![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sqeqori | Structured version Visualization version GIF version |
Description: The squares of two complex numbers are equal iff one number equals the other or its negative. Lemma 15-4.7 of [Gleason] p. 311 and its converse. (Contributed by NM, 15-Jan-2006.) |
Ref | Expression |
---|---|
binom2.1 | ⊢ 𝐴 ∈ ℂ |
binom2.2 | ⊢ 𝐵 ∈ ℂ |
Ref | Expression |
---|---|
sqeqori | ⊢ ((𝐴↑2) = (𝐵↑2) ↔ (𝐴 = 𝐵 ∨ 𝐴 = -𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | binom2.1 | . . . . 5 ⊢ 𝐴 ∈ ℂ | |
2 | binom2.2 | . . . . 5 ⊢ 𝐵 ∈ ℂ | |
3 | 1, 2 | subsqi 14249 | . . . 4 ⊢ ((𝐴↑2) − (𝐵↑2)) = ((𝐴 + 𝐵) · (𝐴 − 𝐵)) |
4 | 3 | eqeq1i 2740 | . . 3 ⊢ (((𝐴↑2) − (𝐵↑2)) = 0 ↔ ((𝐴 + 𝐵) · (𝐴 − 𝐵)) = 0) |
5 | 1 | sqcli 14217 | . . . 4 ⊢ (𝐴↑2) ∈ ℂ |
6 | 2 | sqcli 14217 | . . . 4 ⊢ (𝐵↑2) ∈ ℂ |
7 | 5, 6 | subeq0i 11587 | . . 3 ⊢ (((𝐴↑2) − (𝐵↑2)) = 0 ↔ (𝐴↑2) = (𝐵↑2)) |
8 | 1, 2 | addcli 11265 | . . . 4 ⊢ (𝐴 + 𝐵) ∈ ℂ |
9 | 1, 2 | subcli 11583 | . . . 4 ⊢ (𝐴 − 𝐵) ∈ ℂ |
10 | 8, 9 | mul0ori 11909 | . . 3 ⊢ (((𝐴 + 𝐵) · (𝐴 − 𝐵)) = 0 ↔ ((𝐴 + 𝐵) = 0 ∨ (𝐴 − 𝐵) = 0)) |
11 | 4, 7, 10 | 3bitr3i 301 | . 2 ⊢ ((𝐴↑2) = (𝐵↑2) ↔ ((𝐴 + 𝐵) = 0 ∨ (𝐴 − 𝐵) = 0)) |
12 | orcom 870 | . 2 ⊢ (((𝐴 + 𝐵) = 0 ∨ (𝐴 − 𝐵) = 0) ↔ ((𝐴 − 𝐵) = 0 ∨ (𝐴 + 𝐵) = 0)) | |
13 | 1, 2 | subeq0i 11587 | . . 3 ⊢ ((𝐴 − 𝐵) = 0 ↔ 𝐴 = 𝐵) |
14 | 1, 2 | subnegi 11586 | . . . . 5 ⊢ (𝐴 − -𝐵) = (𝐴 + 𝐵) |
15 | 14 | eqeq1i 2740 | . . . 4 ⊢ ((𝐴 − -𝐵) = 0 ↔ (𝐴 + 𝐵) = 0) |
16 | 2 | negcli 11575 | . . . . 5 ⊢ -𝐵 ∈ ℂ |
17 | 1, 16 | subeq0i 11587 | . . . 4 ⊢ ((𝐴 − -𝐵) = 0 ↔ 𝐴 = -𝐵) |
18 | 15, 17 | bitr3i 277 | . . 3 ⊢ ((𝐴 + 𝐵) = 0 ↔ 𝐴 = -𝐵) |
19 | 13, 18 | orbi12i 914 | . 2 ⊢ (((𝐴 − 𝐵) = 0 ∨ (𝐴 + 𝐵) = 0) ↔ (𝐴 = 𝐵 ∨ 𝐴 = -𝐵)) |
20 | 11, 12, 19 | 3bitri 297 | 1 ⊢ ((𝐴↑2) = (𝐵↑2) ↔ (𝐴 = 𝐵 ∨ 𝐴 = -𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∨ wo 847 = wceq 1537 ∈ wcel 2106 (class class class)co 7431 ℂcc 11151 0cc0 11153 + caddc 11156 · cmul 11158 − cmin 11490 -cneg 11491 2c2 12319 ↑cexp 14099 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-er 8744 df-en 8985 df-dom 8986 df-sdom 8987 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-nn 12265 df-2 12327 df-n0 12525 df-z 12612 df-uz 12877 df-seq 14040 df-exp 14100 |
This theorem is referenced by: subsq0i 14251 sqeqor 14252 sinhalfpilem 26520 |
Copyright terms: Public domain | W3C validator |