Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  oasubex Structured version   Visualization version   GIF version

Theorem oasubex 43237
Description: While subtraction can't be a binary operation on ordinals, for any pair of ordinals there exists an ordinal that can be added to the lessor (or equal) one which will sum to the greater. Theorem 2.19 of [Schloeder] p. 6. (Contributed by RP, 29-Jan-2025.)
Assertion
Ref Expression
oasubex ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵𝐴) → ∃𝑐 ∈ On (𝑐𝐴 ∧ (𝐵 +o 𝑐) = 𝐴))
Distinct variable groups:   𝐴,𝑐   𝐵,𝑐

Proof of Theorem oasubex
StepHypRef Expression
1 simp2 1137 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵𝐴) → 𝐵 ∈ On)
2 simp1 1136 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵𝐴) → 𝐴 ∈ On)
3 simp3 1138 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵𝐴) → 𝐵𝐴)
4 oawordex 8576 . . . 4 ((𝐵 ∈ On ∧ 𝐴 ∈ On) → (𝐵𝐴 ↔ ∃𝑐 ∈ On (𝐵 +o 𝑐) = 𝐴))
54biimpa 476 . . 3 (((𝐵 ∈ On ∧ 𝐴 ∈ On) ∧ 𝐵𝐴) → ∃𝑐 ∈ On (𝐵 +o 𝑐) = 𝐴)
61, 2, 3, 5syl21anc 837 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵𝐴) → ∃𝑐 ∈ On (𝐵 +o 𝑐) = 𝐴)
7 simpr 484 . . . . . . 7 ((((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵𝐴) ∧ 𝑐 ∈ On) ∧ (𝐵 +o 𝑐) = 𝐴) → (𝐵 +o 𝑐) = 𝐴)
8 simpl1 1191 . . . . . . . . 9 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵𝐴) ∧ 𝑐 ∈ On) → 𝐴 ∈ On)
9 simpl2 1192 . . . . . . . . 9 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵𝐴) ∧ 𝑐 ∈ On) → 𝐵 ∈ On)
10 oaword2 8572 . . . . . . . . 9 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → 𝐴 ⊆ (𝐵 +o 𝐴))
118, 9, 10syl2anc 584 . . . . . . . 8 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵𝐴) ∧ 𝑐 ∈ On) → 𝐴 ⊆ (𝐵 +o 𝐴))
1211adantr 480 . . . . . . 7 ((((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵𝐴) ∧ 𝑐 ∈ On) ∧ (𝐵 +o 𝑐) = 𝐴) → 𝐴 ⊆ (𝐵 +o 𝐴))
137, 12eqsstrd 3998 . . . . . 6 ((((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵𝐴) ∧ 𝑐 ∈ On) ∧ (𝐵 +o 𝑐) = 𝐴) → (𝐵 +o 𝑐) ⊆ (𝐵 +o 𝐴))
14 simpr 484 . . . . . . . 8 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵𝐴) ∧ 𝑐 ∈ On) → 𝑐 ∈ On)
15 oaword 8568 . . . . . . . 8 ((𝑐 ∈ On ∧ 𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝑐𝐴 ↔ (𝐵 +o 𝑐) ⊆ (𝐵 +o 𝐴)))
1614, 8, 9, 15syl3anc 1372 . . . . . . 7 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵𝐴) ∧ 𝑐 ∈ On) → (𝑐𝐴 ↔ (𝐵 +o 𝑐) ⊆ (𝐵 +o 𝐴)))
1716adantr 480 . . . . . 6 ((((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵𝐴) ∧ 𝑐 ∈ On) ∧ (𝐵 +o 𝑐) = 𝐴) → (𝑐𝐴 ↔ (𝐵 +o 𝑐) ⊆ (𝐵 +o 𝐴)))
1813, 17mpbird 257 . . . . 5 ((((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵𝐴) ∧ 𝑐 ∈ On) ∧ (𝐵 +o 𝑐) = 𝐴) → 𝑐𝐴)
1918ex 412 . . . 4 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵𝐴) ∧ 𝑐 ∈ On) → ((𝐵 +o 𝑐) = 𝐴𝑐𝐴))
2019ancrd 551 . . 3 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵𝐴) ∧ 𝑐 ∈ On) → ((𝐵 +o 𝑐) = 𝐴 → (𝑐𝐴 ∧ (𝐵 +o 𝑐) = 𝐴)))
2120reximdva 3155 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵𝐴) → (∃𝑐 ∈ On (𝐵 +o 𝑐) = 𝐴 → ∃𝑐 ∈ On (𝑐𝐴 ∧ (𝐵 +o 𝑐) = 𝐴)))
226, 21mpd 15 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵𝐴) → ∃𝑐 ∈ On (𝑐𝐴 ∧ (𝐵 +o 𝑐) = 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1539  wcel 2107  wrex 3059  wss 3931  Oncon0 6363  (class class class)co 7412   +o coa 8484
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5259  ax-sep 5276  ax-nul 5286  ax-pr 5412  ax-un 7736
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-int 4927  df-iun 4973  df-br 5124  df-opab 5186  df-mpt 5206  df-tr 5240  df-id 5558  df-eprel 5564  df-po 5572  df-so 5573  df-fr 5617  df-we 5619  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-pred 6301  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6493  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-ov 7415  df-oprab 7416  df-mpo 7417  df-om 7869  df-2nd 7996  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-oadd 8491
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator