))) · ((𝑛 ∈ ℕ ↦ (((1 + (𝑀 / 𝑛)) · (1 + (1 / 𝑛))) / (1 + ((𝑀 + 1) / 𝑛))))‘(𝑘 + 1))))
7877adantl 482 . . . . . . . . 9 (((𝑘 ∈ ℕ ∧ 𝑀 ∈ ℕ0) ∧ (seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (𝑀 / 𝑛)) · (1 + (1 / 𝑛))) / (1 + ((𝑀 + 1) / 𝑛)))))‘𝑘) = ((𝑀 + 1) · ((𝑘 + 1) / (𝑘 + (𝑀 + 1))))) → ((seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (𝑀 / 𝑛)) · (1 + (1 / 𝑛))) / (1 + ((𝑀 + 1) / 𝑛)))))‘𝑘) · ((𝑛 ∈ ℕ ↦ (((1 + (𝑀 / 𝑛)) · (1 + (1 / 𝑛))) / (1 + ((𝑀 + 1) / 𝑛))))‘(𝑘 + 1))) = (((𝑀 + 1) · ((𝑘 + 1) / (𝑘 + (𝑀 + 1)))) · ((𝑛 ∈ ℕ ↦ (((1 + (𝑀 / 𝑛)) · (1 + (1 / 𝑛))) / (1 + ((𝑀 + 1) / 𝑛))))‘(𝑘 + 1))))
79 peano2nn 12165 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ → (𝑘 + 1) ∈ ℕ)
80 oveq2 7365 . . . . . . . . . . . . . . . . . 18 (𝑛 = (𝑘 + 1) → (𝑀 / 𝑛) = (𝑀 / (𝑘 + 1)))
8180oveq2d 7373 . . . . . . . . . . . . . . . . 17 (𝑛 = (𝑘 + 1) → (1 + (𝑀 / 𝑛)) = (1 + (𝑀 / (𝑘 + 1))))
82 oveq2 7365 . . . . . . . . . . . . . . . . . 18 (𝑛 = (𝑘 + 1) → (1 / 𝑛) = (1 / (𝑘 + 1)))
8382oveq2d 7373 . . . . . . . . . . . . . . . . 17 (𝑛 = (𝑘 + 1) → (1 + (1 / 𝑛)) = (1 + (1 / (𝑘 + 1))))
8481, 83oveq12d 7375 . . . . . . . . . . . . . . . 16 (𝑛 = (𝑘 + 1) → ((1 + (𝑀 / 𝑛)) · (1 + (1 / 𝑛))) = ((1 + (𝑀 / (𝑘 + 1))) · (1 + (1 / (𝑘 + 1)))))
85 oveq2 7365 . . . . . . . . . . . . . . . . 17 (𝑛 = (𝑘 + 1) → ((𝑀 + 1) / 𝑛) = ((𝑀 + 1) / (𝑘 + 1)))
8685oveq2d 7373 . . . . . . . . . . . . . . . 16 (𝑛 = (𝑘 + 1) → (1 + ((𝑀 + 1) / 𝑛)) = (1 + ((𝑀 + 1) / (𝑘 + 1))))
8784, 86oveq12d 7375 . . . . . . . . . . . . . . 15 (𝑛 = (𝑘 + 1) → (((1 + (𝑀 / 𝑛)) · (1 + (1 / 𝑛))) / (1 + ((𝑀 + 1) / 𝑛))) = (((1 + (𝑀 / (𝑘 + 1))) · (1 + (1 / (𝑘 + 1)))) / (1 + ((𝑀 + 1) / (𝑘 + 1)))))
88 ovex 7390 . . . . . . . . . . . . . . 15 (((1 + (𝑀 / (𝑘 + 1))) · (1 + (1 / (𝑘 + 1)))) / (1 + ((𝑀 + 1) / (𝑘 + 1)))) ∈ V
8987, 42, 88fvmpt 6948 . . . . . . . . . . . . . 14 ((𝑘 + 1) ∈ ℕ → ((𝑛 ∈ ℕ ↦ (((1 + (𝑀 / 𝑛)) · (1 + (1 / 𝑛))) / (1 + ((𝑀 + 1) / 𝑛))))‘(𝑘 + 1)) = (((1 + (𝑀 / (𝑘 + 1))) · (1 + (1 / (𝑘 + 1)))) / (1 + ((𝑀 + 1) / (𝑘 + 1)))))
9079, 89syl 17 . . . . . . . . . . . . 13 (𝑘 ∈ ℕ → ((𝑛 ∈ ℕ ↦ (((1 + (𝑀 / 𝑛)) · (1 + (1 / 𝑛))) / (1 + ((𝑀 + 1) / 𝑛))))‘(𝑘 + 1)) = (((1 + (𝑀 / (𝑘 + 1))) · (1 + (1 / (𝑘 + 1)))) / (1 + ((𝑀 + 1) / (𝑘 + 1)))))
9190oveq2d 7373 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → (((𝑀 + 1) · ((𝑘 + 1) / (𝑘 + (𝑀 + 1)))) · ((𝑛 ∈ ℕ ↦ (((1 + (𝑀 / 𝑛)) · (1 + (1 / 𝑛))) / (1 + ((𝑀 + 1) / 𝑛))))‘(𝑘 + 1))) = (((𝑀 + 1) · ((𝑘 + 1) / (𝑘 + (𝑀 + 1)))) · (((1 + (𝑀 / (𝑘 + 1))) · (1 + (1 / (𝑘 + 1)))) / (1 + ((𝑀 + 1) / (𝑘 + 1))))))
9291adantr 481 . . . . . . . . . . 11 ((𝑘 ∈ ℕ ∧ 𝑀 ∈ ℕ0) → (((𝑀 + 1) · ((𝑘 + 1) / (𝑘 + (𝑀 + 1)))) · ((𝑛 ∈ ℕ ↦ (((1 + (𝑀 / 𝑛)) · (1 + (1 / 𝑛))) / (1 + ((𝑀 + 1) / 𝑛))))‘(𝑘 + 1))) = (((𝑀 + 1) · ((𝑘 + 1) / (𝑘 + (𝑀 + 1)))) · (((1 + (𝑀 / (𝑘 + 1))) · (1 + (1 / (𝑘 + 1)))) / (1 + ((𝑀 + 1) / (𝑘 + 1))))))
9353adantl 482 . . . . . . . . . . . . 13 ((𝑘 ∈ ℕ ∧ 𝑀 ∈ ℕ0) → (𝑀 + 1) ∈ ℕ)
9493nncnd 12169 . . . . . . . . . . . 12 ((𝑘 ∈ ℕ ∧ 𝑀 ∈ ℕ0) → (𝑀 + 1) ∈ ℂ)
9579adantr 481 . . . . . . . . . . . . . . 15 ((𝑘 ∈ ℕ ∧ 𝑀 ∈ ℕ0) → (𝑘 + 1) ∈ ℕ)
9695nnrpd 12955 . . . . . . . . . . . . . 14 ((𝑘 ∈ ℕ ∧ 𝑀 ∈ ℕ0) → (𝑘 + 1) ∈ ℝ+)
97 simpl 483 . . . . . . . . . . . . . . . 16 ((𝑘 ∈ ℕ ∧ 𝑀 ∈ ℕ0) → 𝑘 ∈ ℕ)
9897nnrpd 12955 . . . . . . . . . . . . . . 15 ((𝑘 ∈ ℕ ∧ 𝑀 ∈ ℕ0) → 𝑘 ∈ ℝ+)
9993nnrpd 12955 . . . . . . . . . . . . . . 15 ((𝑘 ∈ ℕ ∧ 𝑀 ∈ ℕ0) → (𝑀 + 1) ∈ ℝ+)
10098, 99rpaddcld 12972 . . . . . . . . . . . . . 14 ((𝑘 ∈ ℕ ∧ 𝑀 ∈ ℕ0) → (𝑘 + (𝑀 + 1)) ∈ ℝ+)
10196, 100rpdivcld 12974 . . . . . . . . . . . . 13 ((𝑘 ∈ ℕ ∧ 𝑀 ∈ ℕ0) → ((𝑘 + 1) / (𝑘 + (𝑀 + 1))) ∈ ℝ+)
102101rpcnd 12959 . . . . . . . . . . . 12 ((𝑘 ∈ ℕ ∧ 𝑀 ∈ ℕ0) → ((𝑘 + 1) / (𝑘 + (𝑀 + 1))) ∈ ℂ)
103 1cnd 11150 . . . . . . . . . . . . . . . . 17 ((𝑘 ∈ ℕ ∧ 𝑀 ∈ ℕ0) → 1 ∈ ℂ)
104 nn0re 12422 . . . . . . . . . . . . . . . . . . . 20 (𝑀 ∈ ℕ0𝑀 ∈ ℝ)
105104adantl 482 . . . . . . . . . . . . . . . . . . 19 ((𝑘 ∈ ℕ ∧ 𝑀 ∈ ℕ0) → 𝑀 ∈ ℝ)
106105, 95nndivred 12207 . . . . . . . . . . . . . . . . . 18 ((𝑘 ∈ ℕ ∧ 𝑀 ∈ ℕ0) → (𝑀 / (𝑘 + 1)) ∈ ℝ)
107106recnd 11183 . . . . . . . . . . . . . . . . 17 ((𝑘 ∈ ℕ ∧ 𝑀 ∈ ℕ0) → (𝑀 / (𝑘 + 1)) ∈ ℂ)
108103, 107addcomd 11357 . . . . . . . . . . . . . . . 16 ((𝑘 ∈ ℕ ∧ 𝑀 ∈ ℕ0) → (1 + (𝑀 / (𝑘 + 1))) = ((𝑀 / (𝑘 + 1)) + 1))
109 nn0ge0 12438 . . . . . . . . . . . . . . . . . . 19 (𝑀 ∈ ℕ0 → 0 ≤ 𝑀)
110109adantl 482 . . . . . . . . . . . . . . . . . 18 ((𝑘 ∈ ℕ ∧ 𝑀 ∈ ℕ0) → 0 ≤ 𝑀)
111105, 96, 110divge0d 12997 . . . . . . . . . . . . . . . . 17 ((𝑘 ∈ ℕ ∧ 𝑀 ∈ ℕ0) → 0 ≤ (𝑀 / (𝑘 + 1)))
112106, 111ge0p1rpd 12987 . . . . . . . . . . . . . . . 16 ((𝑘 ∈ ℕ ∧ 𝑀 ∈ ℕ0) → ((𝑀 / (𝑘 + 1)) + 1) ∈ ℝ+)
113108, 112eqeltrd 2838 . . . . . . . . . . . . . . 15 ((𝑘 ∈ ℕ ∧ 𝑀 ∈ ℕ0) → (1 + (𝑀 / (𝑘 + 1))) ∈ ℝ+)
114 1rp 12919 . . . . . . . . . . . . . . . . 17 1 ∈ ℝ+
115114a1i 11 . . . . . . . . . . . . . . . 16 ((𝑘 ∈ ℕ ∧ 𝑀 ∈ ℕ0) → 1 ∈ ℝ+)
