![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > oasubex | Structured version Visualization version GIF version |
Description: While subtraction can't be a binary operation on ordinals, for any pair of ordinals there exists an ordinal that can be added to the lessor (or equal) one which will sum to the greater. Theorem 2.19 of [Schloeder] p. 6. (Contributed by RP, 29-Jan-2025.) |
Ref | Expression |
---|---|
oasubex | ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵 ⊆ 𝐴) → ∃𝑐 ∈ On (𝑐 ⊆ 𝐴 ∧ (𝐵 +o 𝑐) = 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp2 1138 | . . 3 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵 ⊆ 𝐴) → 𝐵 ∈ On) | |
2 | simp1 1137 | . . 3 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵 ⊆ 𝐴) → 𝐴 ∈ On) | |
3 | simp3 1139 | . . 3 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵 ⊆ 𝐴) → 𝐵 ⊆ 𝐴) | |
4 | oawordex 8603 | . . . 4 ⊢ ((𝐵 ∈ On ∧ 𝐴 ∈ On) → (𝐵 ⊆ 𝐴 ↔ ∃𝑐 ∈ On (𝐵 +o 𝑐) = 𝐴)) | |
5 | 4 | biimpa 476 | . . 3 ⊢ (((𝐵 ∈ On ∧ 𝐴 ∈ On) ∧ 𝐵 ⊆ 𝐴) → ∃𝑐 ∈ On (𝐵 +o 𝑐) = 𝐴) |
6 | 1, 2, 3, 5 | syl21anc 838 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵 ⊆ 𝐴) → ∃𝑐 ∈ On (𝐵 +o 𝑐) = 𝐴) |
7 | simpr 484 | . . . . . . 7 ⊢ ((((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵 ⊆ 𝐴) ∧ 𝑐 ∈ On) ∧ (𝐵 +o 𝑐) = 𝐴) → (𝐵 +o 𝑐) = 𝐴) | |
8 | simpl1 1192 | . . . . . . . . 9 ⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵 ⊆ 𝐴) ∧ 𝑐 ∈ On) → 𝐴 ∈ On) | |
9 | simpl2 1193 | . . . . . . . . 9 ⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵 ⊆ 𝐴) ∧ 𝑐 ∈ On) → 𝐵 ∈ On) | |
10 | oaword2 8599 | . . . . . . . . 9 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → 𝐴 ⊆ (𝐵 +o 𝐴)) | |
11 | 8, 9, 10 | syl2anc 584 | . . . . . . . 8 ⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵 ⊆ 𝐴) ∧ 𝑐 ∈ On) → 𝐴 ⊆ (𝐵 +o 𝐴)) |
12 | 11 | adantr 480 | . . . . . . 7 ⊢ ((((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵 ⊆ 𝐴) ∧ 𝑐 ∈ On) ∧ (𝐵 +o 𝑐) = 𝐴) → 𝐴 ⊆ (𝐵 +o 𝐴)) |
13 | 7, 12 | eqsstrd 4037 | . . . . . 6 ⊢ ((((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵 ⊆ 𝐴) ∧ 𝑐 ∈ On) ∧ (𝐵 +o 𝑐) = 𝐴) → (𝐵 +o 𝑐) ⊆ (𝐵 +o 𝐴)) |
14 | simpr 484 | . . . . . . . 8 ⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵 ⊆ 𝐴) ∧ 𝑐 ∈ On) → 𝑐 ∈ On) | |
15 | oaword 8595 | . . . . . . . 8 ⊢ ((𝑐 ∈ On ∧ 𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝑐 ⊆ 𝐴 ↔ (𝐵 +o 𝑐) ⊆ (𝐵 +o 𝐴))) | |
16 | 14, 8, 9, 15 | syl3anc 1372 | . . . . . . 7 ⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵 ⊆ 𝐴) ∧ 𝑐 ∈ On) → (𝑐 ⊆ 𝐴 ↔ (𝐵 +o 𝑐) ⊆ (𝐵 +o 𝐴))) |
17 | 16 | adantr 480 | . . . . . 6 ⊢ ((((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵 ⊆ 𝐴) ∧ 𝑐 ∈ On) ∧ (𝐵 +o 𝑐) = 𝐴) → (𝑐 ⊆ 𝐴 ↔ (𝐵 +o 𝑐) ⊆ (𝐵 +o 𝐴))) |
18 | 13, 17 | mpbird 257 | . . . . 5 ⊢ ((((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵 ⊆ 𝐴) ∧ 𝑐 ∈ On) ∧ (𝐵 +o 𝑐) = 𝐴) → 𝑐 ⊆ 𝐴) |
19 | 18 | ex 412 | . . . 4 ⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵 ⊆ 𝐴) ∧ 𝑐 ∈ On) → ((𝐵 +o 𝑐) = 𝐴 → 𝑐 ⊆ 𝐴)) |
20 | 19 | ancrd 551 | . . 3 ⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵 ⊆ 𝐴) ∧ 𝑐 ∈ On) → ((𝐵 +o 𝑐) = 𝐴 → (𝑐 ⊆ 𝐴 ∧ (𝐵 +o 𝑐) = 𝐴))) |
21 | 20 | reximdva 3168 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵 ⊆ 𝐴) → (∃𝑐 ∈ On (𝐵 +o 𝑐) = 𝐴 → ∃𝑐 ∈ On (𝑐 ⊆ 𝐴 ∧ (𝐵 +o 𝑐) = 𝐴))) |
22 | 6, 21 | mpd 15 | 1 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵 ⊆ 𝐴) → ∃𝑐 ∈ On (𝑐 ⊆ 𝐴 ∧ (𝐵 +o 𝑐) = 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1087 = wceq 1539 ∈ wcel 2108 ∃wrex 3070 ⊆ wss 3966 Oncon0 6392 (class class class)co 7438 +o coa 8511 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5288 ax-sep 5305 ax-nul 5315 ax-pr 5441 ax-un 7761 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3483 df-sbc 3795 df-csb 3912 df-dif 3969 df-un 3971 df-in 3973 df-ss 3983 df-pss 3986 df-nul 4343 df-if 4535 df-pw 4610 df-sn 4635 df-pr 4637 df-op 4641 df-uni 4916 df-int 4955 df-iun 5001 df-br 5152 df-opab 5214 df-mpt 5235 df-tr 5269 df-id 5587 df-eprel 5593 df-po 5601 df-so 5602 df-fr 5645 df-we 5647 df-xp 5699 df-rel 5700 df-cnv 5701 df-co 5702 df-dm 5703 df-rn 5704 df-res 5705 df-ima 5706 df-pred 6329 df-ord 6395 df-on 6396 df-lim 6397 df-suc 6398 df-iota 6522 df-fun 6571 df-fn 6572 df-f 6573 df-f1 6574 df-fo 6575 df-f1o 6576 df-fv 6577 df-ov 7441 df-oprab 7442 df-mpo 7443 df-om 7895 df-2nd 8023 df-frecs 8314 df-wrecs 8345 df-recs 8419 df-rdg 8458 df-oadd 8518 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |