Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > normlem7 | Structured version Visualization version GIF version |
Description: Lemma used to derive properties of norm. Part of Theorem 3.3(ii) of [Beran] p. 97. (Contributed by NM, 11-Aug-1999.) (New usage is discouraged.) |
Ref | Expression |
---|---|
normlem1.1 | ⊢ 𝑆 ∈ ℂ |
normlem1.2 | ⊢ 𝐹 ∈ ℋ |
normlem1.3 | ⊢ 𝐺 ∈ ℋ |
normlem7.4 | ⊢ (abs‘𝑆) = 1 |
Ref | Expression |
---|---|
normlem7 | ⊢ (((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹))) ≤ (2 · ((√‘(𝐺 ·ih 𝐺)) · (√‘(𝐹 ·ih 𝐹)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | normlem1.1 | . . . . . 6 ⊢ 𝑆 ∈ ℂ | |
2 | normlem1.2 | . . . . . 6 ⊢ 𝐹 ∈ ℋ | |
3 | normlem1.3 | . . . . . 6 ⊢ 𝐺 ∈ ℋ | |
4 | eqid 2738 | . . . . . 6 ⊢ -(((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹))) = -(((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹))) | |
5 | 1, 2, 3, 4 | normlem2 29473 | . . . . 5 ⊢ -(((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹))) ∈ ℝ |
6 | 1 | cjcli 14880 | . . . . . . . 8 ⊢ (∗‘𝑆) ∈ ℂ |
7 | 2, 3 | hicli 29443 | . . . . . . . 8 ⊢ (𝐹 ·ih 𝐺) ∈ ℂ |
8 | 6, 7 | mulcli 10982 | . . . . . . 7 ⊢ ((∗‘𝑆) · (𝐹 ·ih 𝐺)) ∈ ℂ |
9 | 3, 2 | hicli 29443 | . . . . . . . 8 ⊢ (𝐺 ·ih 𝐹) ∈ ℂ |
10 | 1, 9 | mulcli 10982 | . . . . . . 7 ⊢ (𝑆 · (𝐺 ·ih 𝐹)) ∈ ℂ |
11 | 8, 10 | addcli 10981 | . . . . . 6 ⊢ (((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹))) ∈ ℂ |
12 | 11 | negrebi 11295 | . . . . 5 ⊢ (-(((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹))) ∈ ℝ ↔ (((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹))) ∈ ℝ) |
13 | 5, 12 | mpbi 229 | . . . 4 ⊢ (((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹))) ∈ ℝ |
14 | 13 | leabsi 15091 | . . 3 ⊢ (((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹))) ≤ (abs‘(((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹)))) |
15 | 11 | absnegi 15112 | . . 3 ⊢ (abs‘-(((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹)))) = (abs‘(((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹)))) |
16 | 14, 15 | breqtrri 5101 | . 2 ⊢ (((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹))) ≤ (abs‘-(((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹)))) |
17 | eqid 2738 | . . 3 ⊢ (𝐺 ·ih 𝐺) = (𝐺 ·ih 𝐺) | |
18 | eqid 2738 | . . 3 ⊢ (𝐹 ·ih 𝐹) = (𝐹 ·ih 𝐹) | |
19 | normlem7.4 | . . 3 ⊢ (abs‘𝑆) = 1 | |
20 | 1, 2, 3, 4, 17, 18, 19 | normlem6 29477 | . 2 ⊢ (abs‘-(((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹)))) ≤ (2 · ((√‘(𝐺 ·ih 𝐺)) · (√‘(𝐹 ·ih 𝐹)))) |
