| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sqeqori | Structured version Visualization version GIF version | ||
| Description: The squares of two complex numbers are equal iff one number equals the other or its negative. Lemma 15-4.7 of [Gleason] p. 311 and its converse. (Contributed by NM, 15-Jan-2006.) |
| Ref | Expression |
|---|---|
| binom2.1 | ⊢ 𝐴 ∈ ℂ |
| binom2.2 | ⊢ 𝐵 ∈ ℂ |
| Ref | Expression |
|---|---|
| sqeqori | ⊢ ((𝐴↑2) = (𝐵↑2) ↔ (𝐴 = 𝐵 ∨ 𝐴 = -𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | binom2.1 | . . . . 5 ⊢ 𝐴 ∈ ℂ | |
| 2 | binom2.2 | . . . . 5 ⊢ 𝐵 ∈ ℂ | |
| 3 | 1, 2 | subsqi 14126 | . . . 4 ⊢ ((𝐴↑2) − (𝐵↑2)) = ((𝐴 + 𝐵) · (𝐴 − 𝐵)) |
| 4 | 3 | eqeq1i 2736 | . . 3 ⊢ (((𝐴↑2) − (𝐵↑2)) = 0 ↔ ((𝐴 + 𝐵) · (𝐴 − 𝐵)) = 0) |
| 5 | 1 | sqcli 14094 | . . . 4 ⊢ (𝐴↑2) ∈ ℂ |
| 6 | 2 | sqcli 14094 | . . . 4 ⊢ (𝐵↑2) ∈ ℂ |
| 7 | 5, 6 | subeq0i 11447 | . . 3 ⊢ (((𝐴↑2) − (𝐵↑2)) = 0 ↔ (𝐴↑2) = (𝐵↑2)) |
| 8 | 1, 2 | addcli 11124 | . . . 4 ⊢ (𝐴 + 𝐵) ∈ ℂ |
| 9 | 1, 2 | subcli 11443 | . . . 4 ⊢ (𝐴 − 𝐵) ∈ ℂ |
| 10 | 8, 9 | mul0ori 11770 | . . 3 ⊢ (((𝐴 + 𝐵) · (𝐴 − 𝐵)) = 0 ↔ ((𝐴 + 𝐵) = 0 ∨ (𝐴 − 𝐵) = 0)) |
| 11 | 4, 7, 10 | 3bitr3i 301 | . 2 ⊢ ((𝐴↑2) = (𝐵↑2) ↔ ((𝐴 + 𝐵) = 0 ∨ (𝐴 − 𝐵) = 0)) |
| 12 | orcom 870 | . 2 ⊢ (((𝐴 + 𝐵) = 0 ∨ (𝐴 − 𝐵) = 0) ↔ ((𝐴 − 𝐵) = 0 ∨ (𝐴 + 𝐵) = 0)) | |
| 13 | 1, 2 | subeq0i 11447 | . . 3 ⊢ ((𝐴 − 𝐵) = 0 ↔ 𝐴 = 𝐵) |
| 14 | 1, 2 | subnegi 11446 | . . . . 5 ⊢ (𝐴 − -𝐵) = (𝐴 + 𝐵) |
| 15 | 14 | eqeq1i 2736 | . . . 4 ⊢ ((𝐴 − -𝐵) = 0 ↔ (𝐴 + 𝐵) = 0) |
| 16 | 2 | negcli 11435 | . . . . 5 ⊢ -𝐵 ∈ ℂ |
| 17 | 1, 16 | subeq0i 11447 | . . . 4 ⊢ ((𝐴 − -𝐵) = 0 ↔ 𝐴 = -𝐵) |
| 18 | 15, 17 | bitr3i 277 | . . 3 ⊢ ((𝐴 + 𝐵) = 0 ↔ 𝐴 = -𝐵) |
| 19 | 13, 18 | orbi12i 914 | . 2 ⊢ (((𝐴 − 𝐵) = 0 ∨ (𝐴 + 𝐵) = 0) ↔ (𝐴 = 𝐵 ∨ 𝐴 = -𝐵)) |
| 20 | 11, 12, 19 | 3bitri 297 | 1 ⊢ ((𝐴↑2) = (𝐵↑2) ↔ (𝐴 = 𝐵 ∨ 𝐴 = -𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∨ wo 847 = wceq 1541 ∈ wcel 2111 (class class class)co 7352 ℂcc 11010 0cc0 11012 + caddc 11015 · cmul 11017 − cmin 11350 -cneg 11351 2c2 12186 ↑cexp 13974 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11068 ax-resscn 11069 ax-1cn 11070 ax-icn 11071 ax-addcl 11072 ax-addrcl 11073 ax-mulcl 11074 ax-mulrcl 11075 ax-mulcom 11076 ax-addass 11077 ax-mulass 11078 ax-distr 11079 ax-i2m1 11080 ax-1ne0 11081 ax-1rid 11082 ax-rnegex 11083 ax-rrecex 11084 ax-cnre 11085 ax-pre-lttri 11086 ax-pre-lttrn 11087 ax-pre-ltadd 11088 ax-pre-mulgt0 11089 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6254 df-ord 6315 df-on 6316 df-lim 6317 df-suc 6318 df-iota 6443 df-fun 6489 df-fn 6490 df-f 6491 df-f1 6492 df-fo 6493 df-f1o 6494 df-fv 6495 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-er 8628 df-en 8876 df-dom 8877 df-sdom 8878 df-pnf 11154 df-mnf 11155 df-xr 11156 df-ltxr 11157 df-le 11158 df-sub 11352 df-neg 11353 df-nn 12132 df-2 12194 df-n0 12388 df-z 12475 df-uz 12739 df-seq 13915 df-exp 13975 |
| This theorem is referenced by: subsq0i 14128 sqeqor 14129 sinhalfpilem 26405 |
| Copyright terms: Public domain | W3C validator |