HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  normlem7 Structured version   Visualization version   GIF version

Theorem normlem7 31096
Description: Lemma used to derive properties of norm. Part of Theorem 3.3(ii) of [Beran] p. 97. (Contributed by NM, 11-Aug-1999.) (New usage is discouraged.)
Hypotheses
Ref Expression
normlem1.1 𝑆 ∈ ℂ
normlem1.2 𝐹 ∈ ℋ
normlem1.3 𝐺 ∈ ℋ
normlem7.4 (abs‘𝑆) = 1
Assertion
Ref Expression
normlem7 (((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹))) ≤ (2 · ((√‘(𝐺 ·ih 𝐺)) · (√‘(𝐹 ·ih 𝐹))))

Proof of Theorem normlem7
StepHypRef Expression
1 normlem1.1 . . . . . 6 𝑆 ∈ ℂ
2 normlem1.2 . . . . . 6 𝐹 ∈ ℋ
3 normlem1.3 . . . . . 6 𝐺 ∈ ℋ
4 eqid 2731 . . . . . 6 -(((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹))) = -(((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹)))
51, 2, 3, 4normlem2 31091 . . . . 5 -(((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹))) ∈ ℝ
61cjcli 15076 . . . . . . . 8 (∗‘𝑆) ∈ ℂ
72, 3hicli 31061 . . . . . . . 8 (𝐹 ·ih 𝐺) ∈ ℂ
86, 7mulcli 11119 . . . . . . 7 ((∗‘𝑆) · (𝐹 ·ih 𝐺)) ∈ ℂ
93, 2hicli 31061 . . . . . . . 8 (𝐺 ·ih 𝐹) ∈ ℂ
101, 9mulcli 11119 . . . . . . 7 (𝑆 · (𝐺 ·ih 𝐹)) ∈ ℂ
118, 10addcli 11118 . . . . . 6 (((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹))) ∈ ℂ
1211negrebi 11435 . . . . 5 (-(((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹))) ∈ ℝ ↔ (((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹))) ∈ ℝ)
135, 12mpbi 230 . . . 4 (((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹))) ∈ ℝ
1413leabsi 15287 . . 3 (((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹))) ≤ (abs‘(((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹))))
1511absnegi 15308 . . 3 (abs‘-(((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹)))) = (abs‘(((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹))))
1614, 15breqtrri 5116 . 2 (((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹))) ≤ (abs‘-(((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹))))
17 eqid 2731 . . 3 (𝐺 ·ih 𝐺) = (𝐺 ·ih 𝐺)
18 eqid 2731 . . 3 (𝐹 ·ih 𝐹) = (𝐹 ·ih 𝐹)
19 normlem7.4 . . 3 (abs‘𝑆) = 1
201, 2, 3, 4, 17, 18, 19normlem6 31095 . 2 (abs‘-(((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹)))) ≤ (2 · ((√‘(𝐺 ·ih 𝐺)) · (√‘(𝐹 ·ih 𝐹))))
2111negcli 11429 . . . 4 -(((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹))) ∈ ℂ
2221abscli 15303 . . 3 (abs‘-(((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹)))) ∈ ℝ
23 2re 12199 . . . 4 2 ∈ ℝ
24 hiidge0 31078 . . . . . 6 (𝐺 ∈ ℋ → 0 ≤ (𝐺 ·ih 𝐺))
25 hiidrcl 31075 . . . . . . . 8 (𝐺 ∈ ℋ → (𝐺 ·ih 𝐺) ∈ ℝ)
263, 25ax-mp 5 . . . . . . 7 (𝐺 ·ih 𝐺) ∈ ℝ
2726sqrtcli 15279 . . . . . 6 (0 ≤ (𝐺 ·ih 𝐺) → (√‘(𝐺 ·ih 𝐺)) ∈ ℝ)
283, 24, 27mp2b 10 . . . . 5 (√‘(𝐺 ·ih 𝐺)) ∈ ℝ
29 hiidge0 31078 . . . . . 6 (𝐹 ∈ ℋ → 0 ≤ (𝐹 ·ih 𝐹))
30 hiidrcl 31075 . . . . . . . 8 (𝐹 ∈ ℋ → (𝐹 ·ih 𝐹) ∈ ℝ)
312, 30ax-mp 5 . . . . . . 7 (𝐹 ·ih 𝐹) ∈ ℝ
3231sqrtcli 15279 . . . . . 6 (0 ≤ (𝐹 ·ih 𝐹) → (√‘(𝐹 ·ih 𝐹)) ∈ ℝ)
332, 29, 32mp2b 10 . . . . 5 (√‘(𝐹 ·ih 𝐹)) ∈ ℝ
3428, 33remulcli 11128 . . . 4 ((√‘(𝐺 ·ih 𝐺)) · (√‘(𝐹 ·ih 𝐹))) ∈ ℝ
3523, 34remulcli 11128 . . 3 (2 · ((√‘(𝐺 ·ih 𝐺)) · (√‘(𝐹 ·ih 𝐹)))) ∈ ℝ
3613, 22, 35letri 11242 . 2 (((((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹))) ≤ (abs‘-(((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹)))) ∧ (abs‘-(((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹)))) ≤ (2 · ((√‘(𝐺 ·ih 𝐺)) · (√‘(𝐹 ·ih 𝐹))))) → (((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹))) ≤ (2 · ((√‘(𝐺 ·ih 𝐺)) · (√‘(𝐹 ·ih 𝐹)))))
3716, 20, 36mp2an 692 1 (((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹))) ≤ (2 · ((√‘(𝐺 ·ih 𝐺)) · (√‘(𝐹 ·ih 𝐹))))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  wcel 2111   class class class wbr 5089  cfv 6481  (class class class)co 7346  cc 11004  cr 11005  0cc0 11006  1c1 11007   + caddc 11009   · cmul 11011  cle 11147  -cneg 11345  2c2 12180  ccj 15003  csqrt 15140  abscabs 15141  chba 30899   ·ih csp 30902
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084  ax-hfvadd 30980  ax-hv0cl 30983  ax-hfvmul 30985  ax-hvmulass 30987  ax-hvmul0 30990  ax-hfi 31059  ax-his1 31062  ax-his2 31063  ax-his3 31064  ax-his4 31065
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-sup 9326  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-n0 12382  df-z 12469  df-uz 12733  df-rp 12891  df-seq 13909  df-exp 13969  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-hvsub 30951
This theorem is referenced by:  normlem7tALT  31099  norm-ii-i  31117
  Copyright terms: Public domain W3C validator