Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > climreeq | Structured version Visualization version GIF version |
Description: If 𝐹 is a real function, then 𝐹 converges to 𝐴 with respect to the standard topology on the reals if and only if it converges to 𝐴 with respect to the standard topology on complex numbers. In the theorem, 𝑅 is defined to be convergence w.r.t. the standard topology on the reals and then 𝐹𝑅𝐴 represents the statement "𝐹 converges to 𝐴, with respect to the standard topology on the reals". Notice that there is no need for the hypothesis that 𝐴 is a real number. (Contributed by Glauco Siliprandi, 2-Jul-2017.) |
Ref | Expression |
---|---|
climreeq.1 | ⊢ 𝑅 = (⇝𝑡‘(topGen‘ran (,))) |
climreeq.2 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
climreeq.3 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
climreeq.4 | ⊢ (𝜑 → 𝐹:𝑍⟶ℝ) |
Ref | Expression |
---|---|
climreeq | ⊢ (𝜑 → (𝐹𝑅𝐴 ↔ 𝐹 ⇝ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | climreeq.1 | . . 3 ⊢ 𝑅 = (⇝𝑡‘(topGen‘ran (,))) | |
2 | 1 | breqi 5039 | . 2 ⊢ (𝐹𝑅𝐴 ↔ 𝐹(⇝𝑡‘(topGen‘ran (,)))𝐴) |
3 | climreeq.3 | . . . 4 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
4 | climreeq.4 | . . . . 5 ⊢ (𝜑 → 𝐹:𝑍⟶ℝ) | |
5 | ax-resscn 10625 | . . . . . 6 ⊢ ℝ ⊆ ℂ | |
6 | 5 | a1i 11 | . . . . 5 ⊢ (𝜑 → ℝ ⊆ ℂ) |
7 | 4, 6 | fssd 6514 | . . . 4 ⊢ (𝜑 → 𝐹:𝑍⟶ℂ) |
8 | eqid 2759 | . . . . 5 ⊢ (TopOpen‘ℂfld) = (TopOpen‘ℂfld) | |
9 | climreeq.2 | . . . . 5 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
10 | 8, 9 | lmclimf 23997 | . . . 4 ⊢ ((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℂ) → (𝐹(⇝𝑡‘(TopOpen‘ℂfld))𝐴 ↔ 𝐹 ⇝ 𝐴)) |
11 | 3, 7, 10 | syl2anc 588 | . . 3 ⊢ (𝜑 → (𝐹(⇝𝑡‘(TopOpen‘ℂfld))𝐴 ↔ 𝐹 ⇝ 𝐴)) |
12 | 8 | tgioo2 23497 | . . . . . 6 ⊢ (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ) |
13 | reex 10659 | . . . . . . 7 ⊢ ℝ ∈ V | |
14 | 13 | a1i 11 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐴 ∈ ℝ) → ℝ ∈ V) |
15 | 8 | cnfldtop 23478 | . . . . . . 7 ⊢ (TopOpen‘ℂfld) ∈ Top |
16 | 15 | a1i 11 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐴 ∈ ℝ) → (TopOpen‘ℂfld) ∈ Top) |
17 | simpr 489 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐴 ∈ ℝ) → 𝐴 ∈ ℝ) | |
18 | 3 | adantr 485 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐴 ∈ ℝ) → 𝑀 ∈ ℤ) |
19 | 4 | adantr 485 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐴 ∈ ℝ) → 𝐹:𝑍⟶ℝ) |
20 | 12, 9, 14, 16, 17, 18, 19 | lmss 21991 | . . . . 5 ⊢ ((𝜑 ∧ 𝐴 ∈ ℝ) → (𝐹(⇝𝑡‘(TopOpen‘ℂfld))𝐴 ↔ 𝐹(⇝𝑡‘(topGen‘ran (,)))𝐴)) |
21 | 20 | pm5.32da 583 | . . . 4 ⊢ (𝜑 → ((𝐴 ∈ ℝ ∧ 𝐹(⇝𝑡‘(TopOpen‘ℂfld))𝐴) ↔ (𝐴 ∈ ℝ ∧ 𝐹(⇝𝑡‘(topGen‘ran (,)))𝐴))) |
22 | simpr 489 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐹(⇝𝑡‘(TopOpen‘ℂfld))𝐴) → 𝐹(⇝𝑡‘(TopOpen‘ℂfld))𝐴) | |
23 | 3 | adantr 485 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝐹(⇝𝑡‘(TopOpen‘ℂfld))𝐴) → 𝑀 ∈ ℤ) |
24 | 11 | biimpa 481 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝐹(⇝𝑡‘(TopOpen‘ℂfld))𝐴) → 𝐹 ⇝ 𝐴) |
25 | 4 | ffvelrnda 6843 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝐹‘𝑛) ∈ ℝ) |
26 | 25 | adantlr 715 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝐹(⇝𝑡‘(TopOpen‘ℂfld))𝐴) ∧ 𝑛 ∈ 𝑍) → (𝐹‘𝑛) ∈ ℝ) |
27 | 9, 23, 24, 26 | climrecl 14981 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝐹(⇝𝑡‘(TopOpen‘ℂfld))𝐴) → 𝐴 ∈ ℝ) |
28 | 27 | ex 417 | . . . . . 6 ⊢ (𝜑 → (𝐹(⇝𝑡‘(TopOpen‘ℂfld))𝐴 → 𝐴 ∈ ℝ)) |
29 | 28 | ancrd 556 | . . . . 5 ⊢ (𝜑 → (𝐹(⇝𝑡‘(TopOpen‘ℂfld))𝐴 → (𝐴 ∈ ℝ ∧ 𝐹(⇝𝑡‘(TopOpen‘ℂfld))𝐴))) |
30 | 22, 29 | impbid2 229 | . . . 4 ⊢ (𝜑 → ((𝐴 ∈ ℝ ∧ 𝐹(⇝𝑡‘(TopOpen‘ℂfld))𝐴) ↔ 𝐹(⇝𝑡‘(TopOpen‘ℂfld))𝐴)) |
31 | simpr 489 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐹(⇝𝑡‘(topGen‘ran (,)))𝐴) → 𝐹(⇝𝑡‘(topGen‘ran (,)))𝐴) | |
32 | retopon 23458 | . . . . . . . . 9 ⊢ (topGen‘ran (,)) ∈ (TopOn‘ℝ) | |
33 | 32 | a1i 11 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝐹(⇝𝑡‘(topGen‘ran (,)))𝐴) → (topGen‘ran (,)) ∈ (TopOn‘ℝ)) |
34 | simpr 489 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝐹(⇝𝑡‘(topGen‘ran (,)))𝐴) → 𝐹(⇝𝑡‘(topGen‘ran (,)))𝐴) | |
35 | lmcl 21990 | . . . . . . . 8 ⊢ (((topGen‘ran (,)) ∈ (TopOn‘ℝ) ∧ 𝐹(⇝𝑡‘(topGen‘ran (,)))𝐴) → 𝐴 ∈ ℝ) | |
36 | 33, 34, 35 | syl2anc 588 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝐹(⇝𝑡‘(topGen‘ran (,)))𝐴) → 𝐴 ∈ ℝ) |
37 | 36 | ex 417 | . . . . . 6 ⊢ (𝜑 → (𝐹(⇝𝑡‘(topGen‘ran (,)))𝐴 → 𝐴 ∈ ℝ)) |
38 | 37 | ancrd 556 | . . . . 5 ⊢ (𝜑 → (𝐹(⇝𝑡‘(topGen‘ran (,)))𝐴 → (𝐴 ∈ ℝ ∧ 𝐹(⇝𝑡‘(topGen‘ran (,)))𝐴))) |
39 | 31, 38 | impbid2 229 | . . . 4 ⊢ (𝜑 → ((𝐴 ∈ ℝ ∧ 𝐹(⇝𝑡‘(topGen‘ran (,)))𝐴) ↔ 𝐹(⇝𝑡‘(topGen‘ran (,)))𝐴)) |
40 | 21, 30, 39 | 3bitr3d 313 | . . 3 ⊢ (𝜑 → (𝐹(⇝𝑡‘(TopOpen‘ℂfld))𝐴 ↔ 𝐹(⇝𝑡‘(topGen‘ran (,)))𝐴)) |
41 | 11, 40 | bitr3d 284 | . 2 ⊢ (𝜑 → (𝐹 ⇝ 𝐴 ↔ 𝐹(⇝𝑡‘(topGen‘ran (,)))𝐴)) |
