Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  oasubex Structured version   Visualization version   GIF version

Theorem oasubex 41871
Description: While subtraction can't be a binary operation on ordinals, for any pair of ordinals there exists an ordinal that can be added to the lessor (or equal) one which will sum to the greater. Theorem 2.19 of [Schloeder] p. 6. (Contributed by RP, 29-Jan-2025.)
Assertion
Ref Expression
oasubex ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵𝐴) → ∃𝑐 ∈ On (𝑐𝐴 ∧ (𝐵 +o 𝑐) = 𝐴))
Distinct variable groups:   𝐴,𝑐   𝐵,𝑐

Proof of Theorem oasubex
StepHypRef Expression
1 simp2 1137 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵𝐴) → 𝐵 ∈ On)
2 simp1 1136 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵𝐴) → 𝐴 ∈ On)
3 simp3 1138 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵𝐴) → 𝐵𝐴)
4 oawordex 8542 . . . 4 ((𝐵 ∈ On ∧ 𝐴 ∈ On) → (𝐵𝐴 ↔ ∃𝑐 ∈ On (𝐵 +o 𝑐) = 𝐴))
54biimpa 477 . . 3 (((𝐵 ∈ On ∧ 𝐴 ∈ On) ∧ 𝐵𝐴) → ∃𝑐 ∈ On (𝐵 +o 𝑐) = 𝐴)
61, 2, 3, 5syl21anc 836 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵𝐴) → ∃𝑐 ∈ On (𝐵 +o 𝑐) = 𝐴)
7 simpr 485 . . . . . . 7 ((((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵𝐴) ∧ 𝑐 ∈ On) ∧ (𝐵 +o 𝑐) = 𝐴) → (𝐵 +o 𝑐) = 𝐴)
8 simpl1 1191 . . . . . . . . 9 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵𝐴) ∧ 𝑐 ∈ On) → 𝐴 ∈ On)
9 simpl2 1192 . . . . . . . . 9 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵𝐴) ∧ 𝑐 ∈ On) → 𝐵 ∈ On)
10 oaword2 8538 . . . . . . . . 9 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → 𝐴 ⊆ (𝐵 +o 𝐴))
118, 9, 10syl2anc 584 . . . . . . . 8 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵𝐴) ∧ 𝑐 ∈ On) → 𝐴 ⊆ (𝐵 +o 𝐴))
1211adantr 481 . . . . . . 7 ((((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵𝐴) ∧ 𝑐 ∈ On) ∧ (𝐵 +o 𝑐) = 𝐴) → 𝐴 ⊆ (𝐵 +o 𝐴))
137, 12eqsstrd 4017 . . . . . 6 ((((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵𝐴) ∧ 𝑐 ∈ On) ∧ (𝐵 +o 𝑐) = 𝐴) → (𝐵 +o 𝑐) ⊆ (𝐵 +o 𝐴))
14 simpr 485 . . . . . . . 8 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵𝐴) ∧ 𝑐 ∈ On) → 𝑐 ∈ On)
15 oaword 8534 . . . . . . . 8 ((𝑐 ∈ On ∧ 𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝑐𝐴 ↔ (𝐵 +o 𝑐) ⊆ (𝐵 +o 𝐴)))
1614, 8, 9, 15syl3anc 1371 . . . . . . 7 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵𝐴) ∧ 𝑐 ∈ On) → (𝑐𝐴 ↔ (𝐵 +o 𝑐) ⊆ (𝐵 +o 𝐴)))
1716adantr 481 . . . . . 6 ((((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵𝐴) ∧ 𝑐 ∈ On) ∧ (𝐵 +o 𝑐) = 𝐴) → (𝑐𝐴 ↔ (𝐵 +o 𝑐) ⊆ (𝐵 +o 𝐴)))
1813, 17mpbird 256 . . . . 5 ((((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵𝐴) ∧ 𝑐 ∈ On) ∧ (𝐵 +o 𝑐) = 𝐴) → 𝑐𝐴)
1918ex 413 . . . 4 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵𝐴) ∧ 𝑐 ∈ On) → ((𝐵 +o 𝑐) = 𝐴𝑐𝐴))
2019ancrd 552 . . 3 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵𝐴) ∧ 𝑐 ∈ On) → ((𝐵 +o 𝑐) = 𝐴 → (𝑐𝐴 ∧ (𝐵 +o 𝑐) = 𝐴)))
2120reximdva 3168 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵𝐴) → (∃𝑐 ∈ On (𝐵 +o 𝑐) = 𝐴 → ∃𝑐 ∈ On (𝑐𝐴 ∧ (𝐵 +o 𝑐) = 𝐴)))
226, 21mpd 15 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵𝐴) → ∃𝑐 ∈ On (𝑐𝐴 ∧ (𝐵 +o 𝑐) = 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  wrex 3070  wss 3945  Oncon0 6354  (class class class)co 7394   +o coa 8447
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pr 5421  ax-un 7709
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3775  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-pss 3964  df-nul 4320  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-int 4945  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5568  df-eprel 5574  df-po 5582  df-so 5583  df-fr 5625  df-we 5627  df-xp 5676  df-rel 5677  df-cnv 5678  df-co 5679  df-dm 5680  df-rn 5681  df-res 5682  df-ima 5683  df-pred 6290  df-ord 6357  df-on 6358  df-lim 6359  df-suc 6360  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-ov 7397  df-oprab 7398  df-mpo 7399  df-om 7840  df-2nd 7960  df-frecs 8250  df-wrecs 8281  df-recs 8355  df-rdg 8394  df-oadd 8454
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator