| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > climreeq | Structured version Visualization version GIF version | ||
| Description: If 𝐹 is a real function, then 𝐹 converges to 𝐴 with respect to the standard topology on the reals if and only if it converges to 𝐴 with respect to the standard topology on complex numbers. In the theorem, 𝑅 is defined to be convergence w.r.t. the standard topology on the reals and then 𝐹𝑅𝐴 represents the statement "𝐹 converges to 𝐴, with respect to the standard topology on the reals". Notice that there is no need for the hypothesis that 𝐴 is a real number. (Contributed by Glauco Siliprandi, 2-Jul-2017.) |
| Ref | Expression |
|---|---|
| climreeq.1 | ⊢ 𝑅 = (⇝𝑡‘(topGen‘ran (,))) |
| climreeq.2 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
| climreeq.3 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
| climreeq.4 | ⊢ (𝜑 → 𝐹:𝑍⟶ℝ) |
| Ref | Expression |
|---|---|
| climreeq | ⊢ (𝜑 → (𝐹𝑅𝐴 ↔ 𝐹 ⇝ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | climreeq.1 | . . 3 ⊢ 𝑅 = (⇝𝑡‘(topGen‘ran (,))) | |
| 2 | 1 | breqi 5131 | . 2 ⊢ (𝐹𝑅𝐴 ↔ 𝐹(⇝𝑡‘(topGen‘ran (,)))𝐴) |
| 3 | climreeq.3 | . . . 4 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
| 4 | climreeq.4 | . . . . 5 ⊢ (𝜑 → 𝐹:𝑍⟶ℝ) | |
| 5 | ax-resscn 11195 | . . . . . 6 ⊢ ℝ ⊆ ℂ | |
| 6 | 5 | a1i 11 | . . . . 5 ⊢ (𝜑 → ℝ ⊆ ℂ) |
| 7 | 4, 6 | fssd 6734 | . . . 4 ⊢ (𝜑 → 𝐹:𝑍⟶ℂ) |
| 8 | eqid 2734 | . . . . 5 ⊢ (TopOpen‘ℂfld) = (TopOpen‘ℂfld) | |
| 9 | climreeq.2 | . . . . 5 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
| 10 | 8, 9 | lmclimf 25293 | . . . 4 ⊢ ((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℂ) → (𝐹(⇝𝑡‘(TopOpen‘ℂfld))𝐴 ↔ 𝐹 ⇝ 𝐴)) |
| 11 | 3, 7, 10 | syl2anc 584 | . . 3 ⊢ (𝜑 → (𝐹(⇝𝑡‘(TopOpen‘ℂfld))𝐴 ↔ 𝐹 ⇝ 𝐴)) |
| 12 | tgioo4 24781 | . . . . . 6 ⊢ (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ) | |
| 13 | reex 11229 | . . . . . . 7 ⊢ ℝ ∈ V | |
| 14 | 13 | a1i 11 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐴 ∈ ℝ) → ℝ ∈ V) |
| 15 | 8 | cnfldtop 24759 | . . . . . . 7 ⊢ (TopOpen‘ℂfld) ∈ Top |
| 16 | 15 | a1i 11 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐴 ∈ ℝ) → (TopOpen‘ℂfld) ∈ Top) |
| 17 | simpr 484 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐴 ∈ ℝ) → 𝐴 ∈ ℝ) | |
| 18 | 3 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐴 ∈ ℝ) → 𝑀 ∈ ℤ) |
| 19 | 4 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐴 ∈ ℝ) → 𝐹:𝑍⟶ℝ) |
