Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  climreeq Structured version   Visualization version   GIF version

Theorem climreeq 42614
Description: If 𝐹 is a real function, then 𝐹 converges to 𝐴 with respect to the standard topology on the reals if and only if it converges to 𝐴 with respect to the standard topology on complex numbers. In the theorem, 𝑅 is defined to be convergence w.r.t. the standard topology on the reals and then 𝐹𝑅𝐴 represents the statement "𝐹 converges to 𝐴, with respect to the standard topology on the reals". Notice that there is no need for the hypothesis that 𝐴 is a real number. (Contributed by Glauco Siliprandi, 2-Jul-2017.)
Hypotheses
Ref Expression
climreeq.1 𝑅 = (⇝𝑡‘(topGen‘ran (,)))
climreeq.2 𝑍 = (ℤ𝑀)
climreeq.3 (𝜑𝑀 ∈ ℤ)
climreeq.4 (𝜑𝐹:𝑍⟶ℝ)
Assertion
Ref Expression
climreeq (𝜑 → (𝐹𝑅𝐴𝐹𝐴))

Proof of Theorem climreeq
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 climreeq.1 . . 3 𝑅 = (⇝𝑡‘(topGen‘ran (,)))
21breqi 5039 . 2 (𝐹𝑅𝐴𝐹(⇝𝑡‘(topGen‘ran (,)))𝐴)
3 climreeq.3 . . . 4 (𝜑𝑀 ∈ ℤ)
4 climreeq.4 . . . . 5 (𝜑𝐹:𝑍⟶ℝ)
5 ax-resscn 10625 . . . . . 6 ℝ ⊆ ℂ
65a1i 11 . . . . 5 (𝜑 → ℝ ⊆ ℂ)
74, 6fssd 6514 . . . 4 (𝜑𝐹:𝑍⟶ℂ)
8 eqid 2759 . . . . 5 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
9 climreeq.2 . . . . 5 𝑍 = (ℤ𝑀)
108, 9lmclimf 23997 . . . 4 ((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℂ) → (𝐹(⇝𝑡‘(TopOpen‘ℂfld))𝐴𝐹𝐴))
113, 7, 10syl2anc 588 . . 3 (𝜑 → (𝐹(⇝𝑡‘(TopOpen‘ℂfld))𝐴𝐹𝐴))
128tgioo2 23497 . . . . . 6 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
13 reex 10659 . . . . . . 7 ℝ ∈ V
1413a1i 11 . . . . . 6 ((𝜑𝐴 ∈ ℝ) → ℝ ∈ V)
158cnfldtop 23478 . . . . . . 7 (TopOpen‘ℂfld) ∈ Top
1615a1i 11 . . . . . 6 ((𝜑𝐴 ∈ ℝ) → (TopOpen‘ℂfld) ∈ Top)
17 simpr 489 . . . . . 6 ((𝜑𝐴 ∈ ℝ) → 𝐴 ∈ ℝ)
183adantr 485 . . . . . 6 ((𝜑𝐴 ∈ ℝ) → 𝑀 ∈ ℤ)
194adantr 485 . . . . . 6 ((𝜑𝐴 ∈ ℝ) → 𝐹:𝑍⟶ℝ)
2012, 9, 14, 16, 17, 18, 19lmss 21991 . . . . 5 ((𝜑𝐴 ∈ ℝ) → (𝐹(⇝𝑡‘(TopOpen‘ℂfld))𝐴𝐹(⇝𝑡‘(topGen‘ran (,)))𝐴))
2120pm5.32da 583 . . . 4 (𝜑 → ((𝐴 ∈ ℝ ∧ 𝐹(⇝𝑡‘(TopOpen‘ℂfld))𝐴) ↔ (𝐴 ∈ ℝ ∧ 𝐹(⇝𝑡‘(topGen‘ran (,)))𝐴)))
22 simpr 489 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐹(⇝𝑡‘(TopOpen‘ℂfld))𝐴) → 𝐹(⇝𝑡‘(TopOpen‘ℂfld))𝐴)
233adantr 485 . . . . . . . 8 ((𝜑𝐹(⇝𝑡‘(TopOpen‘ℂfld))𝐴) → 𝑀 ∈ ℤ)
