MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nnaordex Structured version   Visualization version   GIF version

Theorem nnaordex 8684
Description: Equivalence for ordering. Compare Exercise 23 of [Enderton] p. 88. (Contributed by NM, 5-Dec-1995.) (Revised by Mario Carneiro, 15-Nov-2014.)
Assertion
Ref Expression
nnaordex ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵 ↔ ∃𝑥 ∈ ω (∅ ∈ 𝑥 ∧ (𝐴 +o 𝑥) = 𝐵)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem nnaordex
StepHypRef Expression
1 nnon 7900 . . . . . 6 (𝐵 ∈ ω → 𝐵 ∈ On)
21adantl 481 . . . . 5 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → 𝐵 ∈ On)
3 onelss 6434 . . . . 5 (𝐵 ∈ On → (𝐴𝐵𝐴𝐵))
42, 3syl 17 . . . 4 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵𝐴𝐵))
5 nnawordex 8683 . . . 4 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵 ↔ ∃𝑥 ∈ ω (𝐴 +o 𝑥) = 𝐵))
64, 5sylibd 239 . . 3 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵 → ∃𝑥 ∈ ω (𝐴 +o 𝑥) = 𝐵))
7 simplr 769 . . . . . . . . 9 (((𝐴 ∈ ω ∧ 𝐴𝐵) ∧ 𝑥 ∈ ω) → 𝐴𝐵)
8 eleq2 2830 . . . . . . . . 9 ((𝐴 +o 𝑥) = 𝐵 → (𝐴 ∈ (𝐴 +o 𝑥) ↔ 𝐴𝐵))
97, 8syl5ibrcom 247 . . . . . . . 8 (((𝐴 ∈ ω ∧ 𝐴𝐵) ∧ 𝑥 ∈ ω) → ((𝐴 +o 𝑥) = 𝐵𝐴 ∈ (𝐴 +o 𝑥)))
10 peano1 7918 . . . . . . . . . . . 12 ∅ ∈ ω
11 nnaord 8665 . . . . . . . . . . . 12 ((∅ ∈ ω ∧ 𝑥 ∈ ω ∧ 𝐴 ∈ ω) → (∅ ∈ 𝑥 ↔ (𝐴 +o ∅) ∈ (𝐴 +o 𝑥)))
1210, 11mp3an1 1449 . . . . . . . . . . 11 ((𝑥 ∈ ω ∧ 𝐴 ∈ ω) → (∅ ∈ 𝑥 ↔ (𝐴 +o ∅) ∈ (𝐴 +o 𝑥)))
1312ancoms 458 . . . . . . . . . 10 ((𝐴 ∈ ω ∧ 𝑥 ∈ ω) → (∅ ∈ 𝑥 ↔ (𝐴 +o ∅) ∈ (𝐴 +o 𝑥)))
14 nna0 8650 . . . . . . . . . . . 12 (𝐴 ∈ ω → (𝐴 +o ∅) = 𝐴)
1514adantr 480 . . . . . . . . . . 11 ((𝐴 ∈ ω ∧ 𝑥 ∈ ω) → (𝐴 +o ∅) = 𝐴)
1615eleq1d 2826 . . . . . . . . . 10 ((𝐴 ∈ ω ∧ 𝑥 ∈ ω) → ((𝐴 +o ∅) ∈ (𝐴 +o 𝑥) ↔ 𝐴 ∈ (𝐴 +o 𝑥)))
1713, 16bitrd 279 . . . . . . . . 9 ((𝐴 ∈ ω ∧ 𝑥 ∈ ω) → (∅ ∈ 𝑥𝐴 ∈ (𝐴 +o 𝑥)))
1817adantlr 715 . . . . . . . 8 (((𝐴 ∈ ω ∧ 𝐴𝐵) ∧ 𝑥 ∈ ω) → (∅ ∈ 𝑥𝐴 ∈ (𝐴 +o 𝑥)))
199, 18sylibrd 259 . . . . . . 7 (((𝐴 ∈ ω ∧ 𝐴𝐵) ∧ 𝑥 ∈ ω) → ((𝐴 +o 𝑥) = 𝐵 → ∅ ∈ 𝑥))
2019ancrd 551 . . . . . 6 (((𝐴 ∈ ω ∧ 𝐴𝐵) ∧ 𝑥 ∈ ω) → ((𝐴 +o 𝑥) = 𝐵 → (∅ ∈ 𝑥 ∧ (𝐴 +o 𝑥) = 𝐵)))
