| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > oasubex | Structured version Visualization version GIF version | ||
| Description: While subtraction can't be a binary operation on ordinals, for any pair of ordinals there exists an ordinal that can be added to the lessor (or equal) one which will sum to the greater. Theorem 2.19 of [Schloeder] p. 6. (Contributed by RP, 29-Jan-2025.) |
| Ref | Expression |
|---|---|
| oasubex | ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵 ⊆ 𝐴) → ∃𝑐 ∈ On (𝑐 ⊆ 𝐴 ∧ (𝐵 +o 𝑐) = 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp2 1137 | . . 3 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵 ⊆ 𝐴) → 𝐵 ∈ On) | |
| 2 | simp1 1136 | . . 3 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵 ⊆ 𝐴) → 𝐴 ∈ On) | |
| 3 | simp3 1138 | . . 3 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵 ⊆ 𝐴) → 𝐵 ⊆ 𝐴) | |
| 4 | oawordex 8521 | . . . 4 ⊢ ((𝐵 ∈ On ∧ 𝐴 ∈ On) → (𝐵 ⊆ 𝐴 ↔ ∃𝑐 ∈ On (𝐵 +o 𝑐) = 𝐴)) | |
| 5 | 4 | biimpa 476 | . . 3 ⊢ (((𝐵 ∈ On ∧ 𝐴 ∈ On) ∧ 𝐵 ⊆ 𝐴) → ∃𝑐 ∈ On (𝐵 +o 𝑐) = 𝐴) |
| 6 | 1, 2, 3, 5 | syl21anc 837 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵 ⊆ 𝐴) → ∃𝑐 ∈ On (𝐵 +o 𝑐) = 𝐴) |
| 7 | simpr 484 | . . . . . . 7 ⊢ ((((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵 ⊆ 𝐴) ∧ 𝑐 ∈ On) ∧ (𝐵 +o 𝑐) = 𝐴) → (𝐵 +o 𝑐) = 𝐴) | |
| 8 | simpl1 1192 | . . . . . . . . 9 ⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵 ⊆ 𝐴) ∧ 𝑐 ∈ On) → 𝐴 ∈ On) | |
| 9 | simpl2 1193 | . . . . . . . . 9 ⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵 ⊆ 𝐴) ∧ 𝑐 ∈ On) → 𝐵 ∈ On) | |
| 10 | oaword2 8517 | . . . . . . . . 9 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → 𝐴 ⊆ (𝐵 +o 𝐴)) | |
| 11 | 8, 9, 10 | syl2anc 584 | . . . . . . . 8 ⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵 ⊆ 𝐴) ∧ 𝑐 ∈ On) → 𝐴 ⊆ (𝐵 +o 𝐴)) |
| 12 | 11 | adantr 480 | . . . . . . 7 ⊢ ((((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵 ⊆ 𝐴) ∧ 𝑐 ∈ On) ∧ (𝐵 +o 𝑐) = 𝐴) → 𝐴 ⊆ (𝐵 +o 𝐴)) |
| 13 | 7, 12 | eqsstrd 3981 | . . . . . 6 ⊢ ((((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵 ⊆ 𝐴) ∧ 𝑐 ∈ On) ∧ (𝐵 +o 𝑐) = 𝐴) → (𝐵 +o 𝑐) ⊆ (𝐵 +o 𝐴)) |
| 14 | simpr 484 | . . . . . . . 8 ⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵 ⊆ 𝐴) ∧ 𝑐 ∈ On) → 𝑐 ∈ On) | |
| 15 | oaword 8513 | . . . . . . . 8 ⊢ ((𝑐 ∈ On ∧ 𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝑐 ⊆ 𝐴 ↔ (𝐵 +o 𝑐) ⊆ (𝐵 +o 𝐴))) | |
| 16 | 14, 8, 9, 15 | syl3anc 1373 | . . . . . . 7 ⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵 ⊆ 𝐴) ∧ 𝑐 ∈ On) → (𝑐 ⊆ 𝐴 ↔ (𝐵 +o 𝑐) ⊆ (𝐵 +o 𝐴))) |
| 17 | 16 | adantr 480 | . . . . . 6 ⊢ ((((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵 ⊆ 𝐴) ∧ 𝑐 ∈ On) ∧ (𝐵 +o 𝑐) = 𝐴) → (𝑐 ⊆ 𝐴 ↔ (𝐵 +o 𝑐) ⊆ (𝐵 +o 𝐴))) |
| 18 | 13, 17 | mpbird 257 | . . . . 5 ⊢ ((((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵 ⊆ 𝐴) ∧ 𝑐 ∈ On) ∧ (𝐵 +o 𝑐) = 𝐴) → 𝑐 ⊆ 𝐴) |
| 19 | 18 | ex 412 | . . . 4 ⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵 ⊆ 𝐴) ∧ 𝑐 ∈ On) → ((𝐵 +o 𝑐) = 𝐴 → 𝑐 ⊆ 𝐴)) |
| 20 | 19 | ancrd 551 | . . 3 ⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵 ⊆ 𝐴) ∧ 𝑐 ∈ On) → ((𝐵 +o 𝑐) = 𝐴 → (𝑐 ⊆ 𝐴 ∧ (𝐵 +o 𝑐) = 𝐴))) |
| 21 | 20 | reximdva 3146 | . 2 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵 ⊆ 𝐴) → (∃𝑐 ∈ On (𝐵 +o 𝑐) = 𝐴 → ∃𝑐 ∈ On (𝑐 ⊆ 𝐴 ∧ (𝐵 +o 𝑐) = 𝐴))) |
| 22 | 6, 21 | mpd 15 | 1 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵 ⊆ 𝐴) → ∃𝑐 ∈ On (𝑐 ⊆ 𝐴 ∧ (𝐵 +o 𝑐) = 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∃wrex 3053 ⊆ wss 3914 Oncon0 6332 (class class class)co 7387 +o coa 8431 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-oadd 8438 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |