Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  oasubex Structured version   Visualization version   GIF version

Theorem oasubex 43250
Description: While subtraction can't be a binary operation on ordinals, for any pair of ordinals there exists an ordinal that can be added to the lessor (or equal) one which will sum to the greater. Theorem 2.19 of [Schloeder] p. 6. (Contributed by RP, 29-Jan-2025.)
Assertion
Ref Expression
oasubex ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵𝐴) → ∃𝑐 ∈ On (𝑐𝐴 ∧ (𝐵 +o 𝑐) = 𝐴))
Distinct variable groups:   𝐴,𝑐   𝐵,𝑐

Proof of Theorem oasubex
StepHypRef Expression
1 simp2 1137 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵𝐴) → 𝐵 ∈ On)
2 simp1 1136 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵𝐴) → 𝐴 ∈ On)
3 simp3 1138 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵𝐴) → 𝐵𝐴)
4 oawordex 8615 . . . 4 ((𝐵 ∈ On ∧ 𝐴 ∈ On) → (𝐵𝐴 ↔ ∃𝑐 ∈ On (𝐵 +o 𝑐) = 𝐴))
54biimpa 476 . . 3 (((𝐵 ∈ On ∧ 𝐴 ∈ On) ∧ 𝐵𝐴) → ∃𝑐 ∈ On (𝐵 +o 𝑐) = 𝐴)
61, 2, 3, 5syl21anc 837 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵𝐴) → ∃𝑐 ∈ On (𝐵 +o 𝑐) = 𝐴)
7 simpr 484 . . . . . . 7 ((((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵𝐴) ∧ 𝑐 ∈ On) ∧ (𝐵 +o 𝑐) = 𝐴) → (𝐵 +o 𝑐) = 𝐴)
8 simpl1 1191 . . . . . . . . 9 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵𝐴) ∧ 𝑐 ∈ On) → 𝐴 ∈ On)
9 simpl2 1192 . . . . . . . . 9 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵𝐴) ∧ 𝑐 ∈ On) → 𝐵 ∈ On)
10 oaword2 8611 . . . . . . . . 9 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → 𝐴 ⊆ (𝐵 +o 𝐴))
118, 9, 10syl2anc 583 . . . . . . . 8 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵𝐴) ∧ 𝑐 ∈ On) → 𝐴 ⊆ (𝐵 +o 𝐴))
1211adantr 480 . . . . . . 7 ((((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵𝐴) ∧ 𝑐 ∈ On) ∧ (𝐵 +o 𝑐) = 𝐴) → 𝐴 ⊆ (𝐵 +o 𝐴))
137, 12eqsstrd 4047 . . . . . 6 ((((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵𝐴) ∧ 𝑐 ∈ On) ∧ (𝐵 +o 𝑐) = 𝐴) → (𝐵 +o 𝑐) ⊆ (𝐵 +o 𝐴))
14 simpr 484 . . . . . . . 8 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵𝐴) ∧ 𝑐 ∈ On) → 𝑐 ∈ On)
15 oaword 8607 . . . . . . . 8 ((𝑐 ∈ On ∧ 𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝑐𝐴 ↔ (𝐵 +o 𝑐) ⊆ (𝐵 +o 𝐴)))
1614, 8, 9, 15syl3anc 1371 . . . . . . 7 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵𝐴) ∧ 𝑐 ∈ On) → (𝑐𝐴 ↔ (𝐵 +o 𝑐) ⊆ (𝐵 +o 𝐴)))
1716adantr 480 . . . . . 6 ((((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵𝐴) ∧ 𝑐 ∈ On) ∧ (𝐵 +o 𝑐) = 𝐴) → (𝑐𝐴 ↔ (𝐵 +o 𝑐) ⊆ (𝐵 +o 𝐴)))
1813, 17mpbird 257 . . . . 5 ((((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵𝐴) ∧ 𝑐 ∈ On) ∧ (𝐵 +o 𝑐) = 𝐴) → 𝑐𝐴)
1918ex 412 . . . 4 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵𝐴) ∧ 𝑐 ∈ On) → ((𝐵 +o 𝑐) = 𝐴𝑐𝐴))
2019ancrd 551 . . 3 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵𝐴) ∧ 𝑐 ∈ On) → ((𝐵 +o 𝑐) = 𝐴 → (𝑐𝐴 ∧ (𝐵 +o 𝑐) = 𝐴)))
2120reximdva 3174 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵𝐴) → (∃𝑐 ∈ On (𝐵 +o 𝑐) = 𝐴 → ∃𝑐 ∈ On (𝑐𝐴 ∧ (𝐵 +o 𝑐) = 𝐴)))
226, 21mpd 15 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐵𝐴) → ∃𝑐 ∈ On (𝑐𝐴 ∧ (𝐵 +o 𝑐) = 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wrex 3076  wss 3976  Oncon0 6397  (class class class)co 7450   +o coa 8521
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7772
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6334  df-ord 6400  df-on 6401  df-lim 6402  df-suc 6403  df-iota 6527  df-fun 6577  df-fn 6578  df-f 6579  df-f1 6580  df-fo 6581  df-f1o 6582  df-fv 6583  df-ov 7453  df-oprab 7454  df-mpo 7455  df-om 7906  df-2nd 8033  df-frecs 8324  df-wrecs 8355  df-recs 8429  df-rdg 8468  df-oadd 8528
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator