Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sqeqori | Structured version Visualization version GIF version |
Description: The squares of two complex numbers are equal iff one number equals the other or its negative. Lemma 15-4.7 of [Gleason] p. 311 and its converse. (Contributed by NM, 15-Jan-2006.) |
Ref | Expression |
---|---|
binom2.1 | ⊢ 𝐴 ∈ ℂ |
binom2.2 | ⊢ 𝐵 ∈ ℂ |
Ref | Expression |
---|---|
sqeqori | ⊢ ((𝐴↑2) = (𝐵↑2) ↔ (𝐴 = 𝐵 ∨ 𝐴 = -𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | binom2.1 | . . . . 5 ⊢ 𝐴 ∈ ℂ | |
2 | binom2.2 | . . . . 5 ⊢ 𝐵 ∈ ℂ | |
3 | 1, 2 | subsqi 13927 | . . . 4 ⊢ ((𝐴↑2) − (𝐵↑2)) = ((𝐴 + 𝐵) · (𝐴 − 𝐵)) |
4 | 3 | eqeq1i 2745 | . . 3 ⊢ (((𝐴↑2) − (𝐵↑2)) = 0 ↔ ((𝐴 + 𝐵) · (𝐴 − 𝐵)) = 0) |
5 | 1 | sqcli 13896 | . . . 4 ⊢ (𝐴↑2) ∈ ℂ |
6 | 2 | sqcli 13896 | . . . 4 ⊢ (𝐵↑2) ∈ ℂ |
7 | 5, 6 | subeq0i 11301 | . . 3 ⊢ (((𝐴↑2) − (𝐵↑2)) = 0 ↔ (𝐴↑2) = (𝐵↑2)) |
8 | 1, 2 | addcli 10982 | . . . 4 ⊢ (𝐴 + 𝐵) ∈ ℂ |
9 | 1, 2 | subcli 11297 | . . . 4 ⊢ (𝐴 − 𝐵) ∈ ℂ |
10 | 8, 9 | mul0ori 11623 | . . 3 ⊢ (((𝐴 + 𝐵) · (𝐴 − 𝐵)) = 0 ↔ ((𝐴 + 𝐵) = 0 ∨ (𝐴 − 𝐵) = 0)) |
11 | 4, 7, 10 | 3bitr3i 301 | . 2 ⊢ ((𝐴↑2) = (𝐵↑2) ↔ ((𝐴 + 𝐵) = 0 ∨ (𝐴 − 𝐵) = 0)) |
12 | orcom 867 | . 2 ⊢ (((𝐴 + 𝐵) = 0 ∨ (𝐴 − 𝐵) = 0) ↔ ((𝐴 − 𝐵) = 0 ∨ (𝐴 + 𝐵) = 0)) | |
13 | 1, 2 | subeq0i 11301 | . . 3 ⊢ ((𝐴 − 𝐵) = 0 ↔ 𝐴 = 𝐵) |
14 | 1, 2 | subnegi 11300 | . . . . 5 ⊢ (𝐴 − -𝐵) = (𝐴 + 𝐵) |
15 | 14 | eqeq1i 2745 | . . . 4 ⊢ ((𝐴 − -𝐵) = 0 ↔ (𝐴 + 𝐵) = 0) |
16 | 2 | negcli 11289 | . . . . 5 ⊢ -𝐵 ∈ ℂ |
17 | 1, 16 | subeq0i 11301 | . . . 4 ⊢ ((𝐴 − -𝐵) = 0 ↔ 𝐴 = -𝐵) |
18 | 15, 17 | bitr3i 276 | . . 3 ⊢ ((𝐴 + 𝐵) = 0 ↔ 𝐴 = -𝐵) |
19 | 13, 18 | orbi12i 912 | . 2 ⊢ (((𝐴 − 𝐵) = 0 ∨ (𝐴 + 𝐵) = 0) ↔ (𝐴 = 𝐵 ∨ 𝐴 = -𝐵)) |
20 | 11, 12, 19 | 3bitri 297 | 1 ⊢ ((𝐴↑2) = (𝐵↑2) ↔ (𝐴 = 𝐵 ∨ 𝐴 = -𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∨ wo 844 = wceq 1542 ∈ wcel 2110 (class class class)co 7271 ℂcc 10870 0cc0 10872 + caddc 10875 · cmul 10877 − cmin 11205 -cneg 11206 2c2 12028 ↑cexp 13780 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 ax-un 7582 ax-cnex 10928 ax-resscn 10929 ax-1cn 10930 ax-icn 10931 ax-addcl 10932 ax-addrcl 10933 ax-mulcl 10934 ax-mulrcl 10935 ax-mulcom 10936 ax-addass 10937 ax-mulass 10938 ax-distr 10939 ax-i2m1 10940 ax-1ne0 10941 ax-1rid 10942 ax-rnegex 10943 ax-rrecex 10944 ax-cnre 10945 ax-pre-lttri 10946 ax-pre-lttrn 10947 ax-pre-ltadd 10948 ax-pre-mulgt0 10949 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-nel 3052 df-ral 3071 df-rex 3072 df-reu 3073 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-iun 4932 df-br 5080 df-opab 5142 df-mpt 5163 df-tr 5197 df-id 5490 df-eprel 5496 df-po 5504 df-so 5505 df-fr 5545 df-we 5547 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-pred 6201 df-ord 6268 df-on 6269 df-lim 6270 df-suc 6271 df-iota 6390 df-fun 6434 df-fn 6435 df-f 6436 df-f1 6437 df-fo 6438 df-f1o 6439 df-fv 6440 df-riota 7228 df-ov 7274 df-oprab 7275 df-mpo 7276 df-om 7707 df-2nd 7825 df-frecs 8088 df-wrecs 8119 df-recs 8193 df-rdg 8232 df-er 8481 df-en 8717 df-dom 8718 df-sdom 8719 df-pnf 11012 df-mnf 11013 df-xr 11014 df-ltxr 11015 df-le 11016 df-sub 11207 df-neg 11208 df-nn 11974 df-2 12036 df-n0 12234 df-z 12320 df-uz 12582 df-seq 13720 df-exp 13781 |
This theorem is referenced by: subsq0i 13929 sqeqor 13930 sinhalfpilem 25618 |
Copyright terms: Public domain | W3C validator |