11696rpreccld 12967 . . . . . . . . . . . . . . . 16 ((𝑘 ∈ ℕ ∧ 𝑀 ∈ ℕ0) → (1 / (𝑘 + 1)) ∈ ℝ+)
117115, 116rpaddcld 12972 . . . . . . . . . . . . . . 15 ((𝑘 ∈ ℕ ∧ 𝑀 ∈ ℕ0) → (1 + (1 / (𝑘 + 1))) ∈ ℝ+)
118113, 117rpmulcld 12973 . . . . . . . . . . . . . 14 ((𝑘 ∈ ℕ ∧ 𝑀 ∈ ℕ0) → ((1 + (𝑀 / (𝑘 + 1))) · (1 + (1 / (𝑘 + 1)))) ∈ ℝ+)
11999, 96rpdivcld 12974 . . . . . . . . . . . . . . 15 ((𝑘 ∈ ℕ ∧ 𝑀 ∈ ℕ0) → ((𝑀 + 1) / (𝑘 + 1)) ∈ ℝ+)
120115, 119rpaddcld 12972 . . . . . . . . . . . . . 14 ((𝑘 ∈ ℕ ∧ 𝑀 ∈ ℕ0) → (1 + ((𝑀 + 1) / (𝑘 + 1))) ∈ ℝ+)
121118, 120rpdivcld 12974 . . . . . . . . . . . . 13 ((𝑘 ∈ ℕ ∧ 𝑀 ∈ ℕ0) → (((1 + (𝑀 / (𝑘 + 1))) · (1 + (1 / (𝑘 + 1)))) / (1 + ((𝑀 + 1) / (𝑘 + 1)))) ∈ ℝ+)
122121rpcnd 12959 . . . . . . . . . . . 12 ((𝑘 ∈ ℕ ∧ 𝑀 ∈ ℕ0) → (((1 + (𝑀 / (𝑘 + 1))) · (1 + (1 / (𝑘 + 1)))) / (1 + ((𝑀 + 1) / (𝑘 + 1)))) ∈ ℂ)
12394, 102, 122mulassd 11178 . . . . . . . . . . 11 ((𝑘 ∈ ℕ ∧ 𝑀 ∈ ℕ0) → (((𝑀 + 1) · ((𝑘 + 1) / (𝑘 + (𝑀 + 1)))) · (((1 + (𝑀 / (𝑘 + 1))) · (1 + (1 / (𝑘 + 1)))) / (1 + ((𝑀 + 1) / (𝑘 + 1))))) = ((𝑀 + 1) · (((𝑘 + 1) / (𝑘 + (𝑀 + 1))) · (((1 + (𝑀 / (𝑘 + 1))) · (1 + (1 / (𝑘 + 1)))) / (1 + ((𝑀 + 1) / (𝑘 + 1)))))))
124101, 118rpmulcld 12973 . . . . . . . . . . . . . . 15 ((𝑘 ∈ ℕ ∧ 𝑀 ∈ ℕ0) → (((𝑘 + 1) / (𝑘 + (𝑀 + 1))) · ((1 + (𝑀 / (𝑘 + 1))) · (1 + (1 / (𝑘 + 1))))) ∈ ℝ+)
125124rpcnd 12959 . . . . . . . . . . . . . 14 ((𝑘 ∈ ℕ ∧ 𝑀 ∈ ℕ0) → (((𝑘 + 1) / (𝑘 + (𝑀 + 1))) · ((1 + (𝑀 / (𝑘 + 1))) · (1 + (1 / (𝑘 + 1))))) ∈ ℂ)
126120rpcnd 12959 . . . . . . . . . . . . . 14 ((𝑘 ∈ ℕ ∧ 𝑀 ∈ ℕ0) → (1 + ((𝑀 + 1) / (𝑘 + 1))) ∈ ℂ)
12795nncnd 12169 . . . . . . . . . . . . . 14 ((𝑘 ∈ ℕ ∧ 𝑀 ∈ ℕ0) → (𝑘 + 1) ∈ ℂ)
128120rpne0d 12962 . . . . . . . . . . . . . 14 ((𝑘 ∈ ℕ ∧ 𝑀 ∈ ℕ0) → (1 + ((𝑀 + 1) / (𝑘 + 1))) ≠ 0)
12995nnne0d 12203 . . . . . . . . . . . . . 14 ((𝑘 ∈ ℕ ∧ 𝑀 ∈ ℕ0) → (𝑘 + 1) ≠ 0)
130125, 126, 127, 128, 129divcan5d 11957 . . . . . . . . . . . . 13 ((𝑘 ∈ ℕ ∧ 𝑀 ∈ ℕ0) → (((𝑘 + 1) · (((𝑘 + 1) / (𝑘 + (𝑀 + 1))) · ((1 + (𝑀 / (𝑘 + 1))) · (1 + (1 / (𝑘 + 1)))))) / ((𝑘 + 1) · (1 + ((𝑀 + 1) / (𝑘 + 1))))) = ((((𝑘 + 1) / (𝑘 + (𝑀 + 1))) · ((1 + (𝑀 / (𝑘 + 1))) · (1 + (1 / (𝑘 + 1))))) / (1 + ((𝑀 + 1) / (𝑘 + 1)))))
131118rpcnd 12959 . . . . . . . . . . . . . . . 16 ((𝑘 ∈ ℕ ∧ 𝑀 ∈ ℕ0) → ((1 + (𝑀 / (𝑘 + 1))) · (1 + (1 / (𝑘 + 1)))) ∈ ℂ)