2120reximdva 3168 . . . . 5 ((𝐴 ∈ ω ∧ 𝐴𝐵) → (∃𝑥 ∈ ω (𝐴 +o 𝑥) = 𝐵 → ∃𝑥 ∈ ω (∅ ∈ 𝑥 ∧ (𝐴 +o 𝑥) = 𝐵)))
2221ex 412 . . . 4 (𝐴 ∈ ω → (𝐴𝐵 → (∃𝑥 ∈ ω (𝐴 +o 𝑥) = 𝐵 → ∃𝑥 ∈ ω (∅ ∈ 𝑥 ∧ (𝐴 +o 𝑥) = 𝐵))))
2322adantr 480 . . 3 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵 → (∃𝑥 ∈ ω (𝐴 +o 𝑥) = 𝐵 → ∃𝑥 ∈ ω (∅ ∈ 𝑥 ∧ (𝐴 +o 𝑥) = 𝐵))))
246, 23mpdd 43 . 2 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵 → ∃𝑥 ∈ ω (∅ ∈ 𝑥 ∧ (𝐴 +o 𝑥) = 𝐵)))
2517biimpa 476 . . . . . 6 (((𝐴 ∈ ω ∧ 𝑥 ∈ ω) ∧ ∅ ∈ 𝑥) → 𝐴 ∈ (𝐴 +o 𝑥))
2625, 8syl5ibcom 245 . . . . 5 (((𝐴 ∈ ω ∧ 𝑥 ∈ ω) ∧ ∅ ∈ 𝑥) → ((𝐴 +o 𝑥) = 𝐵𝐴𝐵))
2726expimpd 453 . . . 4 ((𝐴 ∈ ω ∧ 𝑥 ∈ ω) → ((∅ ∈ 𝑥 ∧ (𝐴 +o 𝑥) = 𝐵) → 𝐴𝐵))
2827rexlimdva 3155 . . 3 (𝐴 ∈ ω → (∃𝑥 ∈ ω (∅ ∈ 𝑥 ∧ (𝐴 +o 𝑥) = 𝐵) → 𝐴𝐵))
2928adantr 480 . 2 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (∃𝑥 ∈ ω (∅ ∈ 𝑥 ∧ (𝐴 +o 𝑥) = 𝐵) → 𝐴𝐵))
3024, 29impbid 212 1 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴𝐵 ↔ ∃𝑥 ∈ ω (∅ ∈ 𝑥 ∧ (𝐴 +o 𝑥) = 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1539  wcel 2108  wrex 3070  wss 3966  c0 4342  Oncon0 6392  (class class class)co 7438  ωcom 7894   +o coa 8511
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5305  ax-nul 5315  ax-pr 5441  ax-un 7761
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3483  df-sbc 3795  df-csb 3912  df-dif 3969  df-un 3971  df-in 3973  df-ss 3983  df-pss 3986  df-nul 4343  df-if 4535  df-pw 4610  df-sn 4635  df-pr 4637  df-op 4641  df-uni 4916  df-int 4955  df-iun 5001  df-br 5152  df-opab 5214  df-mpt 5235  df-tr 5269  df-id 5587  df-eprel 5593  df-po 5601  df-so 5602  df-fr 5645  df-we 5647  df-xp 5699  df-rel 5700  df-cnv 5701  df-co 5702  df-dm 5703  df-rn 5704  df-res 5705  df-ima 5706  df-pred 6329  df-ord 6395  df-on 6396  df-lim 6397  df-suc 6398  df-iota 6522  df-fun 6571  df-fn 6572  df-f 6573  df-f1 6574  df-fo 6575  df-f1o 6576  df-fv 6577  df-ov 7441  df-oprab 7442  df-mpo 7443  df-om 7895  df-2nd 8023  df-frecs 8314  df-wrecs 8345  df-recs 8419  df-rdg 8458  df-oadd 8518
This theorem is referenced by:  nnaordex2  8685  ltexpi  10949
  Copyright terms: Public domain W3C validator