MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sqeqori Structured version   Visualization version   GIF version

Theorem sqeqori 14254
Description: The squares of two complex numbers are equal iff one number equals the other or its negative. Lemma 15-4.7 of [Gleason] p. 311 and its converse. (Contributed by NM, 15-Jan-2006.)
Hypotheses
Ref Expression
binom2.1 𝐴 ∈ ℂ
binom2.2 𝐵 ∈ ℂ
Assertion
Ref Expression
sqeqori ((𝐴↑2) = (𝐵↑2) ↔ (𝐴 = 𝐵𝐴 = -𝐵))

Proof of Theorem sqeqori
StepHypRef Expression
1 binom2.1 . . . . 5 𝐴 ∈ ℂ
2 binom2.2 . . . . 5 𝐵 ∈ ℂ
31, 2subsqi 14253 . . . 4 ((𝐴↑2) − (𝐵↑2)) = ((𝐴 + 𝐵) · (𝐴𝐵))
43eqeq1i 2741 . . 3 (((𝐴↑2) − (𝐵↑2)) = 0 ↔ ((𝐴 + 𝐵) · (𝐴𝐵)) = 0)
51sqcli 14221 . . . 4 (𝐴↑2) ∈ ℂ
62sqcli 14221 . . . 4 (𝐵↑2) ∈ ℂ
75, 6subeq0i 11590 . . 3 (((𝐴↑2) − (𝐵↑2)) = 0 ↔ (𝐴↑2) = (𝐵↑2))
81, 2addcli 11268 . . . 4 (𝐴 + 𝐵) ∈ ℂ
91, 2subcli 11586 . . . 4 (𝐴𝐵) ∈ ℂ
108, 9mul0ori 11912 . . 3 (((𝐴 + 𝐵) · (𝐴𝐵)) = 0 ↔ ((𝐴 + 𝐵) = 0 ∨ (𝐴𝐵) = 0))
114, 7, 103bitr3i 301 . 2 ((𝐴↑2) = (𝐵↑2) ↔ ((𝐴 + 𝐵) = 0 ∨ (𝐴𝐵) = 0))
12 orcom 870 . 2 (((𝐴 + 𝐵) = 0 ∨ (𝐴𝐵) = 0) ↔ ((𝐴𝐵) = 0 ∨ (𝐴 + 𝐵) = 0))
131, 2subeq0i 11590 . . 3 ((𝐴𝐵) = 0 ↔ 𝐴 = 𝐵)
141, 2subnegi 11589 . . . . 5 (𝐴 − -𝐵) = (𝐴 + 𝐵)
1514eqeq1i 2741 . . . 4 ((𝐴 − -𝐵) = 0 ↔ (𝐴 + 𝐵) = 0)
162negcli 11578 . . . . 5 -𝐵 ∈ ℂ
171, 16subeq0i 11590 . . . 4 ((𝐴 − -𝐵) = 0 ↔ 𝐴 = -𝐵)
1815, 17bitr3i 277 . . 3 ((𝐴 + 𝐵) = 0 ↔ 𝐴 = -𝐵)
1913, 18orbi12i 914 . 2 (((𝐴𝐵) = 0 ∨ (𝐴 + 𝐵) = 0) ↔ (𝐴 = 𝐵𝐴 = -𝐵))
2011, 12, 193bitri 297 1 ((𝐴↑2) = (𝐵↑2) ↔ (𝐴 = 𝐵𝐴 = -𝐵))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wo 847   = wceq 1539  wcel 2107  (class class class)co 7432  cc 11154  0cc0 11156   + caddc 11159   · cmul 11161  cmin 11493  -cneg 11494  2c2 12322  cexp 14103
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-cnex 11212  ax-resscn 11213  ax-1cn 11214  ax-icn 11215  ax-addcl 11216  ax-addrcl 11217  ax-mulcl 11218  ax-mulrcl 11219  ax-mulcom 11220  ax-addass 11221  ax-mulass 11222  ax-distr 11223  ax-i2m1 11224  ax-1ne0 11225  ax-1rid 11226  ax-rnegex 11227  ax-rrecex 11228  ax-cnre 11229  ax-pre-lttri 11230  ax-pre-lttrn 11231  ax-pre-ltadd 11232  ax-pre-mulgt0 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-om 7889  df-2nd 8016  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-er 8746  df-en 8987  df-dom 8988  df-sdom 8989  df-pnf 11298  df-mnf 11299  df-xr 11300  df-ltxr 11301  df-le 11302  df-sub 11495  df-neg 11496  df-nn 12268  df-2 12330  df-n0 12529  df-z 12616  df-uz 12880  df-seq 14044  df-exp 14104
This theorem is referenced by:  subsq0i  14255  sqeqor  14256  sinhalfpilem  26506
  Copyright terms: Public domain W3C validator