| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > prmdvdsfz | Structured version Visualization version GIF version | ||
| Description: Each integer greater than 1 and less than or equal to a fixed number is divisible by a prime less than or equal to this fixed number. (Contributed by AV, 15-Aug-2020.) |
| Ref | Expression |
|---|---|
| prmdvdsfz | ⊢ ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) → ∃𝑝 ∈ ℙ (𝑝 ≤ 𝑁 ∧ 𝑝 ∥ 𝐼)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfzuz 13420 | . . . 4 ⊢ (𝐼 ∈ (2...𝑁) → 𝐼 ∈ (ℤ≥‘2)) | |
| 2 | 1 | adantl 481 | . . 3 ⊢ ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) → 𝐼 ∈ (ℤ≥‘2)) |
| 3 | exprmfct 16615 | . . 3 ⊢ (𝐼 ∈ (ℤ≥‘2) → ∃𝑝 ∈ ℙ 𝑝 ∥ 𝐼) | |
| 4 | 2, 3 | syl 17 | . 2 ⊢ ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) → ∃𝑝 ∈ ℙ 𝑝 ∥ 𝐼) |
| 5 | prmz 16586 | . . . . . 6 ⊢ (𝑝 ∈ ℙ → 𝑝 ∈ ℤ) | |
| 6 | eluz2nn 12786 | . . . . . . . 8 ⊢ (𝐼 ∈ (ℤ≥‘2) → 𝐼 ∈ ℕ) | |
| 7 | 1, 6 | syl 17 | . . . . . . 7 ⊢ (𝐼 ∈ (2...𝑁) → 𝐼 ∈ ℕ) |
| 8 | 7 | adantl 481 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) → 𝐼 ∈ ℕ) |
| 9 | dvdsle 16221 | . . . . . 6 ⊢ ((𝑝 ∈ ℤ ∧ 𝐼 ∈ ℕ) → (𝑝 ∥ 𝐼 → 𝑝 ≤ 𝐼)) | |
| 10 | 5, 8, 9 | syl2anr 597 | . . . . 5 ⊢ (((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) ∧ 𝑝 ∈ ℙ) → (𝑝 ∥ 𝐼 → 𝑝 ≤ 𝐼)) |
| 11 | elfzle2 13428 | . . . . . . 7 ⊢ (𝐼 ∈ (2...𝑁) → 𝐼 ≤ 𝑁) | |
| 12 | 11 | ad2antlr 727 | . . . . . 6 ⊢ (((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) ∧ 𝑝 ∈ ℙ) → 𝐼 ≤ 𝑁) |
| 13 | 5 | zred 12577 | . . . . . . . 8 ⊢ (𝑝 ∈ ℙ → 𝑝 ∈ ℝ) |
| 14 | 13 | adantl 481 | . . . . . . 7 ⊢ (((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) ∧ 𝑝 ∈ ℙ) → 𝑝 ∈ ℝ) |
| 15 | elfzelz 13424 | . . . . . . . . 9 ⊢ (𝐼 ∈ (2...𝑁) → 𝐼 ∈ ℤ) | |
| 16 | 15 | zred 12577 | . . . . . . . 8 ⊢ (𝐼 ∈ (2...𝑁) → 𝐼 ∈ ℝ) |
| 17 | 16 | ad2antlr 727 | . . . . . . 7 ⊢ (((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) ∧ 𝑝 ∈ ℙ) → 𝐼 ∈ ℝ) |
| 18 | nnre 12132 | . . . . . . . 8 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℝ) | |
| 19 | 18 | ad2antrr 726 | . . . . . . 7 ⊢ (((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) ∧ 𝑝 ∈ ℙ) → 𝑁 ∈ ℝ) |
| 20 | letr 11207 | . . . . . . 7 ⊢ ((𝑝 ∈ ℝ ∧ 𝐼 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((𝑝 ≤ 𝐼 ∧ 𝐼 ≤ 𝑁) → 𝑝 ≤ 𝑁)) | |
| 21 | 14, 17, 19, 20 | syl3anc 1373 | . . . . . 6 ⊢ (((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) ∧ 𝑝 ∈ ℙ) → ((𝑝 ≤ 𝐼 ∧ 𝐼 ≤ 𝑁) → 𝑝 ≤ 𝑁)) |
| 22 | 12, 21 | mpan2d 694 | . . . . 5 ⊢ (((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) ∧ 𝑝 ∈ ℙ) → (𝑝 ≤ 𝐼 → 𝑝 ≤ 𝑁)) |
| 23 | 10, 22 | syld 47 | . . . 4 ⊢ (((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) ∧ 𝑝 ∈ ℙ) → (𝑝 ∥ 𝐼 → 𝑝 ≤ 𝑁)) |
| 24 | 23 | ancrd 551 | . . 3 ⊢ (((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) ∧ 𝑝 ∈ ℙ) → (𝑝 ∥ 𝐼 → (𝑝 ≤ 𝑁 ∧ 𝑝 ∥ 𝐼))) |
| 25 | 24 | reximdva 3145 | . 2 ⊢ ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) → (∃𝑝 ∈ ℙ 𝑝 ∥ 𝐼 → ∃𝑝 ∈ ℙ (𝑝 ≤ 𝑁 ∧ 𝑝 ∥ 𝐼))) |
| 26 | 4, 25 | mpd 15 | 1 ⊢ ((𝑁 ∈ ℕ ∧ 𝐼 ∈ (2...𝑁)) → ∃𝑝 ∈ ℙ (𝑝 ≤ 𝑁 ∧ 𝑝 ∥ 𝐼)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2111 ∃wrex 3056 class class class wbr 5091 ‘cfv 6481 (class class class)co 7346 ℝcr 11005 ≤ cle 11147 ℕcn 12125 2c2 12180 ℤcz 12468 ℤ≥cuz 12732 ...cfz 13407 ∥ cdvds 16163 ℙcprime 16582 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 ax-pre-sup 11084 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-2o 8386 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-sup 9326 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-div 11775 df-nn 12126 df-2 12188 df-3 12189 df-n0 12382 df-z 12469 df-uz 12733 df-rp 12891 df-fz 13408 df-seq 13909 df-exp 13969 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-dvds 16164 df-prm 16583 |
| This theorem is referenced by: prmdvdsprmop 16955 |
| Copyright terms: Public domain | W3C validator |