21 | 11 | negcli 11289 | . . . 4 ⊢ -(((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹))) ∈ ℂ |
22 | 21 | abscli 15107 | . . 3 ⊢ (abs‘-(((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹)))) ∈ ℝ |
23 | 2re 12047 | . . . 4 ⊢ 2 ∈ ℝ | |
24 | hiidge0 29460 | . . . . . 6 ⊢ (𝐺 ∈ ℋ → 0 ≤ (𝐺 ·ih 𝐺)) | |
25 | hiidrcl 29457 | . . . . . . . 8 ⊢ (𝐺 ∈ ℋ → (𝐺 ·ih 𝐺) ∈ ℝ) | |
26 | 3, 25 | ax-mp 5 | . . . . . . 7 ⊢ (𝐺 ·ih 𝐺) ∈ ℝ |
27 | 26 | sqrtcli 15083 | . . . . . 6 ⊢ (0 ≤ (𝐺 ·ih 𝐺) → (√‘(𝐺 ·ih 𝐺)) ∈ ℝ) |
28 | 3, 24, 27 | mp2b 10 | . . . . 5 ⊢ (√‘(𝐺 ·ih 𝐺)) ∈ ℝ |
29 | hiidge0 29460 | . . . . . 6 ⊢ (𝐹 ∈ ℋ → 0 ≤ (𝐹 ·ih 𝐹)) | |
30 | hiidrcl 29457 | . . . . . . . 8 ⊢ (𝐹 ∈ ℋ → (𝐹 ·ih 𝐹) ∈ ℝ) | |
31 | 2, 30 | ax-mp 5 | . . . . . . 7 ⊢ (𝐹 ·ih 𝐹) ∈ ℝ |
32 | 31 | sqrtcli 15083 | . . . . . 6 ⊢ (0 ≤ (𝐹 ·ih 𝐹) → (√‘(𝐹 ·ih 𝐹)) ∈ ℝ) |
33 | 2, 29, 32 | mp2b 10 | . . . . 5 ⊢ (√‘(𝐹 ·ih 𝐹)) ∈ ℝ |
34 | 28, 33 | remulcli 10991 | . . . 4 ⊢ ((√‘(𝐺 ·ih 𝐺)) · (√‘(𝐹 ·ih 𝐹))) ∈ ℝ |
35 | 23, 34 | remulcli 10991 | . . 3 ⊢ (2 · ((√‘(𝐺 ·ih 𝐺)) · (√‘(𝐹 ·ih 𝐹)))) ∈ ℝ |
36 | 13, 22, 35 | letri 11104 | . 2 ⊢ (((((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹))) ≤ (abs‘-(((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹)))) ∧ (abs‘-(((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹)))) ≤ (2 · ((√‘(𝐺 ·ih 𝐺)) · (√‘(𝐹 ·ih 𝐹))))) → (((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹))) ≤ (2 · ((√‘(𝐺 ·ih 𝐺)) · (√‘(𝐹 ·ih 𝐹))))) |
37 | 16, 20, 36 | mp2an 689 | 1 ⊢ (((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹))) ≤ (2 · ((√‘(𝐺 ·ih 𝐺)) · (√‘(𝐹 ·ih 𝐹)))) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∈ wcel 2106 class class class wbr 5074 ‘cfv 6433 (class class class)co 7275 ℂcc 10869 ℝcr 10870 0cc0 10871 1c1 10872 + caddc 10874 · cmul 10876 ≤ cle 11010 -cneg 11206 2c2 12028 ∗ccj 14807 √csqrt 14944 abscabs 14945 ℋchba 29281 ·ih csp 29284 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 ax-pre-sup 10949 ax-hfvadd 29362 ax-hv0cl 29365 ax-hfvmul 29367 ax-hvmulass 29369 ax-hvmul0 29372 ax-hfi 29441 ax-his1 29444 ax-his2 29445 ax-his3 29446 ax-his4 29447 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-sup 9201 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-div 11633 df-nn 11974 df-2 12036 df-3 12037 df-4 12038 df-n0 12234 df-z 12320 df-uz 12583 df-rp 12731 df-seq 13722 df-exp 13783 df-cj 14810 df-re 14811 df-im 14812 df-sqrt 14946 df-abs 14947 df-hvsub 29333 |
This theorem is referenced by: normlem7tALT 29481 norm-ii-i 29499 |
Copyright terms: Public domain | W3C validator |