![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > normlem7 | Structured version Visualization version GIF version |
Description: Lemma used to derive properties of norm. Part of Theorem 3.3(ii) of [Beran] p. 97. (Contributed by NM, 11-Aug-1999.) (New usage is discouraged.) |
Ref | Expression |
---|---|
normlem1.1 | ⊢ 𝑆 ∈ ℂ |
normlem1.2 | ⊢ 𝐹 ∈ ℋ |
normlem1.3 | ⊢ 𝐺 ∈ ℋ |
normlem7.4 | ⊢ (abs‘𝑆) = 1 |
Ref | Expression |
---|---|
normlem7 | ⊢ (((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹))) ≤ (2 · ((√‘(𝐺 ·ih 𝐺)) · (√‘(𝐹 ·ih 𝐹)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | normlem1.1 | . . . . . 6 ⊢ 𝑆 ∈ ℂ | |
2 | normlem1.2 | . . . . . 6 ⊢ 𝐹 ∈ ℋ | |
3 | normlem1.3 | . . . . . 6 ⊢ 𝐺 ∈ ℋ | |
4 | eqid 2825 | . . . . . 6 ⊢ -(((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹))) = -(((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹))) | |
5 | 1, 2, 3, 4 | normlem2 28519 | . . . . 5 ⊢ -(((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹))) ∈ ℝ |
6 | 1 | cjcli 14293 | . . . . . . . 8 ⊢ (∗‘𝑆) ∈ ℂ |
7 | 2, 3 | hicli 28489 | . . . . . . . 8 ⊢ (𝐹 ·ih 𝐺) ∈ ℂ |
8 | 6, 7 | mulcli 10371 | . . . . . . 7 ⊢ ((∗‘𝑆) · (𝐹 ·ih 𝐺)) ∈ ℂ |
9 | 3, 2 | hicli 28489 | . . . . . . . 8 ⊢ (𝐺 ·ih 𝐹) ∈ ℂ |
10 | 1, 9 | mulcli 10371 | . . . . . . 7 ⊢ (𝑆 · (𝐺 ·ih 𝐹)) ∈ ℂ |
11 | 8, 10 | addcli 10370 | . . . . . 6 ⊢ (((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹))) ∈ ℂ |
12 | 11 | negrebi 10683 | . . . . 5 ⊢ (-(((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹))) ∈ ℝ ↔ (((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹))) ∈ ℝ) |
13 | 5, 12 | mpbi 222 | . . . 4 ⊢ (((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹))) ∈ ℝ |
14 | 13 | leabsi 14503 | . . 3 ⊢ (((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹))) ≤ (abs‘(((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹)))) |
15 | 11 | absnegi 14523 | . . 3 ⊢ (abs‘-(((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹)))) = (abs‘(((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹)))) |
16 | 14, 15 | breqtrri 4902 | . 2 ⊢ (((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹))) ≤ (abs‘-(((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹)))) |
17 | eqid 2825 | . . 3 ⊢ (𝐺 ·ih 𝐺) = (𝐺 ·ih 𝐺) | |
18 | eqid 2825 | . . 3 ⊢ (𝐹 ·ih 𝐹) = (𝐹 ·ih 𝐹) | |
19 | normlem7.4 | . . 3 ⊢ (abs‘𝑆) = 1 | |
20 | 1, 2, 3, 4, 17, 18, 19 | normlem6 28523 | . 2 ⊢ (abs‘-(((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹)))) ≤ (2 · ((√‘(𝐺 ·ih 𝐺)) · (√‘(𝐹 ·ih 𝐹)))) |
21 | 11 | negcli 10677 | . . . 4 ⊢ -(((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹))) ∈ ℂ |
22 | 21 | abscli 14518 | . . 3 ⊢ (abs‘-(((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹)))) ∈ ℝ |
23 | 2re 11432 | . . . 4 ⊢ 2 ∈ ℝ | |
24 | hiidge0 28506 | . . . . . 6 ⊢ (𝐺 ∈ ℋ → 0 ≤ (𝐺 ·ih 𝐺)) | |
25 | hiidrcl 28503 | . . . . . . . 8 ⊢ (𝐺 ∈ ℋ → (𝐺 ·ih 𝐺) ∈ ℝ) | |
26 | 3, 25 | ax-mp 5 | . . . . . . 7 ⊢ (𝐺 ·ih 𝐺) ∈ ℝ |
27 | 26 | sqrtcli 14495 | . . . . . 6 ⊢ (0 ≤ (𝐺 ·ih 𝐺) → (√‘(𝐺 ·ih 𝐺)) ∈ ℝ) |
28 | 3, 24, 27 | mp2b 10 | . . . . 5 ⊢ (√‘(𝐺 ·ih 𝐺)) ∈ ℝ |
29 | hiidge0 28506 | . . . . . 6 ⊢ (𝐹 ∈ ℋ → 0 ≤ (𝐹 ·ih 𝐹)) | |
30 | hiidrcl 28503 | . . . . . . . 8 ⊢ (𝐹 ∈ ℋ → (𝐹 ·ih 𝐹) ∈ ℝ) | |
31 | 2, 30 | ax-mp 5 | . . . . . . 7 ⊢ (𝐹 ·ih 𝐹) ∈ ℝ |