132127, 102, 131mul12d 11364 . . . . . . . . . . . . . . 15 ((𝑘 ∈ ℕ ∧ 𝑀 ∈ ℕ0) → ((𝑘 + 1) · (((𝑘 + 1) / (𝑘 + (𝑀 + 1))) · ((1 + (𝑀 / (𝑘 + 1))) · (1 + (1 / (𝑘 + 1)))))) = (((𝑘 + 1) / (𝑘 + (𝑀 + 1))) · ((𝑘 + 1) · ((1 + (𝑀 / (𝑘 + 1))) · (1 + (1 / (𝑘 + 1)))))))
133113rpcnd 12959 . . . . . . . . . . . . . . . . . 18 ((𝑘 ∈ ℕ ∧ 𝑀 ∈ ℕ0) → (1 + (𝑀 / (𝑘 + 1))) ∈ ℂ)
134117rpcnd 12959 . . . . . . . . . . . . . . . . . 18 ((𝑘 ∈ ℕ ∧ 𝑀 ∈ ℕ0) → (1 + (1 / (𝑘 + 1))) ∈ ℂ)
135127, 133, 134mulassd 11178 . . . . . . . . . . . . . . . . 17 ((𝑘 ∈ ℕ ∧ 𝑀 ∈ ℕ0) → (((𝑘 + 1) · (1 + (𝑀 / (𝑘 + 1)))) · (1 + (1 / (𝑘 + 1)))) = ((𝑘 + 1) · ((1 + (𝑀 / (𝑘 + 1))) · (1 + (1 / (𝑘 + 1))))))
136127, 103, 107adddid 11179 . . . . . . . . . . . . . . . . . . 19 ((𝑘 ∈ ℕ ∧ 𝑀 ∈ ℕ0) → ((𝑘 + 1) · (1 + (𝑀 / (𝑘 + 1)))) = (((𝑘 + 1) · 1) + ((𝑘 + 1) · (𝑀 / (𝑘 + 1)))))
137127mulid1d 11172 . . . . . . . . . . . . . . . . . . . 20 ((𝑘 ∈ ℕ ∧ 𝑀 ∈ ℕ0) → ((𝑘 + 1) · 1) = (𝑘 + 1))
138 simpr 485 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑘 ∈ ℕ ∧ 𝑀 ∈ ℕ0) → 𝑀 ∈ ℕ0)
139138nn0cnd 12475 . . . . . . . . . . . . . . . . . . . . 21 ((𝑘 ∈ ℕ ∧ 𝑀 ∈ ℕ0) → 𝑀 ∈ ℂ)
140139, 127, 129divcan2d 11933 . . . . . . . . . . . . . . . . . . . 20 ((𝑘 ∈ ℕ ∧ 𝑀 ∈ ℕ0) → ((𝑘 + 1) · (𝑀 / (𝑘 + 1))) = 𝑀)
141137, 140oveq12d 7375 . . . . . . . . . . . . . . . . . . 19 ((𝑘 ∈ ℕ ∧ 𝑀 ∈ ℕ0) → (((𝑘 + 1) · 1) + ((𝑘 + 1) · (𝑀 / (𝑘 + 1)))) = ((𝑘 + 1) + 𝑀))
14297nncnd 12169 . . . . . . . . . . . . . . . . . . . . 21 ((𝑘 ∈ ℕ ∧ 𝑀 ∈ ℕ0) → 𝑘 ∈ ℂ)
143142, 103, 139addassd 11177 . . . . . . . . . . . . . . . . . . . 20 ((𝑘 ∈ ℕ ∧ 𝑀 ∈ ℕ0) → ((𝑘 + 1) + 𝑀) = (𝑘 + (1 + 𝑀)))
144103, 139addcomd 11357 . . . . . . . . . . . . . . . . . . . . 21 ((𝑘 ∈ ℕ ∧ 𝑀 ∈ ℕ0) → (1 + 𝑀) = (𝑀 + 1))
145144oveq2d 7373 . . . . . . . . . . . . . . . . . . . 20 ((𝑘 ∈ ℕ ∧ 𝑀 ∈ ℕ0) → (𝑘 + (1 + 𝑀)) = (𝑘 + (𝑀 + 1)))
146143, 145eqtrd 2776 . . . . . . . . . . . . . . . . . . 19 ((𝑘 ∈ ℕ ∧ 𝑀 ∈ ℕ0) → ((𝑘 + 1) + 𝑀) = (𝑘 + (𝑀 + 1)))
147136, 141, 1463eqtrd 2780 . . . . . . . . . . . . . . . . . 18 ((𝑘 ∈ ℕ ∧ 𝑀 ∈ ℕ0) → ((𝑘 + 1) · (1 + (𝑀 / (𝑘 + 1)))) = (𝑘 + (𝑀 + 1)))
148147oveq1d 7372 . . . . . . . . . . . . . . . . 17 ((𝑘 ∈ ℕ ∧ 𝑀 ∈ ℕ0) → (((𝑘 + 1) · (1 + (𝑀 / (𝑘 + 1)))) · (1 + (1 / (𝑘 + 1)))) = ((𝑘 + (𝑀 + 1)) · (1 + (1 / (𝑘 + 1)))))
149135, 148eqtr3d 2778 . . . . . . . . . . . . . . . 16 ((𝑘 ∈ ℕ ∧ 𝑀 ∈ ℕ0) → ((𝑘 + 1) · ((1 + (𝑀 / (𝑘 + 1))) · (1 + (1 / (𝑘 + 1))))) = ((𝑘 + (𝑀 + 1)) · (1 + (1 / (𝑘 + 1)))))
