Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  climreeq Structured version   Visualization version   GIF version

Theorem climreeq 45573
Description: If 𝐹 is a real function, then 𝐹 converges to 𝐴 with respect to the standard topology on the reals if and only if it converges to 𝐴 with respect to the standard topology on complex numbers. In the theorem, 𝑅 is defined to be convergence w.r.t. the standard topology on the reals and then 𝐹𝑅𝐴 represents the statement "𝐹 converges to 𝐴, with respect to the standard topology on the reals". Notice that there is no need for the hypothesis that 𝐴 is a real number. (Contributed by Glauco Siliprandi, 2-Jul-2017.)
Hypotheses
Ref Expression
climreeq.1 𝑅 = (⇝𝑡‘(topGen‘ran (,)))
climreeq.2 𝑍 = (ℤ𝑀)
climreeq.3 (𝜑𝑀 ∈ ℤ)
climreeq.4 (𝜑𝐹:𝑍⟶ℝ)
Assertion
Ref Expression
climreeq (𝜑 → (𝐹𝑅𝐴𝐹𝐴))

Proof of Theorem climreeq
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 climreeq.1 . . 3 𝑅 = (⇝𝑡‘(topGen‘ran (,)))
21breqi 5131 . 2 (𝐹𝑅𝐴𝐹(⇝𝑡‘(topGen‘ran (,)))𝐴)
3 climreeq.3 . . . 4 (𝜑𝑀 ∈ ℤ)
4 climreeq.4 . . . . 5 (𝜑𝐹:𝑍⟶ℝ)
5 ax-resscn 11195 . . . . . 6 ℝ ⊆ ℂ
65a1i 11 . . . . 5 (𝜑 → ℝ ⊆ ℂ)
74, 6fssd 6734 . . . 4 (𝜑𝐹:𝑍⟶ℂ)
8 eqid 2734 . . . . 5 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
9 climreeq.2 . . . . 5 𝑍 = (ℤ𝑀)
108, 9lmclimf 25293 . . . 4 ((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℂ) → (𝐹(⇝𝑡‘(TopOpen‘ℂfld))𝐴𝐹𝐴))
113, 7, 10syl2anc 584 . . 3 (𝜑 → (𝐹(⇝𝑡‘(TopOpen‘ℂfld))𝐴𝐹𝐴))
12 tgioo4 24781 . . . . . 6 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
13 reex 11229 . . . . . . 7 ℝ ∈ V
1413a1i 11 . . . . . 6 ((𝜑𝐴 ∈ ℝ) → ℝ ∈ V)
158cnfldtop 24759 . . . . . . 7 (TopOpen‘ℂfld) ∈ Top
1615a1i 11 . . . . . 6 ((𝜑𝐴 ∈ ℝ) → (TopOpen‘ℂfld) ∈ Top)
17 simpr 484 . . . . . 6 ((𝜑𝐴 ∈ ℝ) → 𝐴 ∈ ℝ)
183adantr 480 . . . . . 6 ((𝜑𝐴 ∈ ℝ) → 𝑀 ∈ ℤ)
194adantr 480 . . . . . 6 ((𝜑𝐴 ∈ ℝ) → 𝐹:𝑍⟶ℝ)
2012, 9, 14, 16, 17, 18, 19lmss 23271 . . . . 5 ((𝜑𝐴 ∈ ℝ) → (𝐹(⇝𝑡‘(TopOpen‘ℂfld))𝐴𝐹(⇝𝑡‘(topGen‘ran (,)))𝐴))
2120pm5.32da 579 . . . 4 (𝜑 → ((𝐴 ∈ ℝ ∧ 𝐹(⇝𝑡‘(TopOpen‘ℂfld))𝐴) ↔ (𝐴 ∈ ℝ ∧ 𝐹(⇝𝑡‘(topGen‘ran (,)))𝐴)))
22 simpr 484 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐹(⇝𝑡‘(TopOpen‘ℂfld))𝐴) → 𝐹(⇝𝑡‘(TopOpen‘ℂfld))𝐴)