2411biimpa 481 . . . . . . . 8 ((𝜑𝐹(⇝𝑡‘(TopOpen‘ℂfld))𝐴) → 𝐹𝐴)
254ffvelrnda 6843 . . . . . . . . 9 ((𝜑𝑛𝑍) → (𝐹𝑛) ∈ ℝ)
2625adantlr 715 . . . . . . . 8 (((𝜑𝐹(⇝𝑡‘(TopOpen‘ℂfld))𝐴) ∧ 𝑛𝑍) → (𝐹𝑛) ∈ ℝ)
279, 23, 24, 26climrecl 14981 . . . . . . 7 ((𝜑𝐹(⇝𝑡‘(TopOpen‘ℂfld))𝐴) → 𝐴 ∈ ℝ)
2827ex 417 . . . . . 6 (𝜑 → (𝐹(⇝𝑡‘(TopOpen‘ℂfld))𝐴𝐴 ∈ ℝ))
2928ancrd 556 . . . . 5 (𝜑 → (𝐹(⇝𝑡‘(TopOpen‘ℂfld))𝐴 → (𝐴 ∈ ℝ ∧ 𝐹(⇝𝑡‘(TopOpen‘ℂfld))𝐴)))
3022, 29impbid2 229 . . . 4 (𝜑 → ((𝐴 ∈ ℝ ∧ 𝐹(⇝𝑡‘(TopOpen‘ℂfld))𝐴) ↔ 𝐹(⇝𝑡‘(TopOpen‘ℂfld))𝐴))
31 simpr 489 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐹(⇝𝑡‘(topGen‘ran (,)))𝐴) → 𝐹(⇝𝑡‘(topGen‘ran (,)))𝐴)
32 retopon 23458 . . . . . . . . 9 (topGen‘ran (,)) ∈ (TopOn‘ℝ)
3332a1i 11 . . . . . . . 8 ((𝜑𝐹(⇝𝑡‘(topGen‘ran (,)))𝐴) → (topGen‘ran (,)) ∈ (TopOn‘ℝ))
34 simpr 489 . . . . . . . 8 ((𝜑𝐹(⇝𝑡‘(topGen‘ran (,)))𝐴) → 𝐹(⇝𝑡‘(topGen‘ran (,)))𝐴)
35 lmcl 21990 . . . . . . . 8 (((topGen‘ran (,)) ∈ (TopOn‘ℝ) ∧ 𝐹(⇝𝑡‘(topGen‘ran (,)))𝐴) → 𝐴 ∈ ℝ)
3633, 34, 35syl2anc 588 . . . . . . 7 ((𝜑𝐹(⇝𝑡‘(topGen‘ran (,)))𝐴) → 𝐴 ∈ ℝ)
3736ex 417 . . . . . 6 (𝜑 → (𝐹(⇝𝑡‘(topGen‘ran (,)))𝐴𝐴 ∈ ℝ))
3837ancrd 556 . . . . 5 (𝜑 → (𝐹(⇝𝑡‘(topGen‘ran (,)))𝐴 → (𝐴 ∈ ℝ ∧ 𝐹(⇝𝑡‘(topGen‘ran (,)))𝐴)))
3931, 38impbid2 229 . . . 4 (𝜑 → ((𝐴 ∈ ℝ ∧ 𝐹(⇝𝑡‘(topGen‘ran (,)))𝐴) ↔ 𝐹(⇝𝑡‘(topGen‘ran (,)))𝐴))
4021, 30, 393bitr3d 313 . . 3 (𝜑 → (𝐹(⇝𝑡‘(TopOpen‘ℂfld))𝐴𝐹(⇝𝑡‘(topGen‘ran (,)))𝐴))
4111, 40bitr3d 284 . 2 (𝜑 → (𝐹𝐴𝐹(⇝𝑡‘(topGen‘ran (,)))𝐴))
422, 41bitr4id 294 1 (𝜑 → (𝐹𝑅𝐴𝐹𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 400   = wceq 1539  wcel 2112  Vcvv 3410  wss 3859   class class class wbr 5033  ran crn 5526  wf 6332  cfv 6336  cc 10566  cr 10567  cz 12013  cuz 12275  (,)cioo 12772  cli 14882  TopOpenctopn 16746  topGenctg 16762  fldccnfld 20159  Topctop 21586  TopOnctopon 21603  𝑡clm 21919
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5235  ax-pr 5299  ax-un 7460  ax-cnex 10624  ax-resscn 10625  ax-1cn 10626  ax-icn 10627  ax-addcl 10628  ax-addrcl 10629  ax-mulcl 10630  ax-mulrcl 10631  ax-mulcom 10632  ax-addass 10633  ax-mulass 10634  ax-distr 10635  ax-i2m1 10636  ax-1ne0 10637  ax-1rid 10638  ax-rnegex 10639  ax-rrecex 10640  ax-cnre 10641  ax-pre-lttri 10642  ax-pre-lttrn 10643  ax-pre-ltadd 10644  ax-pre-mulgt0 10645  ax-pre-sup 10646
This theorem depends on definitions:  df-bi 210  df-an 401  df-or 846  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2071  df-mo 2558  df-eu 2589  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2902  df-ne 2953  df-nel 3057  df-ral 3076  df-rex 3077  df-reu 3078  df-rmo 3079  df-rab 3080  df-v 3412  df-sbc 3698  df-csb 3807  df-dif 3862  df-un 3864  df-in 3866  df-ss 3876  df-pss 3878  df-nul 4227  df-if 4422  df-pw 4497  df-sn 4524  df-pr 4526  df-tp 4528  df-op 4530  df-uni 4800  df-int 4840  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5431  df-eprel 5436  df-po 5444  df-so 5445  df-fr 5484  df-we 5486  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-pred 6127  df-ord 6173  df-on 6174  df-lim 6175  df-suc 6176  df-iota 6295  df-fun 6338  df-fn 6339  df-f 6340  df-f1 6341  df-fo 6342  df-f1o 6343  df-fv 6344  df-riota 7109  df-ov 7154  df-oprab 7155  df-mpo 7156  df-om 7581  df-1st 7694  df-2nd 7695  df-wrecs 7958  df-recs 8019  df-rdg 8057  df-1o 8113  df-oadd 8117  df-er 8300  df-map 8419  df-pm 8420  df-en 8529  df-dom 8530  df-sdom 8531  df-fin 8532  df-fi 8901  df-sup 8932  df-inf 8933  df-pnf 10708  df-mnf 10709  df-xr 10710  df-ltxr 10711  df-le 10712  df-sub 10903  df-neg 10904  df-div 11329  df-nn 11668  df-2 11730  df-3 11731  df-4 11732  df-5 11733  df-6 11734  df-7 11735  df-8 11736  df-9 11737  df-n0 11928  df-z 12014  df-dec 12131  df-uz 12276  df-q 12382  df-rp 12424  df-xneg 12541  df-xadd 12542  df-xmul 12543  df-ioo 12776  df-fz 12933  df-fl 13204  df-seq 13412  df-exp 13473  df-cj 14499  df-re 14500  df-im 14501  df-sqrt 14635  df-abs 14636  df-clim 14886  df-rlim 14887  df-struct 16536  df-ndx 16537  df-slot 16538  df-base 16540  df-plusg 16629  df-mulr 16630  df-starv 16631  df-tset 16635  df-ple 16636  df-ds 16638  df-unif 16639  df-rest 16747  df-topn 16748  df-topgen 16768  df-psmet 20151  df-xmet 20152  df-met 20153  df-bl 20154  df-mopn 20155  df-cnfld 20160  df-top 21587  df-topon 21604  df-topsp 21626  df-bases 21639  df-lm 21922  df-xms 23015  df-ms 23016
This theorem is referenced by:  xlimclim  42825  stirlingr  43091
  Copyright terms: Public domain W3C validator