150149oveq2d 7373 . . . . . . . . . . . . . . 15 ((𝑘 ∈ ℕ ∧ 𝑀 ∈ ℕ0) → (((𝑘 + 1) / (𝑘 + (𝑀 + 1))) · ((𝑘 + 1) · ((1 + (𝑀 / (𝑘 + 1))) · (1 + (1 / (𝑘 + 1)))))) = (((𝑘 + 1) / (𝑘 + (𝑀 + 1))) · ((𝑘 + (𝑀 + 1)) · (1 + (1 / (𝑘 + 1))))))
151100rpcnd 12959 . . . . . . . . . . . . . . . . 17 ((𝑘 ∈ ℕ ∧ 𝑀 ∈ ℕ0) → (𝑘 + (𝑀 + 1)) ∈ ℂ)
152102, 151, 134mulassd 11178 . . . . . . . . . . . . . . . 16 ((𝑘 ∈ ℕ ∧ 𝑀 ∈ ℕ0) → ((((𝑘 + 1) / (𝑘 + (𝑀 + 1))) · (𝑘 + (𝑀 + 1))) · (1 + (1 / (𝑘 + 1)))) = (((𝑘 + 1) / (𝑘 + (𝑀 + 1))) · ((𝑘 + (𝑀 + 1)) · (1 + (1 / (𝑘 + 1))))))
153100rpne0d 12962 . . . . . . . . . . . . . . . . . . 19 ((𝑘 ∈ ℕ ∧ 𝑀 ∈ ℕ0) → (𝑘 + (𝑀 + 1)) ≠ 0)
154127, 151, 153divcan1d 11932 . . . . . . . . . . . . . . . . . 18 ((𝑘 ∈ ℕ ∧ 𝑀 ∈ ℕ0) → (((𝑘 + 1) / (𝑘 + (𝑀 + 1))) · (𝑘 + (𝑀 + 1))) = (𝑘 + 1))
155154oveq1d 7372 . . . . . . . . . . . . . . . . 17 ((𝑘 ∈ ℕ ∧ 𝑀 ∈ ℕ0) → ((((𝑘 + 1) / (𝑘 + (𝑀 + 1))) · (𝑘 + (𝑀 + 1))) · (1 + (1 / (𝑘 + 1)))) = ((𝑘 + 1) · (1 + (1 / (𝑘 + 1)))))
156116rpcnd 12959 . . . . . . . . . . . . . . . . . 18 ((𝑘 ∈ ℕ ∧ 𝑀 ∈ ℕ0) → (1 / (𝑘 + 1)) ∈ ℂ)
157127, 103, 156adddid 11179 . . . . . . . . . . . . . . . . 17 ((𝑘 ∈ ℕ ∧ 𝑀 ∈ ℕ0) → ((𝑘 + 1) · (1 + (1 / (𝑘 + 1)))) = (((𝑘 + 1) · 1) + ((𝑘 + 1) · (1 / (𝑘 + 1)))))
158103, 127, 129divcan2d 11933 . . . . . . . . . . . . . . . . . 18 ((𝑘 ∈ ℕ ∧ 𝑀 ∈ ℕ0) → ((𝑘 + 1) · (1 / (𝑘 + 1))) = 1)
159137, 158oveq12d 7375 . . . . . . . . . . . . . . . . 17 ((𝑘 ∈ ℕ ∧ 𝑀 ∈ ℕ0) → (((𝑘 + 1) · 1) + ((𝑘 + 1) · (1 / (𝑘 + 1)))) = ((𝑘 + 1) + 1))
160155, 157, 1593eqtrd 2780 . . . . . . . . . . . . . . . 16 ((𝑘 ∈ ℕ ∧ 𝑀 ∈ ℕ0) → ((((𝑘 + 1) / (𝑘 + (𝑀 + 1))) · (𝑘 + (𝑀 + 1))) · (1 + (1 / (𝑘 + 1)))) = ((𝑘 + 1) + 1))
161152, 160eqtr3d 2778 . . . . . . . . . . . . . . 15 ((𝑘 ∈ ℕ ∧ 𝑀 ∈ ℕ0) → (((𝑘 + 1) / (𝑘 + (𝑀 + 1))) · ((𝑘 + (𝑀 + 1)) · (1 + (1 / (𝑘 + 1))))) = ((𝑘 + 1) + 1))
162132, 150, 1613eqtrd 2780 . . . . . . . . . . . . . 14 ((𝑘 ∈ ℕ ∧ 𝑀 ∈ ℕ0) → ((𝑘 + 1) · (((𝑘 + 1) / (𝑘 + (𝑀 + 1))) · ((1 + (𝑀 / (𝑘 + 1))) · (1 + (1 / (𝑘 + 1)))))) = ((𝑘 + 1) + 1))
163119rpcnd 12959 . . . . . . . . . . . . . . . 16 ((𝑘 ∈ ℕ ∧ 𝑀 ∈ ℕ0) → ((𝑀 + 1) / (𝑘 + 1)) ∈ ℂ)
164127, 103, 163adddid 11179 . . . . . . . . . . . . . . 15 ((𝑘 ∈ ℕ ∧ 𝑀 ∈ ℕ0) → ((𝑘 + 1) · (1 + ((𝑀 + 1) / (𝑘 + 1)))) = (((𝑘 + 1) · 1) + ((𝑘 + 1) · ((𝑀 + 1) / (𝑘 + 1)))))
16594, 127, 129divcan2d 11933 . . . . . . . . . . . . . . . 16 ((𝑘 ∈ ℕ ∧ 𝑀 ∈ ℕ0) → ((𝑘 + 1) · ((𝑀 + 1) / (𝑘 + 1))) = (𝑀 + 1))
166137, 165oveq12d 7375 . . . . . . . . . . . . . . 15 ((𝑘 ∈ ℕ ∧ 𝑀 ∈ ℕ0) → (((𝑘 + 1) · 1) + ((𝑘 + 1) · ((𝑀 + 1) / (𝑘 + 1)))) = ((𝑘 + 1) + (𝑀 + 1)))
