MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sqeqori Structured version   Visualization version   GIF version

Theorem sqeqori 14213
Description: The squares of two complex numbers are equal iff one number equals the other or its negative. Lemma 15-4.7 of [Gleason] p. 311 and its converse. (Contributed by NM, 15-Jan-2006.)
Hypotheses
Ref Expression
binom2.1 𝐴 ∈ ℂ
binom2.2 𝐵 ∈ ℂ
Assertion
Ref Expression
sqeqori ((𝐴↑2) = (𝐵↑2) ↔ (𝐴 = 𝐵𝐴 = -𝐵))

Proof of Theorem sqeqori
StepHypRef Expression
1 binom2.1 . . . . 5 𝐴 ∈ ℂ
2 binom2.2 . . . . 5 𝐵 ∈ ℂ
31, 2subsqi 14212 . . . 4 ((𝐴↑2) − (𝐵↑2)) = ((𝐴 + 𝐵) · (𝐴𝐵))
43eqeq1i 2730 . . 3 (((𝐴↑2) − (𝐵↑2)) = 0 ↔ ((𝐴 + 𝐵) · (𝐴𝐵)) = 0)
51sqcli 14180 . . . 4 (𝐴↑2) ∈ ℂ
62sqcli 14180 . . . 4 (𝐵↑2) ∈ ℂ
75, 6subeq0i 11572 . . 3 (((𝐴↑2) − (𝐵↑2)) = 0 ↔ (𝐴↑2) = (𝐵↑2))
81, 2addcli 11252 . . . 4 (𝐴 + 𝐵) ∈ ℂ
91, 2subcli 11568 . . . 4 (𝐴𝐵) ∈ ℂ
108, 9mul0ori 11894 . . 3 (((𝐴 + 𝐵) · (𝐴𝐵)) = 0 ↔ ((𝐴 + 𝐵) = 0 ∨ (𝐴𝐵) = 0))
114, 7, 103bitr3i 300 . 2 ((𝐴↑2) = (𝐵↑2) ↔ ((𝐴 + 𝐵) = 0 ∨ (𝐴𝐵) = 0))
12 orcom 868 . 2 (((𝐴 + 𝐵) = 0 ∨ (𝐴𝐵) = 0) ↔ ((𝐴𝐵) = 0 ∨ (𝐴 + 𝐵) = 0))
131, 2subeq0i 11572 . . 3 ((𝐴𝐵) = 0 ↔ 𝐴 = 𝐵)
141, 2subnegi 11571 . . . . 5 (𝐴 − -𝐵) = (𝐴 + 𝐵)
1514eqeq1i 2730 . . . 4 ((𝐴 − -𝐵) = 0 ↔ (𝐴 + 𝐵) = 0)
162negcli 11560 . . . . 5 -𝐵 ∈ ℂ
171, 16subeq0i 11572 . . . 4 ((𝐴 − -𝐵) = 0 ↔ 𝐴 = -𝐵)
1815, 17bitr3i 276 . . 3 ((𝐴 + 𝐵) = 0 ↔ 𝐴 = -𝐵)
1913, 18orbi12i 912 . 2 (((𝐴𝐵) = 0 ∨ (𝐴 + 𝐵) = 0) ↔ (𝐴 = 𝐵𝐴 = -𝐵))
2011, 12, 193bitri 296 1 ((𝐴↑2) = (𝐵↑2) ↔ (𝐴 = 𝐵𝐴 = -𝐵))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wo 845   = wceq 1533  wcel 2098  (class class class)co 7419  cc 11138  0cc0 11140   + caddc 11143   · cmul 11145  cmin 11476  -cneg 11477  2c2 12300  cexp 14062
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741  ax-cnex 11196  ax-resscn 11197  ax-1cn 11198  ax-icn 11199  ax-addcl 11200  ax-addrcl 11201  ax-mulcl 11202  ax-mulrcl 11203  ax-mulcom 11204  ax-addass 11205  ax-mulass 11206  ax-distr 11207  ax-i2m1 11208  ax-1ne0 11209  ax-1rid 11210  ax-rnegex 11211  ax-rrecex 11212  ax-cnre 11213  ax-pre-lttri 11214  ax-pre-lttrn 11215  ax-pre-ltadd 11216  ax-pre-mulgt0 11217
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6307  df-ord 6374  df-on 6375  df-lim 6376  df-suc 6377  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-riota 7375  df-ov 7422  df-oprab 7423  df-mpo 7424  df-om 7872  df-2nd 7995  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-er 8725  df-en 8965  df-dom 8966  df-sdom 8967  df-pnf 11282  df-mnf 11283  df-xr 11284  df-ltxr 11285  df-le 11286  df-sub 11478  df-neg 11479  df-nn 12246  df-2 12308  df-n0 12506  df-z 12592  df-uz 12856  df-seq 14003  df-exp 14063
This theorem is referenced by:  subsq0i  14214  sqeqor  14215  sinhalfpilem  26443
  Copyright terms: Public domain W3C validator