Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sqeqori | Structured version Visualization version GIF version |
Description: The squares of two complex numbers are equal iff one number equals the other or its negative. Lemma 15-4.7 of [Gleason] p. 311 and its converse. (Contributed by NM, 15-Jan-2006.) |
Ref | Expression |
---|---|
binom2.1 | ⊢ 𝐴 ∈ ℂ |
binom2.2 | ⊢ 𝐵 ∈ ℂ |
Ref | Expression |
---|---|
sqeqori | ⊢ ((𝐴↑2) = (𝐵↑2) ↔ (𝐴 = 𝐵 ∨ 𝐴 = -𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | binom2.1 | . . . . 5 ⊢ 𝐴 ∈ ℂ | |
2 | binom2.2 | . . . . 5 ⊢ 𝐵 ∈ ℂ | |
3 | 1, 2 | subsqi 13857 | . . . 4 ⊢ ((𝐴↑2) − (𝐵↑2)) = ((𝐴 + 𝐵) · (𝐴 − 𝐵)) |
4 | 3 | eqeq1i 2743 | . . 3 ⊢ (((𝐴↑2) − (𝐵↑2)) = 0 ↔ ((𝐴 + 𝐵) · (𝐴 − 𝐵)) = 0) |
5 | 1 | sqcli 13826 | . . . 4 ⊢ (𝐴↑2) ∈ ℂ |
6 | 2 | sqcli 13826 | . . . 4 ⊢ (𝐵↑2) ∈ ℂ |
7 | 5, 6 | subeq0i 11231 | . . 3 ⊢ (((𝐴↑2) − (𝐵↑2)) = 0 ↔ (𝐴↑2) = (𝐵↑2)) |
8 | 1, 2 | addcli 10912 | . . . 4 ⊢ (𝐴 + 𝐵) ∈ ℂ |
9 | 1, 2 | subcli 11227 | . . . 4 ⊢ (𝐴 − 𝐵) ∈ ℂ |
10 | 8, 9 | mul0ori 11553 | . . 3 ⊢ (((𝐴 + 𝐵) · (𝐴 − 𝐵)) = 0 ↔ ((𝐴 + 𝐵) = 0 ∨ (𝐴 − 𝐵) = 0)) |
11 | 4, 7, 10 | 3bitr3i 300 | . 2 ⊢ ((𝐴↑2) = (𝐵↑2) ↔ ((𝐴 + 𝐵) = 0 ∨ (𝐴 − 𝐵) = 0)) |
12 | orcom 866 | . 2 ⊢ (((𝐴 + 𝐵) = 0 ∨ (𝐴 − 𝐵) = 0) ↔ ((𝐴 − 𝐵) = 0 ∨ (𝐴 + 𝐵) = 0)) | |
13 | 1, 2 | subeq0i 11231 | . . 3 ⊢ ((𝐴 − 𝐵) = 0 ↔ 𝐴 = 𝐵) |
14 | 1, 2 | subnegi 11230 | . . . . 5 ⊢ (𝐴 − -𝐵) = (𝐴 + 𝐵) |
15 | 14 | eqeq1i 2743 | . . . 4 ⊢ ((𝐴 − -𝐵) = 0 ↔ (𝐴 + 𝐵) = 0) |
16 | 2 | negcli 11219 | . . . . 5 ⊢ -𝐵 ∈ ℂ |
17 | 1, 16 | subeq0i 11231 | . . . 4 ⊢ ((𝐴 − -𝐵) = 0 ↔ 𝐴 = -𝐵) |
18 | 15, 17 | bitr3i 276 | . . 3 ⊢ ((𝐴 + 𝐵) = 0 ↔ 𝐴 = -𝐵) |
19 | 13, 18 | orbi12i 911 | . 2 ⊢ (((𝐴 − 𝐵) = 0 ∨ (𝐴 + 𝐵) = 0) ↔ (𝐴 = 𝐵 ∨ 𝐴 = -𝐵)) |
20 | 11, 12, 19 | 3bitri 296 | 1 ⊢ ((𝐴↑2) = (𝐵↑2) ↔ (𝐴 = 𝐵 ∨ 𝐴 = -𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∨ wo 843 = wceq 1539 ∈ wcel 2108 (class class class)co 7255 ℂcc 10800 0cc0 10802 + caddc 10805 · cmul 10807 − cmin 11135 -cneg 11136 2c2 11958 ↑cexp 13710 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-n0 12164 df-z 12250 df-uz 12512 df-seq 13650 df-exp 13711 |
This theorem is referenced by: subsq0i 13859 sqeqor 13860 sinhalfpilem 25525 |
Copyright terms: Public domain | W3C validator |