233adantr 480 . . . . . . . 8 ((𝜑𝐹(⇝𝑡‘(TopOpen‘ℂfld))𝐴) → 𝑀 ∈ ℤ)
2411biimpa 476 . . . . . . . 8 ((𝜑𝐹(⇝𝑡‘(TopOpen‘ℂfld))𝐴) → 𝐹𝐴)
254ffvelcdmda 7085 . . . . . . . . 9 ((𝜑𝑛𝑍) → (𝐹𝑛) ∈ ℝ)
2625adantlr 715 . . . . . . . 8 (((𝜑𝐹(⇝𝑡‘(TopOpen‘ℂfld))𝐴) ∧ 𝑛𝑍) → (𝐹𝑛) ∈ ℝ)
279, 23, 24, 26climrecl 15602 . . . . . . 7 ((𝜑𝐹(⇝𝑡‘(TopOpen‘ℂfld))𝐴) → 𝐴 ∈ ℝ)
2827ex 412 . . . . . 6 (𝜑 → (𝐹(⇝𝑡‘(TopOpen‘ℂfld))𝐴𝐴 ∈ ℝ))
2928ancrd 551 . . . . 5 (𝜑 → (𝐹(⇝𝑡‘(TopOpen‘ℂfld))𝐴 → (𝐴 ∈ ℝ ∧ 𝐹(⇝𝑡‘(TopOpen‘ℂfld))𝐴)))
3022, 29impbid2 226 . . . 4 (𝜑 → ((𝐴 ∈ ℝ ∧ 𝐹(⇝𝑡‘(TopOpen‘ℂfld))𝐴) ↔ 𝐹(⇝𝑡‘(TopOpen‘ℂfld))𝐴))
31 simpr 484 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐹(⇝𝑡‘(topGen‘ran (,)))𝐴) → 𝐹(⇝𝑡‘(topGen‘ran (,)))𝐴)
32 retopon 24739 . . . . . . . . 9 (topGen‘ran (,)) ∈ (TopOn‘ℝ)
3332a1i 11 . . . . . . . 8 ((𝜑𝐹(⇝𝑡‘(topGen‘ran (,)))𝐴) → (topGen‘ran (,)) ∈ (TopOn‘ℝ))
34 simpr 484 . . . . . . . 8 ((𝜑𝐹(⇝𝑡‘(topGen‘ran (,)))𝐴) → 𝐹(⇝𝑡‘(topGen‘ran (,)))𝐴)
35 lmcl 23270 . . . . . . . 8 (((topGen‘ran (,)) ∈ (TopOn‘ℝ) ∧ 𝐹(⇝𝑡‘(topGen‘ran (,)))𝐴) → 𝐴 ∈ ℝ)
3633, 34, 35syl2anc 584 . . . . . . 7 ((𝜑𝐹(⇝𝑡‘(topGen‘ran (,)))𝐴) → 𝐴 ∈ ℝ)
3736ex 412 . . . . . 6 (𝜑 → (𝐹(⇝𝑡‘(topGen‘ran (,)))𝐴𝐴 ∈ ℝ))
3837ancrd 551 . . . . 5 (𝜑 → (𝐹(⇝𝑡‘(topGen‘ran (,)))𝐴 → (𝐴 ∈ ℝ ∧ 𝐹(⇝𝑡‘(topGen‘ran (,)))𝐴)))
3931, 38impbid2 226 . . . 4 (𝜑 → ((𝐴 ∈ ℝ ∧ 𝐹(⇝𝑡‘(topGen‘ran (,)))𝐴) ↔ 𝐹(⇝𝑡‘(topGen‘ran (,)))𝐴))
4021, 30, 393bitr3d 309 . . 3 (𝜑 → (𝐹(⇝𝑡‘(TopOpen‘ℂfld))𝐴𝐹(⇝𝑡‘(topGen‘ran (,)))𝐴))
4111, 40bitr3d 281 . 2 (𝜑 → (𝐹𝐴𝐹(⇝𝑡‘(topGen‘ran (,)))𝐴))
422, 41bitr4id 290 1 (𝜑 → (𝐹𝑅𝐴𝐹𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1539  wcel 2107  Vcvv 3464  wss 3933   class class class wbr 5125  ran crn 5668  wf 6538  cfv 6542  cc 11136  cr 11137  cz 12597  cuz 12861  (,)cioo 13370  cli 15503  TopOpenctopn 17442  topGenctg 17458  fldccnfld 21331  Topctop 22866  TopOnctopon 22883  𝑡clm 23199