32 | 31 | sqrtcli 14495 | . . . . . 6 ⊢ (0 ≤ (𝐹 ·ih 𝐹) → (√‘(𝐹 ·ih 𝐹)) ∈ ℝ) |
33 | 2, 29, 32 | mp2b 10 | . . . . 5 ⊢ (√‘(𝐹 ·ih 𝐹)) ∈ ℝ |
34 | 28, 33 | remulcli 10380 | . . . 4 ⊢ ((√‘(𝐺 ·ih 𝐺)) · (√‘(𝐹 ·ih 𝐹))) ∈ ℝ |
35 | 23, 34 | remulcli 10380 | . . 3 ⊢ (2 · ((√‘(𝐺 ·ih 𝐺)) · (√‘(𝐹 ·ih 𝐹)))) ∈ ℝ |
36 | 13, 22, 35 | letri 10492 | . 2 ⊢ (((((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹))) ≤ (abs‘-(((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹)))) ∧ (abs‘-(((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹)))) ≤ (2 · ((√‘(𝐺 ·ih 𝐺)) · (√‘(𝐹 ·ih 𝐹))))) → (((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹))) ≤ (2 · ((√‘(𝐺 ·ih 𝐺)) · (√‘(𝐹 ·ih 𝐹))))) |
37 | 16, 20, 36 | mp2an 683 | 1 ⊢ (((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹))) ≤ (2 · ((√‘(𝐺 ·ih 𝐺)) · (√‘(𝐹 ·ih 𝐹)))) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1656 ∈ wcel 2164 class class class wbr 4875 ‘cfv 6127 (class class class)co 6910 ℂcc 10257 ℝcr 10258 0cc0 10259 1c1 10260 + caddc 10262 · cmul 10264 ≤ cle 10399 -cneg 10593 2c2 11413 ∗ccj 14220 √csqrt 14357 abscabs 14358 ℋchba 28327 ·ih csp 28330 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1894 ax-4 1908 ax-5 2009 ax-6 2075 ax-7 2112 ax-8 2166 ax-9 2173 ax-10 2192 ax-11 2207 ax-12 2220 ax-13 2389 ax-ext 2803 ax-sep 5007 ax-nul 5015 ax-pow 5067 ax-pr 5129 ax-un 7214 ax-cnex 10315 ax-resscn 10316 ax-1cn 10317 ax-icn 10318 ax-addcl 10319 ax-addrcl 10320 ax-mulcl 10321 ax-mulrcl 10322 ax-mulcom 10323 ax-addass 10324 ax-mulass 10325 ax-distr 10326 ax-i2m1 10327 ax-1ne0 10328 ax-1rid 10329 ax-rnegex 10330 ax-rrecex 10331 ax-cnre 10332 ax-pre-lttri 10333 ax-pre-lttrn 10334 ax-pre-ltadd 10335 ax-pre-mulgt0 10336 ax-pre-sup 10337 ax-hfvadd 28408 ax-hv0cl 28411 ax-hfvmul 28413 ax-hvmulass 28415 ax-hvmul0 28418 ax-hfi 28487 ax-his1 28490 ax-his2 28491 ax-his3 28492 ax-his4 28493 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 879 df-3or 1112 df-3an 1113 df-tru 1660 df-ex 1879 df-nf 1883 df-sb 2068 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ne 3000 df-nel 3103 df-ral 3122 df-rex 3123 df-reu 3124 df-rmo 3125 df-rab 3126 df-v 3416 df-sbc 3663 df-csb 3758 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-pss 3814 df-nul 4147 df-if 4309 df-pw 4382 df-sn 4400 df-pr 4402 df-tp 4404 df-op 4406 df-uni 4661 df-iun 4744 df-br 4876 df-opab 4938 df-mpt 4955 df-tr 4978 df-id 5252 df-eprel 5257 df-po 5265 df-so 5266 df-fr 5305 df-we 5307 df-xp 5352 df-rel 5353 df-cnv 5354 df-co 5355 df-dm 5356 df-rn 5357 df-res 5358 df-ima 5359 df-pred 5924 df-ord 5970 df-on 5971 df-lim 5972 df-suc 5973 df-iota 6090 df-fun 6129 df-fn 6130 df-f 6131 df-f1 6132 df-fo 6133 df-f1o 6134 df-fv 6135 df-riota 6871 df-ov 6913 df-oprab 6914 df-mpt2 6915 df-om 7332 df-2nd 7434 df-wrecs 7677 df-recs 7739 df-rdg 7777 df-er 8014 df-en 8229 df-dom 8230 df-sdom 8231 df-sup 8623 df-pnf 10400 df-mnf 10401 df-xr 10402 df-ltxr 10403 df-le 10404 df-sub 10594 df-neg 10595 df-div 11017 df-nn 11358 df-2 11421 df-3 11422 df-4 11423 df-n0 11626 df-z 11712 df-uz 11976 df-rp 12120 df-seq 13103 df-exp 13162 df-cj 14223 df-re 14224 df-im 14225 df-sqrt 14359 df-abs 14360 df-hvsub 28379 |
This theorem is referenced by: normlem7tALT 28527 norm-ii-i 28545 |
Copyright terms: Public domain | W3C validator |