MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sqeqori Structured version   Visualization version   GIF version

Theorem sqeqori 14127
Description: The squares of two complex numbers are equal iff one number equals the other or its negative. Lemma 15-4.7 of [Gleason] p. 311 and its converse. (Contributed by NM, 15-Jan-2006.)
Hypotheses
Ref Expression
binom2.1 𝐴 ∈ ℂ
binom2.2 𝐵 ∈ ℂ
Assertion
Ref Expression
sqeqori ((𝐴↑2) = (𝐵↑2) ↔ (𝐴 = 𝐵𝐴 = -𝐵))

Proof of Theorem sqeqori
StepHypRef Expression
1 binom2.1 . . . . 5 𝐴 ∈ ℂ
2 binom2.2 . . . . 5 𝐵 ∈ ℂ
31, 2subsqi 14126 . . . 4 ((𝐴↑2) − (𝐵↑2)) = ((𝐴 + 𝐵) · (𝐴𝐵))
43eqeq1i 2736 . . 3 (((𝐴↑2) − (𝐵↑2)) = 0 ↔ ((𝐴 + 𝐵) · (𝐴𝐵)) = 0)
51sqcli 14094 . . . 4 (𝐴↑2) ∈ ℂ
62sqcli 14094 . . . 4 (𝐵↑2) ∈ ℂ
75, 6subeq0i 11447 . . 3 (((𝐴↑2) − (𝐵↑2)) = 0 ↔ (𝐴↑2) = (𝐵↑2))
81, 2addcli 11124 . . . 4 (𝐴 + 𝐵) ∈ ℂ
91, 2subcli 11443 . . . 4 (𝐴𝐵) ∈ ℂ
108, 9mul0ori 11770 . . 3 (((𝐴 + 𝐵) · (𝐴𝐵)) = 0 ↔ ((𝐴 + 𝐵) = 0 ∨ (𝐴𝐵) = 0))
114, 7, 103bitr3i 301 . 2 ((𝐴↑2) = (𝐵↑2) ↔ ((𝐴 + 𝐵) = 0 ∨ (𝐴𝐵) = 0))
12 orcom 870 . 2 (((𝐴 + 𝐵) = 0 ∨ (𝐴𝐵) = 0) ↔ ((𝐴𝐵) = 0 ∨ (𝐴 + 𝐵) = 0))
131, 2subeq0i 11447 . . 3 ((𝐴𝐵) = 0 ↔ 𝐴 = 𝐵)
141, 2subnegi 11446 . . . . 5 (𝐴 − -𝐵) = (𝐴 + 𝐵)
1514eqeq1i 2736 . . . 4 ((𝐴 − -𝐵) = 0 ↔ (𝐴 + 𝐵) = 0)
162negcli 11435 . . . . 5 -𝐵 ∈ ℂ
171, 16subeq0i 11447 . . . 4 ((𝐴 − -𝐵) = 0 ↔ 𝐴 = -𝐵)
1815, 17bitr3i 277 . . 3 ((𝐴 + 𝐵) = 0 ↔ 𝐴 = -𝐵)
1913, 18orbi12i 914 . 2 (((𝐴𝐵) = 0 ∨ (𝐴 + 𝐵) = 0) ↔ (𝐴 = 𝐵𝐴 = -𝐵))
2011, 12, 193bitri 297 1 ((𝐴↑2) = (𝐵↑2) ↔ (𝐴 = 𝐵𝐴 = -𝐵))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wo 847   = wceq 1541  wcel 2111  (class class class)co 7352  cc 11010  0cc0 11012   + caddc 11015   · cmul 11017  cmin 11350  -cneg 11351  2c2 12186  cexp 13974
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11068  ax-resscn 11069  ax-1cn 11070  ax-icn 11071  ax-addcl 11072  ax-addrcl 11073  ax-mulcl 11074  ax-mulrcl 11075  ax-mulcom 11076  ax-addass 11077  ax-mulass 11078  ax-distr 11079  ax-i2m1 11080  ax-1ne0 11081  ax-1rid 11082  ax-rnegex 11083  ax-rrecex 11084  ax-cnre 11085  ax-pre-lttri 11086  ax-pre-lttrn 11087  ax-pre-ltadd 11088  ax-pre-mulgt0 11089
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6254  df-ord 6315  df-on 6316  df-lim 6317  df-suc 6318  df-iota 6443  df-fun 6489  df-fn 6490  df-f 6491  df-f1 6492  df-fo 6493  df-f1o 6494  df-fv 6495  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-er 8628  df-en 8876  df-dom 8877  df-sdom 8878  df-pnf 11154  df-mnf 11155  df-xr 11156  df-ltxr 11157  df-le 11158  df-sub 11352  df-neg 11353  df-nn 12132  df-2 12194  df-n0 12388  df-z 12475  df-uz 12739  df-seq 13915  df-exp 13975
This theorem is referenced by:  subsq0i  14128  sqeqor  14129  sinhalfpilem  26405
  Copyright terms: Public domain W3C validator