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5261  ax-sep 5278  ax-nul 5288  ax-pow 5347  ax-pr 5414  ax-un 7738  ax-cnex 11194  ax-resscn 11195  ax-1cn 11196  ax-icn 11197  ax-addcl 11198  ax-addrcl 11199  ax-mulcl 11200  ax-mulrcl 11201  ax-mulcom 11202  ax-addass 11203  ax-mulass 11204  ax-distr 11205  ax-i2m1 11206  ax-1ne0 11207  ax-1rid 11208  ax-rnegex 11209  ax-rrecex 11210  ax-cnre 11211  ax-pre-lttri 11212  ax-pre-lttrn 11213  ax-pre-ltadd 11214  ax-pre-mulgt0 11215  ax-pre-sup 11216
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3773  df-csb 3882  df-dif 3936  df-un 3938  df-in 3940  df-ss 3950  df-pss 3953  df-nul 4316  df-if 4508  df-pw 4584  df-sn 4609  df-pr 4611  df-tp 4613  df-op 4615  df-uni 4890  df-int 4929  df-iun 4975  df-br 5126  df-opab 5188  df-mpt 5208  df-tr 5242  df-id 5560  df-eprel 5566  df-po 5574  df-so 5575  df-fr 5619  df-we 5621  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-pred 6303  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6495  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7371  df-ov 7417  df-oprab 7418  df-mpo 7419  df-om 7871  df-1st 7997  df-2nd 7998  df-frecs 8289  df-wrecs 8320  df-recs 8394  df-rdg 8433  df-1o 8489  df-er 8728  df-map 8851  df-pm 8852  df-en 8969  df-dom 8970  df-sdom 8971  df-fin 8972  df-fi 9434  df-sup 9465  df-inf 9466  df-pnf 11280  df-mnf 11281  df-xr 11282  df-ltxr 11283  df-le 11284  df-sub 11477  df-neg 11478  df-div 11904  df-nn 12250  df-2 12312  df-3 12313  df-4 12314  df-5 12315  df-6 12316  df-7 12317  df-8 12318  df-9 12319  df-n0 12511  df-z 12598  df-dec 12718  df-uz 12862  df-q 12974  df-rp 13018  df-xneg 13137  df-xadd 13138  df-xmul 13139  df-ioo 13374  df-fz 13531  df-fl 13815  df-seq 14026  df-exp 14086  df-cj 15121  df-re 15122  df-im 15123  df-sqrt 15257  df-abs 15258  df-clim 15507  df-rlim 15508  df-struct 17167  df-slot 17202  df-ndx 17214  df-base 17231  df-plusg 17290  df-mulr 17291  df-starv 17292  df-tset 17296  df-ple 17297  df-ds 17299  df-unif 17300  df-rest 17443  df-topn 17444  df-topgen 17464  df-psmet 21323  df-xmet 21324  df-met 21325  df-bl 21326  df-mopn 21327  df-cnfld 21332  df-top 22867  df-topon 22884  df-topsp 22906  df-bases 22919  df-lm 23202  df-xms 24294  df-ms 24295
This theorem is referenced by:  xlimclim  45784  stirlingr  46050
  Copyright terms: Public domain W3C validator