Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > normlem7 | Structured version Visualization version GIF version |
Description: Lemma used to derive properties of norm. Part of Theorem 3.3(ii) of [Beran] p. 97. (Contributed by NM, 11-Aug-1999.) (New usage is discouraged.) |
Ref | Expression |
---|---|
normlem1.1 | ⊢ 𝑆 ∈ ℂ |
normlem1.2 | ⊢ 𝐹 ∈ ℋ |
normlem1.3 | ⊢ 𝐺 ∈ ℋ |
normlem7.4 | ⊢ (abs‘𝑆) = 1 |
Ref | Expression |
---|---|
normlem7 | ⊢ (((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹))) ≤ (2 · ((√‘(𝐺 ·ih 𝐺)) · (√‘(𝐹 ·ih 𝐹)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | normlem1.1 | . . . . . 6 ⊢ 𝑆 ∈ ℂ | |
2 | normlem1.2 | . . . . . 6 ⊢ 𝐹 ∈ ℋ | |
3 | normlem1.3 | . . . . . 6 ⊢ 𝐺 ∈ ℋ | |
4 | eqid 2740 | . . . . . 6 ⊢ -(((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹))) = -(((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹))) | |
5 | 1, 2, 3, 4 | normlem2 29469 | . . . . 5 ⊢ -(((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹))) ∈ ℝ |
6 | 1 | cjcli 14878 | . . . . . . . 8 ⊢ (∗‘𝑆) ∈ ℂ |
7 | 2, 3 | hicli 29439 | . . . . . . . 8 ⊢ (𝐹 ·ih 𝐺) ∈ ℂ |
8 | 6, 7 | mulcli 10983 | . . . . . . 7 ⊢ ((∗‘𝑆) · (𝐹 ·ih 𝐺)) ∈ ℂ |
9 | 3, 2 | hicli 29439 | . . . . . . . 8 ⊢ (𝐺 ·ih 𝐹) ∈ ℂ |
10 | 1, 9 | mulcli 10983 | . . . . . . 7 ⊢ (𝑆 · (𝐺 ·ih 𝐹)) ∈ ℂ |
11 | 8, 10 | addcli 10982 | . . . . . 6 ⊢ (((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹))) ∈ ℂ |
12 | 11 | negrebi 11295 | . . . . 5 ⊢ (-(((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹))) ∈ ℝ ↔ (((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹))) ∈ ℝ) |
13 | 5, 12 | mpbi 229 | . . . 4 ⊢ (((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹))) ∈ ℝ |
14 | 13 | leabsi 15089 | . . 3 ⊢ (((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹))) ≤ (abs‘(((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹)))) |
15 | 11 | absnegi 15110 | . . 3 ⊢ (abs‘-(((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹)))) = (abs‘(((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹)))) |
16 | 14, 15 | breqtrri 5106 | . 2 ⊢ (((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹))) ≤ (abs‘-(((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹)))) |
17 | eqid 2740 | . . 3 ⊢ (𝐺 ·ih 𝐺) = (𝐺 ·ih 𝐺) | |
18 | eqid 2740 | . . 3 ⊢ (𝐹 ·ih 𝐹) = (𝐹 ·ih 𝐹) | |
19 | normlem7.4 | . . 3 ⊢ (abs‘𝑆) = 1 | |
20 | 1, 2, 3, 4, 17, 18, 19 | normlem6 29473 | . 2 ⊢ (abs‘-(((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹)))) ≤ (2 · ((√‘(𝐺 ·ih 𝐺)) · (√‘(𝐹 ·ih 𝐹)))) |
21 | 11 | negcli 11289 | . . . 4 ⊢ -(((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹))) ∈ ℂ |
22 | 21 | abscli 15105 | . . 3 ⊢ (abs‘-(((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹)))) ∈ ℝ |
23 | 2re 12047 | . . . 4 ⊢ 2 ∈ ℝ | |
24 | hiidge0 29456 | . . . . . 6 ⊢ (𝐺 ∈ ℋ → 0 ≤ (𝐺 ·ih 𝐺)) | |
25 | hiidrcl 29453 | . . . . . . . 8 ⊢ (𝐺 ∈ ℋ → (𝐺 ·ih 𝐺) ∈ ℝ) | |
26 | 3, 25 | ax-mp 5 | . . . . . . 7 ⊢ (𝐺 ·ih 𝐺) ∈ ℝ |
27 | 26 | sqrtcli 15081 | . . . . . 6 ⊢ (0 ≤ (𝐺 ·ih 𝐺) → (√‘(𝐺 ·ih 𝐺)) ∈ ℝ) |
