MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sqeqori Structured version   Visualization version   GIF version

Theorem sqeqori 14250
Description: The squares of two complex numbers are equal iff one number equals the other or its negative. Lemma 15-4.7 of [Gleason] p. 311 and its converse. (Contributed by NM, 15-Jan-2006.)
Hypotheses
Ref Expression
binom2.1 𝐴 ∈ ℂ
binom2.2 𝐵 ∈ ℂ
Assertion
Ref Expression
sqeqori ((𝐴↑2) = (𝐵↑2) ↔ (𝐴 = 𝐵𝐴 = -𝐵))

Proof of Theorem sqeqori
StepHypRef Expression
1 binom2.1 . . . . 5 𝐴 ∈ ℂ
2 binom2.2 . . . . 5 𝐵 ∈ ℂ
31, 2subsqi 14249 . . . 4 ((𝐴↑2) − (𝐵↑2)) = ((𝐴 + 𝐵) · (𝐴𝐵))
43eqeq1i 2740 . . 3 (((𝐴↑2) − (𝐵↑2)) = 0 ↔ ((𝐴 + 𝐵) · (𝐴𝐵)) = 0)
51sqcli 14217 . . . 4 (𝐴↑2) ∈ ℂ
62sqcli 14217 . . . 4 (𝐵↑2) ∈ ℂ
75, 6subeq0i 11587 . . 3 (((𝐴↑2) − (𝐵↑2)) = 0 ↔ (𝐴↑2) = (𝐵↑2))
81, 2addcli 11265 . . . 4 (𝐴 + 𝐵) ∈ ℂ
91, 2subcli 11583 . . . 4 (𝐴𝐵) ∈ ℂ
108, 9mul0ori 11909 . . 3 (((𝐴 + 𝐵) · (𝐴𝐵)) = 0 ↔ ((𝐴 + 𝐵) = 0 ∨ (𝐴𝐵) = 0))
114, 7, 103bitr3i 301 . 2 ((𝐴↑2) = (𝐵↑2) ↔ ((𝐴 + 𝐵) = 0 ∨ (𝐴𝐵) = 0))
12 orcom 870 . 2 (((𝐴 + 𝐵) = 0 ∨ (𝐴𝐵) = 0) ↔ ((𝐴𝐵) = 0 ∨ (𝐴 + 𝐵) = 0))
131, 2subeq0i 11587 . . 3 ((𝐴𝐵) = 0 ↔ 𝐴 = 𝐵)
141, 2subnegi 11586 . . . . 5 (𝐴 − -𝐵) = (𝐴 + 𝐵)
1514eqeq1i 2740 . . . 4 ((𝐴 − -𝐵) = 0 ↔ (𝐴 + 𝐵) = 0)
162negcli 11575 . . . . 5 -𝐵 ∈ ℂ
171, 16subeq0i 11587 . . . 4 ((𝐴 − -𝐵) = 0 ↔ 𝐴 = -𝐵)
1815, 17bitr3i 277 . . 3 ((𝐴 + 𝐵) = 0 ↔ 𝐴 = -𝐵)
1913, 18orbi12i 914 . 2 (((𝐴𝐵) = 0 ∨ (𝐴 + 𝐵) = 0) ↔ (𝐴 = 𝐵𝐴 = -𝐵))
2011, 12, 193bitri 297 1 ((𝐴↑2) = (𝐵↑2) ↔ (𝐴 = 𝐵𝐴 = -𝐵))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wo 847   = wceq 1537  wcel 2106  (class class class)co 7431  cc 11151  0cc0 11153   + caddc 11156   · cmul 11158  cmin 11490  -cneg 11491  2c2 12319  cexp 14099
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-2 12327  df-n0 12525  df-z 12612  df-uz 12877  df-seq 14040  df-exp 14100
This theorem is referenced by:  subsq0i  14251  sqeqor  14252  sinhalfpilem  26520
  Copyright terms: Public domain W3C validator