Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  oasubex Structured version   Visualization version   GIF version

Theorem oasubex 43247
Description: While subtraction can't be a binary operation on ordinals, for any pair of ordinals there exists an ordinal that can be added to the lessor (or equal) one which will sum to the greater. Theorem 2.19 of [Schloeder] p. 6. (Contributed by RP, 29-Jan-2025.)
Assertion
Ref Expression
oasubex ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵𝐴) → ∃𝑐 ∈ On (𝑐𝐴 ∧ (𝐵 +o 𝑐) = 𝐴))
Distinct variable groups:   𝐴,𝑐   𝐵,𝑐

Proof of Theorem oasubex
StepHypRef Expression
1 simp2 1137 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵𝐴) → 𝐵 ∈ On)
2 simp1 1136 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵𝐴) → 𝐴 ∈ On)
3 simp3 1138 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵𝐴) → 𝐵𝐴)
4 oawordex 8532 . . . 4 ((𝐵 ∈ On ∧ 𝐴 ∈ On) → (𝐵𝐴 ↔ ∃𝑐 ∈ On (𝐵 +o 𝑐) = 𝐴))
54biimpa 476 . . 3 (((𝐵 ∈ On ∧ 𝐴 ∈ On) ∧ 𝐵𝐴) → ∃𝑐 ∈ On (𝐵 +o 𝑐) = 𝐴)
61, 2, 3, 5syl21anc 837 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵𝐴) → ∃𝑐 ∈ On (𝐵 +o 𝑐) = 𝐴)
7 simpr 484 . . . . . . 7 ((((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵𝐴) ∧ 𝑐 ∈ On) ∧ (𝐵 +o 𝑐) = 𝐴) → (𝐵 +o 𝑐) = 𝐴)
8 simpl1 1192 . . . . . . . . 9 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵𝐴) ∧ 𝑐 ∈ On) → 𝐴 ∈ On)
9 simpl2 1193 . . . . . . . . 9 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵𝐴) ∧ 𝑐 ∈ On) → 𝐵 ∈ On)
10 oaword2 8528 . . . . . . . . 9 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → 𝐴 ⊆ (𝐵 +o 𝐴))
118, 9, 10syl2anc 584 . . . . . . . 8 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵𝐴) ∧ 𝑐 ∈ On) → 𝐴 ⊆ (𝐵 +o 𝐴))
1211adantr 480 . . . . . . 7 ((((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵𝐴) ∧ 𝑐 ∈ On) ∧ (𝐵 +o 𝑐) = 𝐴) → 𝐴 ⊆ (𝐵 +o 𝐴))
137, 12eqsstrd 3989 . . . . . 6 ((((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵𝐴) ∧ 𝑐 ∈ On) ∧ (𝐵 +o 𝑐) = 𝐴) → (𝐵 +o 𝑐) ⊆ (𝐵 +o 𝐴))
14 simpr 484 . . . . . . . 8 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵𝐴) ∧ 𝑐 ∈ On) → 𝑐 ∈ On)
15 oaword 8524 . . . . . . . 8 ((𝑐 ∈ On ∧ 𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝑐𝐴 ↔ (𝐵 +o 𝑐) ⊆ (𝐵 +o 𝐴)))
1614, 8, 9, 15syl3anc 1373 . . . . . . 7 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵𝐴) ∧ 𝑐 ∈ On) → (𝑐𝐴 ↔ (𝐵 +o 𝑐) ⊆ (𝐵 +o 𝐴)))
1716adantr 480 . . . . . 6 ((((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵𝐴) ∧ 𝑐 ∈ On) ∧ (𝐵 +o 𝑐) = 𝐴) → (𝑐𝐴 ↔ (𝐵 +o 𝑐) ⊆ (𝐵 +o 𝐴)))
1813, 17mpbird 257 . . . . 5 ((((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵𝐴) ∧ 𝑐 ∈ On) ∧ (𝐵 +o 𝑐) = 𝐴) → 𝑐𝐴)
1918ex 412 . . . 4 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵𝐴) ∧ 𝑐 ∈ On) → ((𝐵 +o 𝑐) = 𝐴𝑐𝐴))
2019ancrd 551 . . 3 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵𝐴) ∧ 𝑐 ∈ On) → ((𝐵 +o 𝑐) = 𝐴 → (𝑐𝐴 ∧ (𝐵 +o 𝑐) = 𝐴)))
2120reximdva 3148 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵𝐴) → (∃𝑐 ∈ On (𝐵 +o 𝑐) = 𝐴 → ∃𝑐 ∈ On (𝑐𝐴 ∧ (𝐵 +o 𝑐) = 𝐴)))
226, 21mpd 15 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵𝐴) → ∃𝑐 ∈ On (𝑐𝐴 ∧ (𝐵 +o 𝑐) = 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wrex 3055  wss 3922  Oncon0 6340  (class class class)co 7394   +o coa 8440
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5242  ax-sep 5259  ax-nul 5269  ax-pr 5395  ax-un 7718
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2880  df-ne 2928  df-ral 3047  df-rex 3056  df-rmo 3357  df-reu 3358  df-rab 3412  df-v 3457  df-sbc 3762  df-csb 3871  df-dif 3925  df-un 3927  df-in 3929  df-ss 3939  df-pss 3942  df-nul 4305  df-if 4497  df-pw 4573  df-sn 4598  df-pr 4600  df-op 4604  df-uni 4880  df-int 4919  df-iun 4965  df-br 5116  df-opab 5178  df-mpt 5197  df-tr 5223  df-id 5541  df-eprel 5546  df-po 5554  df-so 5555  df-fr 5599  df-we 5601  df-xp 5652  df-rel 5653  df-cnv 5654  df-co 5655  df-dm 5656  df-rn 5657  df-res 5658  df-ima 5659  df-pred 6282  df-ord 6343  df-on 6344  df-lim 6345  df-suc 6346  df-iota 6472  df-fun 6521  df-fn 6522  df-f 6523  df-f1 6524  df-fo 6525  df-f1o 6526  df-fv 6527  df-ov 7397  df-oprab 7398  df-mpo 7399  df-om 7851  df-2nd 7978  df-frecs 8269  df-wrecs 8300  df-recs 8349  df-rdg 8387  df-oadd 8447
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator