HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  normlem7 Structured version   Visualization version   GIF version

Theorem normlem7 31097
Description: Lemma used to derive properties of norm. Part of Theorem 3.3(ii) of [Beran] p. 97. (Contributed by NM, 11-Aug-1999.) (New usage is discouraged.)
Hypotheses
Ref Expression
normlem1.1 𝑆 ∈ ℂ
normlem1.2 𝐹 ∈ ℋ
normlem1.3 𝐺 ∈ ℋ
normlem7.4 (abs‘𝑆) = 1
Assertion
Ref Expression
normlem7 (((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹))) ≤ (2 · ((√‘(𝐺 ·ih 𝐺)) · (√‘(𝐹 ·ih 𝐹))))

Proof of Theorem normlem7
StepHypRef Expression
1 normlem1.1 . . . . . 6 𝑆 ∈ ℂ
2 normlem1.2 . . . . . 6 𝐹 ∈ ℋ
3 normlem1.3 . . . . . 6 𝐺 ∈ ℋ
4 eqid 2735 . . . . . 6 -(((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹))) = -(((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹)))
51, 2, 3, 4normlem2 31092 . . . . 5 -(((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹))) ∈ ℝ
61cjcli 15188 . . . . . . . 8 (∗‘𝑆) ∈ ℂ
72, 3hicli 31062 . . . . . . . 8 (𝐹 ·ih 𝐺) ∈ ℂ
86, 7mulcli 11242 . . . . . . 7 ((∗‘𝑆) · (𝐹 ·ih 𝐺)) ∈ ℂ
93, 2hicli 31062 . . . . . . . 8 (𝐺 ·ih 𝐹) ∈ ℂ
101, 9mulcli 11242 . . . . . . 7 (𝑆 · (𝐺 ·ih 𝐹)) ∈ ℂ
118, 10addcli 11241 . . . . . 6 (((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹))) ∈ ℂ
1211negrebi 11557 . . . . 5 (-(((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹))) ∈ ℝ ↔ (((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹))) ∈ ℝ)
135, 12mpbi 230 . . . 4 (((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹))) ∈ ℝ
1413leabsi 15398 . . 3 (((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹))) ≤ (abs‘(((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹))))
1511absnegi 15419 . . 3 (abs‘-(((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹)))) = (abs‘(((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹))))
1614, 15breqtrri 5146 . 2 (((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹))) ≤ (abs‘-(((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹))))
17 eqid 2735 . . 3 (𝐺 ·ih 𝐺) = (𝐺 ·ih 𝐺)
18 eqid 2735 . . 3 (𝐹 ·ih 𝐹) = (𝐹 ·ih 𝐹)
19 normlem7.4 . . 3 (abs‘𝑆) = 1
201, 2, 3, 4, 17, 18, 19normlem6 31096 . 2 (abs‘-(((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹)))) ≤ (2 · ((√‘(𝐺 ·ih 𝐺)) · (√‘(𝐹 ·ih 𝐹))))
2111negcli 11551 . . . 4 -(((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹))) ∈ ℂ
2221abscli 15414 . . 3 (abs‘-(((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹)))) ∈ ℝ
23 2re 12314 . . . 4 2 ∈ ℝ
24 hiidge0 31079 . . . . . 6 (𝐺 ∈ ℋ → 0 ≤ (𝐺 ·ih 𝐺))
25 hiidrcl 31076 . . . . . . . 8 (𝐺 ∈ ℋ → (𝐺 ·ih 𝐺) ∈ ℝ)
263, 25ax-mp 5 . . . . . . 7 (𝐺 ·ih 𝐺) ∈ ℝ
2726sqrtcli 15390 . . . . . 6 (0 ≤ (𝐺 ·ih 𝐺) → (√‘(𝐺 ·ih 𝐺)) ∈ ℝ)
283, 24, 27mp2b 10 . . . . 5 (√‘(𝐺 ·ih 𝐺)) ∈ ℝ
29 hiidge0 31079 . . . . . 6 (𝐹 ∈ ℋ → 0 ≤ (𝐹 ·ih 𝐹))
30 hiidrcl 31076 . . . . . . . 8 (𝐹 ∈ ℋ → (𝐹 ·ih 𝐹) ∈ ℝ)
312, 30ax-mp 5 . . . . . . 7 (𝐹 ·ih 𝐹) ∈ ℝ
3231sqrtcli 15390 . . . . . 6 (0 ≤ (𝐹 ·ih 𝐹) → (√‘(𝐹 ·ih 𝐹)) ∈ ℝ)
332, 29, 32mp2b 10 . . . . 5 (√‘(𝐹 ·ih 𝐹)) ∈ ℝ
3428, 33remulcli 11251 . . . 4 ((√‘(𝐺 ·ih 𝐺)) · (√‘(𝐹 ·ih 𝐹))) ∈ ℝ
3523, 34remulcli 11251 . . 3 (2 · ((√‘(𝐺 ·ih 𝐺)) · (√‘(𝐹 ·ih 𝐹)))) ∈ ℝ
3613, 22, 35letri 11364 . 2 (((((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹))) ≤ (abs‘-(((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹)))) ∧ (abs‘-(((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹)))) ≤ (2 · ((√‘(𝐺 ·ih 𝐺)) · (√‘(𝐹 ·ih 𝐹))))) → (((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹))) ≤ (2 · ((√‘(𝐺 ·ih 𝐺)) · (√‘(𝐹 ·ih 𝐹)))))
3716, 20, 36mp2an 692 1 (((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹))) ≤ (2 · ((√‘(𝐺 ·ih 𝐺)) · (√‘(𝐹 ·ih 𝐹))))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2108   class class class wbr 5119  cfv 6531  (class class class)co 7405  cc 11127  cr 11128  0cc0 11129  1c1 11130   + caddc 11132   · cmul 11134  cle 11270  -cneg 11467  2c2 12295  ccj 15115  csqrt 15252  abscabs 15253  chba 30900   ·ih csp 30903
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206  ax-pre-sup 11207  ax-hfvadd 30981  ax-hv0cl 30984  ax-hfvmul 30986  ax-hvmulass 30988  ax-hvmul0 30991  ax-hfi 31060  ax-his1 31063  ax-his2 31064  ax-his3 31065  ax-his4 31066
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-sup 9454  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-div 11895  df-nn 12241  df-2 12303  df-3 12304  df-4 12305  df-n0 12502  df-z 12589  df-uz 12853  df-rp 13009  df-seq 14020  df-exp 14080  df-cj 15118  df-re 15119  df-im 15120  df-sqrt 15254  df-abs 15255  df-hvsub 30952
This theorem is referenced by:  normlem7tALT  31100  norm-ii-i  31118
  Copyright terms: Public domain W3C validator