167164, 166eqtrd 2776 . . . . . . . . . . . . . 14 ((𝑘 ∈ ℕ ∧ 𝑀 ∈ ℕ0) → ((𝑘 + 1) · (1 + ((𝑀 + 1) / (𝑘 + 1)))) = ((𝑘 + 1) + (𝑀 + 1)))
168162, 167oveq12d 7375 . . . . . . . . . . . . 13 ((𝑘 ∈ ℕ ∧ 𝑀 ∈ ℕ0) → (((𝑘 + 1) · (((𝑘 + 1) / (𝑘 + (𝑀 + 1))) · ((1 + (𝑀 / (𝑘 + 1))) · (1 + (1 / (𝑘 + 1)))))) / ((𝑘 + 1) · (1 + ((𝑀 + 1) / (𝑘 + 1))))) = (((𝑘 + 1) + 1) / ((𝑘 + 1) + (𝑀 + 1))))
169102, 131, 126, 128divassd 11966 . . . . . . . . . . . . 13 ((𝑘 ∈ ℕ ∧ 𝑀 ∈ ℕ0) → ((((𝑘 + 1) / (𝑘 + (𝑀 + 1))) · ((1 + (𝑀 / (𝑘 + 1))) · (1 + (1 / (𝑘 + 1))))) / (1 + ((𝑀 + 1) / (𝑘 + 1)))) = (((𝑘 + 1) / (𝑘 + (𝑀 + 1))) · (((1 + (𝑀 / (𝑘 + 1))) · (1 + (1 / (𝑘 + 1)))) / (1 + ((𝑀 + 1) / (𝑘 + 1))))))
170130, 168, 1693eqtr3rd 2785 . . . . . . . . . . . 12 ((𝑘 ∈ ℕ ∧ 𝑀 ∈ ℕ0) → (((𝑘 + 1) / (𝑘 + (𝑀 + 1))) · (((1 + (𝑀 / (𝑘 + 1))) · (1 + (1 / (𝑘 + 1)))) / (1 + ((𝑀 + 1) / (𝑘 + 1))))) = (((𝑘 + 1) + 1) / ((𝑘 + 1) + (𝑀 + 1))))
171170oveq2d 7373 . . . . . . . . . . 11 ((𝑘 ∈ ℕ ∧ 𝑀 ∈ ℕ0) → ((𝑀 + 1) · (((𝑘 + 1) / (𝑘 + (𝑀 + 1))) · (((1 + (𝑀 / (𝑘 + 1))) · (1 + (1 / (𝑘 + 1)))) / (1 + ((𝑀 + 1) / (𝑘 + 1)))))) = ((𝑀 + 1) · (((𝑘 + 1) + 1) / ((𝑘 + 1) + (𝑀 + 1)))))
17292, 123, 1713eqtrd 2780 . . . . . . . . . 10 ((𝑘 ∈ ℕ ∧ 𝑀 ∈ ℕ0) → (((𝑀 + 1) · ((𝑘 + 1) / (𝑘 + (𝑀 + 1)))) · ((𝑛 ∈ ℕ ↦ (((1 + (𝑀 / 𝑛)) · (1 + (1 / 𝑛))) / (1 + ((𝑀 + 1) / 𝑛))))‘(𝑘 + 1))) = ((𝑀 + 1) · (((𝑘 + 1) + 1) / ((𝑘 + 1) + (𝑀 + 1)))))
173172adantr 481 . . . . . . . . 9 (((𝑘 ∈ ℕ ∧ 𝑀 ∈ ℕ0) ∧ (seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (𝑀 / 𝑛)) · (1 + (1 / 𝑛))) / (1 + ((𝑀 + 1) / 𝑛)))))‘𝑘) = ((𝑀 + 1) · ((𝑘 + 1) / (𝑘 + (𝑀 + 1))))) → (((𝑀 + 1) · ((𝑘 + 1) / (𝑘 + (𝑀 + 1)))) · ((𝑛 ∈ ℕ ↦ (((1 + (𝑀 / 𝑛)) · (1 + (1 / 𝑛))) / (1 + ((𝑀 + 1) / 𝑛))))‘(𝑘 + 1))) = ((𝑀 + 1) · (((𝑘 + 1) + 1) / ((𝑘 + 1) + (𝑀 + 1)))))
17476, 78, 1733eqtrd 2780 . . . . . . . 8 (((𝑘 ∈ ℕ ∧ 𝑀 ∈ ℕ0) ∧ (seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (𝑀 / 𝑛)) · (1 + (1 / 𝑛))) / (1 + ((𝑀 + 1) / 𝑛)))))‘𝑘) = ((𝑀 + 1) · ((𝑘 + 1) / (𝑘 + (𝑀 + 1))))) → (seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (𝑀 / 𝑛)) · (1 + (1 / 𝑛))) / (1 + ((𝑀 + 1) / 𝑛)))))‘(𝑘 + 1)) = ((𝑀 + 1) · (((𝑘 + 1) + 1) / ((𝑘 + 1) + (𝑀 + 1)))))
