| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nn0opth2i | Structured version Visualization version GIF version | ||
| Description: An ordered pair theorem for nonnegative integers. Theorem 17.3 of [Quine] p. 124. See comments for nn0opthi 14235. (Contributed by NM, 22-Jul-2004.) |
| Ref | Expression |
|---|---|
| nn0opth.1 | ⊢ 𝐴 ∈ ℕ0 |
| nn0opth.2 | ⊢ 𝐵 ∈ ℕ0 |
| nn0opth.3 | ⊢ 𝐶 ∈ ℕ0 |
| nn0opth.4 | ⊢ 𝐷 ∈ ℕ0 |
| Ref | Expression |
|---|---|
| nn0opth2i | ⊢ ((((𝐴 + 𝐵)↑2) + 𝐵) = (((𝐶 + 𝐷)↑2) + 𝐷) ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn0opth.1 | . . . . . . 7 ⊢ 𝐴 ∈ ℕ0 | |
| 2 | 1 | nn0cni 12454 | . . . . . 6 ⊢ 𝐴 ∈ ℂ |
| 3 | nn0opth.2 | . . . . . . 7 ⊢ 𝐵 ∈ ℕ0 | |
| 4 | 3 | nn0cni 12454 | . . . . . 6 ⊢ 𝐵 ∈ ℂ |
| 5 | 2, 4 | addcli 11180 | . . . . 5 ⊢ (𝐴 + 𝐵) ∈ ℂ |
| 6 | 5 | sqvali 14145 | . . . 4 ⊢ ((𝐴 + 𝐵)↑2) = ((𝐴 + 𝐵) · (𝐴 + 𝐵)) |
| 7 | 6 | oveq1i 7397 | . . 3 ⊢ (((𝐴 + 𝐵)↑2) + 𝐵) = (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) |
| 8 | nn0opth.3 | . . . . . . 7 ⊢ 𝐶 ∈ ℕ0 | |
| 9 | 8 | nn0cni 12454 | . . . . . 6 ⊢ 𝐶 ∈ ℂ |
| 10 | nn0opth.4 | . . . . . . 7 ⊢ 𝐷 ∈ ℕ0 | |
| 11 | 10 | nn0cni 12454 | . . . . . 6 ⊢ 𝐷 ∈ ℂ |
| 12 | 9, 11 | addcli 11180 | . . . . 5 ⊢ (𝐶 + 𝐷) ∈ ℂ |
| 13 | 12 | sqvali 14145 | . . . 4 ⊢ ((𝐶 + 𝐷)↑2) = ((𝐶 + 𝐷) · (𝐶 + 𝐷)) |
| 14 | 13 | oveq1i 7397 | . . 3 ⊢ (((𝐶 + 𝐷)↑2) + 𝐷) = (((𝐶 + 𝐷) · (𝐶 + 𝐷)) + 𝐷) |
| 15 | 7, 14 | eqeq12i 2747 | . 2 ⊢ ((((𝐴 + 𝐵)↑2) + 𝐵) = (((𝐶 + 𝐷)↑2) + 𝐷) ↔ (((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) = (((𝐶 + 𝐷) · (𝐶 + 𝐷)) + 𝐷)) |
| 16 | 1, 3, 8, 10 | nn0opthi 14235 | . 2 ⊢ ((((𝐴 + 𝐵) · (𝐴 + 𝐵)) + 𝐵) = (((𝐶 + 𝐷) · (𝐶 + 𝐷)) + 𝐷) ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷)) |
| 17 | 15, 16 | bitri 275 | 1 ⊢ ((((𝐴 + 𝐵)↑2) + 𝐵) = (((𝐶 + 𝐷)↑2) + 𝐷) ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 (class class class)co 7387 + caddc 11071 · cmul 11073 2c2 12241 ℕ0cn0 12442 ↑cexp 14026 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-2 12249 df-n0 12443 df-z 12530 df-uz 12794 df-seq 13967 df-exp 14027 |
| This theorem is referenced by: nn0opth2 14237 |
| Copyright terms: Public domain | W3C validator |