| 20 | 12, 9, 14, 16, 17, 18, 19 | lmss 23271 | . . . . 5 ⊢ ((𝜑 ∧ 𝐴 ∈ ℝ) → (𝐹(⇝𝑡‘(TopOpen‘ℂfld))𝐴 ↔ 𝐹(⇝𝑡‘(topGen‘ran (,)))𝐴)) |
| 21 | 20 | pm5.32da 579 | . . . 4 ⊢ (𝜑 → ((𝐴 ∈ ℝ ∧ 𝐹(⇝𝑡‘(TopOpen‘ℂfld))𝐴) ↔ (𝐴 ∈ ℝ ∧ 𝐹(⇝𝑡‘(topGen‘ran (,)))𝐴))) |
| 22 | simpr 484 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐹(⇝𝑡‘(TopOpen‘ℂfld))𝐴) → 𝐹(⇝𝑡‘(TopOpen‘ℂfld))𝐴) | |
| 23 | 3 | adantr 480 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝐹(⇝𝑡‘(TopOpen‘ℂfld))𝐴) → 𝑀 ∈ ℤ) |
| 24 | 11 | biimpa 476 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝐹(⇝𝑡‘(TopOpen‘ℂfld))𝐴) → 𝐹 ⇝ 𝐴) |
| 25 | 4 | ffvelcdmda 7085 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝐹‘𝑛) ∈ ℝ) |
| 26 | 25 | adantlr 715 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝐹(⇝𝑡‘(TopOpen‘ℂfld))𝐴) ∧ 𝑛 ∈ 𝑍) → (𝐹‘𝑛) ∈ ℝ) |
| 27 | 9, 23, 24, 26 | climrecl 15602 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝐹(⇝𝑡‘(TopOpen‘ℂfld))𝐴) → 𝐴 ∈ ℝ) |
| 28 | 27 | ex 412 | . . . . . 6 ⊢ (𝜑 → (𝐹(⇝𝑡‘(TopOpen‘ℂfld))𝐴 → 𝐴 ∈ ℝ)) |
| 29 | 28 | ancrd 551 | . . . . 5 ⊢ (𝜑 → (𝐹(⇝𝑡‘(TopOpen‘ℂfld))𝐴 → (𝐴 ∈ ℝ ∧ 𝐹(⇝𝑡‘(TopOpen‘ℂfld))𝐴))) |
| 30 | 22, 29 | impbid2 226 | . . . 4 ⊢ (𝜑 → ((𝐴 ∈ ℝ ∧ 𝐹(⇝𝑡‘(TopOpen‘ℂfld))𝐴) ↔ 𝐹(⇝𝑡‘(TopOpen‘ℂfld))𝐴)) |
| 31 | simpr 484 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐹(⇝𝑡‘(topGen‘ran (,)))𝐴) → 𝐹(⇝𝑡‘(topGen‘ran (,)))𝐴) | |
| 32 | retopon 24739 | . . . . . . . . 9 ⊢ (topGen‘ran (,)) ∈ (TopOn‘ℝ) | |
| 33 | 32 | a1i 11 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝐹(⇝𝑡‘(topGen‘ran (,)))𝐴) → (topGen‘ran (,)) ∈ (TopOn‘ℝ)) |
| 34 | simpr 484 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝐹(⇝𝑡‘(topGen‘ran (,)))𝐴) → 𝐹(⇝𝑡‘(topGen‘ran (,)))𝐴) | |
| 35 | lmcl 23270 | . . . . . . . 8 ⊢ (((topGen‘ran (,)) ∈ (TopOn‘ℝ) ∧ 𝐹(⇝𝑡‘(topGen‘ran (,)))𝐴) → 𝐴 ∈ ℝ) | |
| 36 | 33, 34, 35 | syl2anc 584 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝐹(⇝𝑡‘(topGen‘ran (,)))𝐴) → 𝐴 ∈ ℝ) |
| 37 | 36 | ex 412 | . . . . . 6 ⊢ (𝜑 → (𝐹(⇝𝑡‘(topGen‘ran (,)))𝐴 → 𝐴 ∈ ℝ)) |
| 38 | 37 | ancrd 551 | . . . . 5 ⊢ (𝜑 → (𝐹(⇝𝑡‘(topGen‘ran (,)))𝐴 → (𝐴 ∈ ℝ ∧ 𝐹(⇝𝑡‘(topGen‘ran (,)))𝐴))) |
| 39 | 31, 38 | impbid2 226 | . . . 4 ⊢ (𝜑 → ((𝐴 ∈ ℝ ∧ 𝐹(⇝𝑡‘(topGen‘ran (,)))𝐴) ↔ 𝐹(⇝𝑡‘(topGen‘ran (,)))𝐴)) |
| 40 | 21, 30, 39 | 3bitr3d 309 | . . 3 ⊢ (𝜑 → (𝐹(⇝𝑡‘(TopOpen‘ℂfld))𝐴 ↔ 𝐹(⇝𝑡‘(topGen‘ran (,)))𝐴)) |
| 41 | 11, 40 | bitr3d 281 | . 2 ⊢ (𝜑 → (𝐹 ⇝ 𝐴 ↔ 𝐹(⇝𝑡‘(topGen‘ran (,)))𝐴)) |