175174exp31 420 . . . . . . 7 (𝑘 ∈ ℕ → (𝑀 ∈ ℕ0 → ((seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (𝑀 / 𝑛)) · (1 + (1 / 𝑛))) / (1 + ((𝑀 + 1) / 𝑛)))))‘𝑘) = ((𝑀 + 1) · ((𝑘 + 1) / (𝑘 + (𝑀 + 1)))) → (seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (𝑀 / 𝑛)) · (1 + (1 / 𝑛))) / (1 + ((𝑀 + 1) / 𝑛)))))‘(𝑘 + 1)) = ((𝑀 + 1) · (((𝑘 + 1) + 1) / ((𝑘 + 1) + (𝑀 + 1)))))))
176175a2d 29 . . . . . 6 (𝑘 ∈ ℕ → ((𝑀 ∈ ℕ0 → (seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (𝑀 / 𝑛)) · (1 + (1 / 𝑛))) / (1 + ((𝑀 + 1) / 𝑛)))))‘𝑘) = ((𝑀 + 1) · ((𝑘 + 1) / (𝑘 + (𝑀 + 1))))) → (𝑀 ∈ ℕ0 → (seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (𝑀 / 𝑛)) · (1 + (1 / 𝑛))) / (1 + ((𝑀 + 1) / 𝑛)))))‘(𝑘 + 1)) = ((𝑀 + 1) · (((𝑘 + 1) + 1) / ((𝑘 + 1) + (𝑀 + 1)))))))
17711, 18, 25, 32, 71, 176nnind 12171 . . . . 5 (𝑏 ∈ ℕ → (𝑀 ∈ ℕ0 → (seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (𝑀 / 𝑛)) · (1 + (1 / 𝑛))) / (1 + ((𝑀 + 1) / 𝑛)))))‘𝑏) = ((𝑀 + 1) · ((𝑏 + 1) / (𝑏 + (𝑀 + 1))))))
178177impcom 408 . . . 4 ((𝑀 ∈ ℕ0𝑏 ∈ ℕ) → (seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (𝑀 / 𝑛)) · (1 + (1 / 𝑛))) / (1 + ((𝑀 + 1) / 𝑛)))))‘𝑏) = ((𝑀 + 1) · ((𝑏 + 1) / (𝑏 + (𝑀 + 1)))))
179 oveq1 7364 . . . . . . . 8 (𝑥 = 𝑏 → (𝑥 + 1) = (𝑏 + 1))
180 oveq1 7364 . . . . . . . 8 (𝑥 = 𝑏 → (𝑥 + (𝑀 + 1)) = (𝑏 + (𝑀 + 1)))
181179, 180oveq12d 7375 . . . . . . 7 (𝑥 = 𝑏 → ((𝑥 + 1) / (𝑥 + (𝑀 + 1))) = ((𝑏 + 1) / (𝑏 + (𝑀 + 1))))
182181oveq2d 7373 . . . . . 6 (𝑥 = 𝑏 → ((𝑀 + 1) · ((𝑥 + 1) / (𝑥 + (𝑀 + 1)))) = ((𝑀 + 1) · ((𝑏 + 1) / (𝑏 + (𝑀 + 1)))))
183 eqid 2736 . . . . . 6 (𝑥 ∈ ℕ ↦ ((𝑀 + 1) · ((𝑥 + 1) / (𝑥 + (𝑀 + 1))))) = (𝑥 ∈ ℕ ↦ ((𝑀 + 1) · ((𝑥 + 1) / (𝑥 + (𝑀 + 1)))))
184 ovex 7390 . . . . . 6 ((𝑀 + 1) · ((𝑏 + 1) / (𝑏 + (𝑀 + 1)))) ∈ V
185182, 183, 184fvmpt 6948 . . . . 5 (𝑏 ∈ ℕ → ((𝑥 ∈ ℕ ↦ ((𝑀 + 1) · ((𝑥 + 1) / (𝑥 + (𝑀 + 1)))))‘𝑏) = ((𝑀 + 1) · ((𝑏 + 1) / (𝑏 + (𝑀 + 1)))))
186185adantl 482 . . . 4 ((𝑀 ∈ ℕ0𝑏 ∈ ℕ) → ((𝑥 ∈ ℕ ↦ ((𝑀 + 1) · ((𝑥 + 1) / (𝑥 + (𝑀 + 1)))))‘𝑏) = ((𝑀 + 1) · ((𝑏 + 1) / (𝑏 + (𝑀 + 1)))))
187178, 186eqtr4d 2779 . . 3 ((𝑀 ∈ ℕ0𝑏 ∈ ℕ) → (seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (𝑀 / 𝑛)) · (1 + (1 / 𝑛))) / (1 + ((𝑀 + 1) / 𝑛)))))‘𝑏) = ((𝑥 ∈ ℕ ↦ ((𝑀 + 1) · ((𝑥 + 1) / (𝑥 + (𝑀 + 1)))))‘𝑏))
188187ralrimiva 3143 . 2 (𝑀 ∈ ℕ0 → ∀𝑏 ∈ ℕ (seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (𝑀 / 𝑛)) · (1 + (1 / 𝑛))) / (1 + ((𝑀 + 1) / 𝑛)))))‘𝑏) = ((𝑥 ∈ ℕ ↦ ((𝑀 + 1) · ((𝑥 + 1) / (𝑥 + (𝑀 + 1)))))‘𝑏))
189 seqfn 13918 . . . . 5 (1 ∈ ℤ → seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (𝑀 / 𝑛)) · (1 + (1 / 𝑛))) / (1 + ((𝑀 + 1) / 𝑛))))) Fn (ℤ‘1))