28 | 3, 24, 27 | mp2b 10 | . . . . 5 ⊢ (√‘(𝐺 ·ih 𝐺)) ∈ ℝ |
29 | hiidge0 29456 | . . . . . 6 ⊢ (𝐹 ∈ ℋ → 0 ≤ (𝐹 ·ih 𝐹)) | |
30 | hiidrcl 29453 | . . . . . . . 8 ⊢ (𝐹 ∈ ℋ → (𝐹 ·ih 𝐹) ∈ ℝ) | |
31 | 2, 30 | ax-mp 5 | . . . . . . 7 ⊢ (𝐹 ·ih 𝐹) ∈ ℝ |
32 | 31 | sqrtcli 15081 | . . . . . 6 ⊢ (0 ≤ (𝐹 ·ih 𝐹) → (√‘(𝐹 ·ih 𝐹)) ∈ ℝ) |
33 | 2, 29, 32 | mp2b 10 | . . . . 5 ⊢ (√‘(𝐹 ·ih 𝐹)) ∈ ℝ |
34 | 28, 33 | remulcli 10992 | . . . 4 ⊢ ((√‘(𝐺 ·ih 𝐺)) · (√‘(𝐹 ·ih 𝐹))) ∈ ℝ |
35 | 23, 34 | remulcli 10992 | . . 3 ⊢ (2 · ((√‘(𝐺 ·ih 𝐺)) · (√‘(𝐹 ·ih 𝐹)))) ∈ ℝ |
36 | 13, 22, 35 | letri 11104 | . 2 ⊢ (((((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹))) ≤ (abs‘-(((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹)))) ∧ (abs‘-(((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹)))) ≤ (2 · ((√‘(𝐺 ·ih 𝐺)) · (√‘(𝐹 ·ih 𝐹))))) → (((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹))) ≤ (2 · ((√‘(𝐺 ·ih 𝐺)) · (√‘(𝐹 ·ih 𝐹))))) |
37 | 16, 20, 36 | mp2an 689 | 1 ⊢ (((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹))) ≤ (2 · ((√‘(𝐺 ·ih 𝐺)) · (√‘(𝐹 ·ih 𝐹)))) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1542 ∈ wcel 2110 class class class wbr 5079 ‘cfv 6432 (class class class)co 7271 ℂcc 10870 ℝcr 10871 0cc0 10872 1c1 10873 + caddc 10875 · cmul 10877 ≤ cle 11011 -cneg 11206 2c2 12028 ∗ccj 14805 √csqrt 14942 abscabs 14943 ℋchba 29277 ·ih csp 29280 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 ax-un 7582 ax-cnex 10928 ax-resscn 10929 ax-1cn 10930 ax-icn 10931 ax-addcl 10932 ax-addrcl 10933 ax-mulcl 10934 ax-mulrcl 10935 ax-mulcom 10936 ax-addass 10937 ax-mulass 10938 ax-distr 10939 ax-i2m1 10940 ax-1ne0 10941 ax-1rid 10942 ax-rnegex 10943 ax-rrecex 10944 ax-cnre 10945 ax-pre-lttri 10946 ax-pre-lttrn 10947 ax-pre-ltadd 10948 ax-pre-mulgt0 10949 ax-pre-sup 10950 ax-hfvadd 29358 ax-hv0cl 29361 ax-hfvmul 29363 ax-hvmulass 29365 ax-hvmul0 29368 ax-hfi 29437 ax-his1 29440 ax-his2 29441 ax-his3 29442 ax-his4 29443 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-nel 3052 df-ral 3071 df-rex 3072 df-reu 3073 df-rmo 3074 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-iun 4932 df-br 5080 df-opab 5142 df-mpt 5163 df-tr 5197 df-id 5490 df-eprel 5496 df-po 5504 df-so 5505 df-fr 5545 df-we 5547 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-pred 6201 df-ord 6268 df-on 6269 df-lim 6270 df-suc 6271 df-iota 6390 df-fun 6434 df-fn 6435 df-f 6436 df-f1 6437 df-fo 6438 df-f1o 6439 df-fv 6440 df-riota 7228 df-ov 7274 df-oprab 7275 df-mpo 7276 df-om 7707 df-2nd 7825 df-frecs 8088 df-wrecs 8119 df-recs 8193 df-rdg 8232 df-er 8481 df-en 8717 df-dom 8718 df-sdom 8719 df-sup 9179 df-pnf 11012 df-mnf 11013 df-xr 11014 df-ltxr 11015 df-le 11016 df-sub 11207 df-neg 11208 df-div 11633 df-nn 11974 df-2 12036 df-3 12037 df-4 12038 df-n0 12234 df-z 12320 df-uz 12582 df-rp 12730 df-seq 13720 df-exp 13781 df-cj 14808 df-re 14809 df-im 14810 df-sqrt 14944 df-abs 14945 df-hvsub 29329 |
This theorem is referenced by: normlem7tALT 29477 norm-ii-i 29495 |
Copyright terms: Public domain | W3C validator |