| 42 | 2, 41 | bitr4id 290 | 1 ⊢ (𝜑 → (𝐹𝑅𝐴 ↔ 𝐹 ⇝ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1539 ∈ wcel 2107 Vcvv 3464 ⊆ wss 3933 class class class wbr 5125 ran crn 5668 ⟶wf 6538 ‘cfv 6542 ℂcc 11136 ℝcr 11137 ℤcz 12597 ℤ≥cuz 12861 (,)cioo 13370 ⇝ cli 15503 TopOpenctopn 17442 topGenctg 17458 ℂfldccnfld 21331 Topctop 22866 TopOnctopon 22883 ⇝𝑡clm 23199 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5261 ax-sep 5278 ax-nul 5288 ax-pow 5347 ax-pr 5414 ax-un 7738 ax-cnex 11194 ax-resscn 11195 ax-1cn 11196 ax-icn 11197 ax-addcl 11198 ax-addrcl 11199 ax-mulcl 11200 ax-mulrcl 11201 ax-mulcom 11202 ax-addass 11203 ax-mulass 11204 ax-distr 11205 ax-i2m1 11206 ax-1ne0 11207 ax-1rid 11208 ax-rnegex 11209 ax-rrecex 11210 ax-cnre 11211 ax-pre-lttri 11212 ax-pre-lttrn 11213 ax-pre-ltadd 11214 ax-pre-mulgt0 11215 ax-pre-sup 11216 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3773 df-csb 3882 df-dif 3936 df-un 3938 df-in 3940 df-ss 3950 df-pss 3953 df-nul 4316 df-if 4508 df-pw 4584 df-sn 4609 df-pr 4611 df-tp 4613 df-op 4615 df-uni 4890 df-int 4929 df-iun 4975 df-br 5126 df-opab 5188 df-mpt 5208 df-tr 5242 df-id 5560 df-eprel 5566 df-po 5574 df-so 5575 df-fr 5619 df-we 5621 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-pred 6303 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6495 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7371 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7871 df-1st 7997 df-2nd 7998 df-frecs 8289 df-wrecs 8320 df-recs 8394 df-rdg 8433 df-1o 8489 df-er 8728 df-map 8851 df-pm 8852 df-en 8969 df-dom 8970 df-sdom 8971 df-fin 8972 df-fi 9434 df-sup 9465 df-inf 9466 df-pnf 11280 df-mnf 11281 df-xr 11282 df-ltxr 11283 df-le 11284 df-sub 11477 df-neg 11478 df-div 11904 df-nn 12250 df-2 12312 df-3 12313 df-4 12314 df-5 12315 df-6 12316 df-7 12317 df-8 12318 df-9 12319 df-n0 12511 df-z 12598 df-dec 12718 df-uz 12862 df-q 12974 df-rp 13018 df-xneg 13137 df-xadd 13138 df-xmul 13139 df-ioo 13374 df-fz 13531 df-fl 13815 df-seq 14026 df-exp 14086 df-cj 15121 df-re 15122 df-im 15123 df-sqrt 15257 df-abs 15258 df-clim 15507 df-rlim 15508 df-struct 17167 df-slot 17202 df-ndx 17214 df-base 17231 df-plusg 17290 df-mulr 17291 df-starv 17292 df-tset 17296 df-ple 17297 df-ds 17299 df-unif 17300 df-rest 17443 df-topn 17444 df-topgen 17464 df-psmet 21323 df-xmet 21324 df-met 21325 df-bl 21326 df-mopn 21327 df-cnfld 21332 df-top 22867 df-topon 22884 df-topsp 22906 df-bases 22919 df-lm 23202 df-xms 24294 df-ms 24295 |
| This theorem is referenced by: xlimclim 45784 stirlingr 46050 |
| Copyright terms: Public domain | W3C validator |