1902, 189ax-mp 5 . . . 4 seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (𝑀 / 𝑛)) · (1 + (1 / 𝑛))) / (1 + ((𝑀 + 1) / 𝑛))))) Fn (ℤ‘1)
19173fneq2i 6600 . . . 4 (seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (𝑀 / 𝑛)) · (1 + (1 / 𝑛))) / (1 + ((𝑀 + 1) / 𝑛))))) Fn ℕ ↔ seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (𝑀 / 𝑛)) · (1 + (1 / 𝑛))) / (1 + ((𝑀 + 1) / 𝑛))))) Fn (ℤ‘1))
192190, 191mpbir 230 . . 3 seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (𝑀 / 𝑛)) · (1 + (1 / 𝑛))) / (1 + ((𝑀 + 1) / 𝑛))))) Fn ℕ
193 ovex 7390 . . . 4 ((𝑀 + 1) · ((𝑥 + 1) / (𝑥 + (𝑀 + 1)))) ∈ V
194193, 183fnmpti 6644 . . 3 (𝑥 ∈ ℕ ↦ ((𝑀 + 1) · ((𝑥 + 1) / (𝑥 + (𝑀 + 1))))) Fn ℕ
195 eqfnfv 6982 . . 3 ((seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (𝑀 / 𝑛)) · (1 + (1 / 𝑛))) / (1 + ((𝑀 + 1) / 𝑛))))) Fn ℕ ∧ (𝑥 ∈ ℕ ↦ ((𝑀 + 1) · ((𝑥 + 1) / (𝑥 + (𝑀 + 1))))) Fn ℕ) → (seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (𝑀 / 𝑛)) · (1 + (1 / 𝑛))) / (1 + ((𝑀 + 1) / 𝑛))))) = (𝑥 ∈ ℕ ↦ ((𝑀 + 1) · ((𝑥 + 1) / (𝑥 + (𝑀 + 1))))) ↔ ∀𝑏 ∈ ℕ (seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (𝑀 / 𝑛)) · (1 + (1 / 𝑛))) / (1 + ((𝑀 + 1) / 𝑛)))))‘𝑏) = ((𝑥 ∈ ℕ ↦ ((𝑀 + 1) · ((𝑥 + 1) / (𝑥 + (𝑀 + 1)))))‘𝑏)))
196192, 194, 195mp2an 690 . 2 (seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (𝑀 / 𝑛)) · (1 + (1 / 𝑛))) / (1 + ((𝑀 + 1) / 𝑛))))) = (𝑥 ∈ ℕ ↦ ((𝑀 + 1) · ((𝑥 + 1) / (𝑥 + (𝑀 + 1))))) ↔ ∀𝑏 ∈ ℕ (seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (𝑀 / 𝑛)) · (1 + (1 / 𝑛))) / (1 + ((𝑀 + 1) / 𝑛)))))‘𝑏) = ((𝑥 ∈ ℕ ↦ ((𝑀 + 1) · ((𝑥 + 1) / (𝑥 + (𝑀 + 1)))))‘𝑏))
197188, 196sylibr 233 1 (𝑀 ∈ ℕ0 → seq1( · , (𝑛 ∈ ℕ ↦ (((1 + (𝑀 / 𝑛)) · (1 + (1 / 𝑛))) / (1 + ((𝑀 + 1) / 𝑛))))) = (𝑥 ∈ ℕ ↦ ((𝑀 + 1) · ((𝑥 + 1) / (𝑥 + (𝑀 + 1))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  wral 3064   class class class wbr 5105  cmpt 5188   Fn wfn 6491  cfv 6496  (class class class)co 7357  cc 11049  cr 11050  0cc0 11051  1c1 11052   + caddc 11054   · cmul 11056  cle 11190   / cdiv 11812  cn 12153  0cn0 12413  cz 12499  cuz 12763  +crp 12915  seqcseq 13906
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-er 8648  df-en 8884  df-dom 8885  df-sdom 8886  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-n0 12414  df-z 12500  df-uz 12764  df-rp 12916  df-seq 13907
This theorem is referenced by:  faclimlem2  34317
  Copyright terms: Public domain W3C validator