![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sqeqori | Structured version Visualization version GIF version |
Description: The squares of two complex numbers are equal iff one number equals the other or its negative. Lemma 15-4.7 of [Gleason] p. 311 and its converse. (Contributed by NM, 15-Jan-2006.) |
Ref | Expression |
---|---|
binom2.1 | ⊢ 𝐴 ∈ ℂ |
binom2.2 | ⊢ 𝐵 ∈ ℂ |
Ref | Expression |
---|---|
sqeqori | ⊢ ((𝐴↑2) = (𝐵↑2) ↔ (𝐴 = 𝐵 ∨ 𝐴 = -𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | binom2.1 | . . . . 5 ⊢ 𝐴 ∈ ℂ | |
2 | binom2.2 | . . . . 5 ⊢ 𝐵 ∈ ℂ | |
3 | 1, 2 | subsqi 14212 | . . . 4 ⊢ ((𝐴↑2) − (𝐵↑2)) = ((𝐴 + 𝐵) · (𝐴 − 𝐵)) |
4 | 3 | eqeq1i 2730 | . . 3 ⊢ (((𝐴↑2) − (𝐵↑2)) = 0 ↔ ((𝐴 + 𝐵) · (𝐴 − 𝐵)) = 0) |
5 | 1 | sqcli 14180 | . . . 4 ⊢ (𝐴↑2) ∈ ℂ |
6 | 2 | sqcli 14180 | . . . 4 ⊢ (𝐵↑2) ∈ ℂ |
7 | 5, 6 | subeq0i 11572 | . . 3 ⊢ (((𝐴↑2) − (𝐵↑2)) = 0 ↔ (𝐴↑2) = (𝐵↑2)) |
8 | 1, 2 | addcli 11252 | . . . 4 ⊢ (𝐴 + 𝐵) ∈ ℂ |
9 | 1, 2 | subcli 11568 | . . . 4 ⊢ (𝐴 − 𝐵) ∈ ℂ |
10 | 8, 9 | mul0ori 11894 | . . 3 ⊢ (((𝐴 + 𝐵) · (𝐴 − 𝐵)) = 0 ↔ ((𝐴 + 𝐵) = 0 ∨ (𝐴 − 𝐵) = 0)) |
11 | 4, 7, 10 | 3bitr3i 300 | . 2 ⊢ ((𝐴↑2) = (𝐵↑2) ↔ ((𝐴 + 𝐵) = 0 ∨ (𝐴 − 𝐵) = 0)) |
12 | orcom 868 | . 2 ⊢ (((𝐴 + 𝐵) = 0 ∨ (𝐴 − 𝐵) = 0) ↔ ((𝐴 − 𝐵) = 0 ∨ (𝐴 + 𝐵) = 0)) | |
13 | 1, 2 | subeq0i 11572 | . . 3 ⊢ ((𝐴 − 𝐵) = 0 ↔ 𝐴 = 𝐵) |
14 | 1, 2 | subnegi 11571 | . . . . 5 ⊢ (𝐴 − -𝐵) = (𝐴 + 𝐵) |
15 | 14 | eqeq1i 2730 | . . . 4 ⊢ ((𝐴 − -𝐵) = 0 ↔ (𝐴 + 𝐵) = 0) |
16 | 2 | negcli 11560 | . . . . 5 ⊢ -𝐵 ∈ ℂ |
17 | 1, 16 | subeq0i 11572 | . . . 4 ⊢ ((𝐴 − -𝐵) = 0 ↔ 𝐴 = -𝐵) |
18 | 15, 17 | bitr3i 276 | . . 3 ⊢ ((𝐴 + 𝐵) = 0 ↔ 𝐴 = -𝐵) |
19 | 13, 18 | orbi12i 912 | . 2 ⊢ (((𝐴 − 𝐵) = 0 ∨ (𝐴 + 𝐵) = 0) ↔ (𝐴 = 𝐵 ∨ 𝐴 = -𝐵)) |
20 | 11, 12, 19 | 3bitri 296 | 1 ⊢ ((𝐴↑2) = (𝐵↑2) ↔ (𝐴 = 𝐵 ∨ 𝐴 = -𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∨ wo 845 = wceq 1533 ∈ wcel 2098 (class class class)co 7419 ℂcc 11138 0cc0 11140 + caddc 11143 · cmul 11145 − cmin 11476 -cneg 11477 2c2 12300 ↑cexp 14062 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5300 ax-nul 5307 ax-pow 5365 ax-pr 5429 ax-un 7741 ax-cnex 11196 ax-resscn 11197 ax-1cn 11198 ax-icn 11199 ax-addcl 11200 ax-addrcl 11201 ax-mulcl 11202 ax-mulrcl 11203 ax-mulcom 11204 ax-addass 11205 ax-mulass 11206 ax-distr 11207 ax-i2m1 11208 ax-1ne0 11209 ax-1rid 11210 ax-rnegex 11211 ax-rrecex 11212 ax-cnre 11213 ax-pre-lttri 11214 ax-pre-lttrn 11215 ax-pre-ltadd 11216 ax-pre-mulgt0 11217 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-nel 3036 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3964 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-iun 4999 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6307 df-ord 6374 df-on 6375 df-lim 6376 df-suc 6377 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-f1 6554 df-fo 6555 df-f1o 6556 df-fv 6557 df-riota 7375 df-ov 7422 df-oprab 7423 df-mpo 7424 df-om 7872 df-2nd 7995 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-er 8725 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11282 df-mnf 11283 df-xr 11284 df-ltxr 11285 df-le 11286 df-sub 11478 df-neg 11479 df-nn 12246 df-2 12308 df-n0 12506 df-z 12592 df-uz 12856 df-seq 14003 df-exp 14063 |
This theorem is referenced by: subsq0i 14214 sqeqor 14215 sinhalfpilem 26443 |
Copyright terms: Public domain | W3C validator |