42 | 2, 41 | bitr4id 294 | 1 ⊢ (𝜑 → (𝐹𝑅𝐴 ↔ 𝐹 ⇝ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 400 = wceq 1539 ∈ wcel 2112 Vcvv 3410 ⊆ wss 3859 class class class wbr 5033 ran crn 5526 ⟶wf 6332 ‘cfv 6336 ℂcc 10566 ℝcr 10567 ℤcz 12013 ℤ≥cuz 12275 (,)cioo 12772 ⇝ cli 14882 TopOpenctopn 16746 topGenctg 16762 ℂfldccnfld 20159 Topctop 21586 TopOnctopon 21603 ⇝𝑡clm 21919 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-rep 5157 ax-sep 5170 ax-nul 5177 ax-pow 5235 ax-pr 5299 ax-un 7460 ax-cnex 10624 ax-resscn 10625 ax-1cn 10626 ax-icn 10627 ax-addcl 10628 ax-addrcl 10629 ax-mulcl 10630 ax-mulrcl 10631 ax-mulcom 10632 ax-addass 10633 ax-mulass 10634 ax-distr 10635 ax-i2m1 10636 ax-1ne0 10637 ax-1rid 10638 ax-rnegex 10639 ax-rrecex 10640 ax-cnre 10641 ax-pre-lttri 10642 ax-pre-lttrn 10643 ax-pre-ltadd 10644 ax-pre-mulgt0 10645 ax-pre-sup 10646 |
This theorem depends on definitions: df-bi 210 df-an 401 df-or 846 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2071 df-mo 2558 df-eu 2589 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2902 df-ne 2953 df-nel 3057 df-ral 3076 df-rex 3077 df-reu 3078 df-rmo 3079 df-rab 3080 df-v 3412 df-sbc 3698 df-csb 3807 df-dif 3862 df-un 3864 df-in 3866 df-ss 3876 df-pss 3878 df-nul 4227 df-if 4422 df-pw 4497 df-sn 4524 df-pr 4526 df-tp 4528 df-op 4530 df-uni 4800 df-int 4840 df-iun 4886 df-br 5034 df-opab 5096 df-mpt 5114 df-tr 5140 df-id 5431 df-eprel 5436 df-po 5444 df-so 5445 df-fr 5484 df-we 5486 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-pred 6127 df-ord 6173 df-on 6174 df-lim 6175 df-suc 6176 df-iota 6295 df-fun 6338 df-fn 6339 df-f 6340 df-f1 6341 df-fo 6342 df-f1o 6343 df-fv 6344 df-riota 7109 df-ov 7154 df-oprab 7155 df-mpo 7156 df-om 7581 df-1st 7694 df-2nd 7695 df-wrecs 7958 df-recs 8019 df-rdg 8057 df-1o 8113 df-oadd 8117 df-er 8300 df-map 8419 df-pm 8420 df-en 8529 df-dom 8530 df-sdom 8531 df-fin 8532 df-fi 8901 df-sup 8932 df-inf 8933 df-pnf 10708 df-mnf 10709 df-xr 10710 df-ltxr 10711 df-le 10712 df-sub 10903 df-neg 10904 df-div 11329 df-nn 11668 df-2 11730 df-3 11731 df-4 11732 df-5 11733 df-6 11734 df-7 11735 df-8 11736 df-9 11737 df-n0 11928 df-z 12014 df-dec 12131 df-uz 12276 df-q 12382 df-rp 12424 df-xneg 12541 df-xadd 12542 df-xmul 12543 df-ioo 12776 df-fz 12933 df-fl 13204 df-seq 13412 df-exp 13473 df-cj 14499 df-re 14500 df-im 14501 df-sqrt 14635 df-abs 14636 df-clim 14886 df-rlim 14887 df-struct 16536 df-ndx 16537 df-slot 16538 df-base 16540 df-plusg 16629 df-mulr 16630 df-starv 16631 df-tset 16635 df-ple 16636 df-ds 16638 df-unif 16639 df-rest 16747 df-topn 16748 df-topgen 16768 df-psmet 20151 df-xmet 20152 df-met 20153 df-bl 20154 df-mopn 20155 df-cnfld 20160 df-top 21587 df-topon 21604 df-topsp 21626 df-bases 21639 df-lm 21922 df-xms 23015 df-ms 23016 |
This theorem is referenced by: xlimclim 42825 stirlingr 43091 |
Copyright terms: Public domain | W3C validator |