MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nn0opth2i Structured version   Visualization version   GIF version

Theorem nn0opth2i 14236
Description: An ordered pair theorem for nonnegative integers. Theorem 17.3 of [Quine] p. 124. See comments for nn0opthi 14235. (Contributed by NM, 22-Jul-2004.)
Hypotheses
Ref Expression
nn0opth.1 𝐴 ∈ ℕ0
nn0opth.2 𝐵 ∈ ℕ0
nn0opth.3 𝐶 ∈ ℕ0
nn0opth.4 𝐷 ∈ ℕ0
Assertion
Ref Expression
nn0opth2i ((((𝐴 + 𝐵)↑2) + 𝐵) = (((𝐶 + 𝐷)↑2) + 𝐷) ↔ (𝐴 = 𝐶𝐵 = 𝐷))

Proof of Theorem nn0opth2i
StepHypRef Expression
1 nn0opth.1 . . . . . . 7 𝐴 ∈ ℕ0
21nn0cni 12454 . . . . . 6 𝐴 ∈ ℂ
3 nn0opth.2 . . . . . . 7 𝐵 ∈ ℕ0
43nn0cni 12454 . . . . . 6 𝐵 ∈ ℂ
52, 4addcli 11180 . . . . 5 (𝐴 + 𝐵) ∈ ℂ
65sqvali 14145 . . . 4 ((𝐴 + 𝐵)↑2) = ((𝐴 + 𝐵) · (𝐴 + 𝐵))
76oveq1i 7397 . . 3 (((𝐴 + 𝐵)↑2) + 𝐵) = (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵)
8 nn0opth.3 . . . . . . 7 𝐶 ∈ ℕ0
98nn0cni 12454 . . . . . 6 𝐶 ∈ ℂ
10 nn0opth.4 . . . . . . 7 𝐷 ∈ ℕ0
1110nn0cni 12454 . . . . . 6 𝐷 ∈ ℂ
129, 11addcli 11180 . . . . 5 (𝐶 + 𝐷) ∈ ℂ
1312sqvali 14145 . . . 4 ((𝐶 + 𝐷)↑2) = ((𝐶 + 𝐷) · (𝐶 + 𝐷))
1413oveq1i 7397 . . 3 (((𝐶 + 𝐷)↑2) + 𝐷) = (((𝐶 + 𝐷) · (𝐶 + 𝐷)) + 𝐷)
157, 14eqeq12i 2747 . 2 ((((𝐴 + 𝐵)↑2) + 𝐵) = (((𝐶 + 𝐷)↑2) + 𝐷) ↔ (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) = (((𝐶 + 𝐷) · (𝐶 + 𝐷)) + 𝐷))
161, 3, 8, 10nn0opthi 14235 . 2 ((((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) = (((𝐶 + 𝐷) · (𝐶 + 𝐷)) + 𝐷) ↔ (𝐴 = 𝐶𝐵 = 𝐷))
1715, 16bitri 275 1 ((((𝐴 + 𝐵)↑2) + 𝐵) = (((𝐶 + 𝐷)↑2) + 𝐷) ↔ (𝐴 = 𝐶𝐵 = 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540  wcel 2109  (class class class)co 7387   + caddc 11071   · cmul 11073  2c2 12241  0cn0 12442  cexp 14026
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-n0 12443  df-z 12530  df-uz 12794  df-seq 13967  df-exp 14027
This theorem is referenced by:  nn0opth2  14237
  Copyright terms: Public domain W3C validator