| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > climreeq | Structured version Visualization version GIF version | ||
| Description: If 𝐹 is a real function, then 𝐹 converges to 𝐴 with respect to the standard topology on the reals if and only if it converges to 𝐴 with respect to the standard topology on complex numbers. In the theorem, 𝑅 is defined to be convergence w.r.t. the standard topology on the reals and then 𝐹𝑅𝐴 represents the statement "𝐹 converges to 𝐴, with respect to the standard topology on the reals". Notice that there is no need for the hypothesis that 𝐴 is a real number. (Contributed by Glauco Siliprandi, 2-Jul-2017.) |
| Ref | Expression |
|---|---|
| climreeq.1 | ⊢ 𝑅 = (⇝𝑡‘(topGen‘ran (,))) |
| climreeq.2 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
| climreeq.3 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
| climreeq.4 | ⊢ (𝜑 → 𝐹:𝑍⟶ℝ) |
| Ref | Expression |
|---|---|
| climreeq | ⊢ (𝜑 → (𝐹𝑅𝐴 ↔ 𝐹 ⇝ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | climreeq.1 | . . 3 ⊢ 𝑅 = (⇝𝑡‘(topGen‘ran (,))) | |
| 2 | 1 | breqi 5108 | . 2 ⊢ (𝐹𝑅𝐴 ↔ 𝐹(⇝𝑡‘(topGen‘ran (,)))𝐴) |
| 3 | climreeq.3 | . . . 4 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
| 4 | climreeq.4 | . . . . 5 ⊢ (𝜑 → 𝐹:𝑍⟶ℝ) | |
| 5 | ax-resscn 11101 | . . . . . 6 ⊢ ℝ ⊆ ℂ | |
| 6 | 5 | a1i 11 | . . . . 5 ⊢ (𝜑 → ℝ ⊆ ℂ) |
| 7 | 4, 6 | fssd 6687 | . . . 4 ⊢ (𝜑 → 𝐹:𝑍⟶ℂ) |
| 8 | eqid 2729 | . . . . 5 ⊢ (TopOpen‘ℂfld) = (TopOpen‘ℂfld) | |
| 9 | climreeq.2 | . . . . 5 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
| 10 | 8, 9 | lmclimf 25180 | . . . 4 ⊢ ((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℂ) → (𝐹(⇝𝑡‘(TopOpen‘ℂfld))𝐴 ↔ 𝐹 ⇝ 𝐴)) |
| 11 | 3, 7, 10 | syl2anc 584 | . . 3 ⊢ (𝜑 → (𝐹(⇝𝑡‘(TopOpen‘ℂfld))𝐴 ↔ 𝐹 ⇝ 𝐴)) |
| 12 | tgioo4 24669 | . . . . . 6 ⊢ (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ) | |
| 13 | reex 11135 | . . . . . . 7 ⊢ ℝ ∈ V | |
| 14 | 13 | a1i 11 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐴 ∈ ℝ) → ℝ ∈ V) |
| 15 | 8 | cnfldtop 24647 | . . . . . . 7 ⊢ (TopOpen‘ℂfld) ∈ Top |
| 16 | 15 | a1i 11 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐴 ∈ ℝ) → (TopOpen‘ℂfld) ∈ Top) |
| 17 | simpr 484 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐴 ∈ ℝ) → 𝐴 ∈ ℝ) | |
| 18 | 3 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐴 ∈ ℝ) → 𝑀 ∈ ℤ) |
| 19 | 4 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐴 ∈ ℝ) → 𝐹:𝑍⟶ℝ) |
| 20 | 12, 9, 14, 16, 17, 18, 19 | lmss 23161 | . . . . 5 ⊢ ((𝜑 ∧ 𝐴 ∈ ℝ) → (𝐹(⇝𝑡‘(TopOpen‘ℂfld))𝐴 ↔ 𝐹(⇝𝑡‘(topGen‘ran (,)))𝐴)) |
| 21 | 20 | pm5.32da 579 | . . . 4 ⊢ (𝜑 → ((𝐴 ∈ ℝ ∧ 𝐹(⇝𝑡‘(TopOpen‘ℂfld))𝐴) ↔ (𝐴 ∈ ℝ ∧ 𝐹(⇝𝑡‘(topGen‘ran (,)))𝐴))) |
| 22 | simpr 484 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐹(⇝𝑡‘(TopOpen‘ℂfld))𝐴) → 𝐹(⇝𝑡‘(TopOpen‘ℂfld))𝐴) | |
| 23 | 3 | adantr 480 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝐹(⇝𝑡‘(TopOpen‘ℂfld))𝐴) → 𝑀 ∈ ℤ) |
| 24 | 11 | biimpa 476 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝐹(⇝𝑡‘(TopOpen‘ℂfld))𝐴) → 𝐹 ⇝ 𝐴) |
| 25 | 4 | ffvelcdmda 7038 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝐹‘𝑛) ∈ ℝ) |
| 26 | 25 | adantlr 715 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝐹(⇝𝑡‘(TopOpen‘ℂfld))𝐴) ∧ 𝑛 ∈ 𝑍) → (𝐹‘𝑛) ∈ ℝ) |
| 27 | 9, 23, 24, 26 | climrecl 15525 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝐹(⇝𝑡‘(TopOpen‘ℂfld))𝐴) → 𝐴 ∈ ℝ) |
| 28 | 27 | ex 412 | . . . . . 6 ⊢ (𝜑 → (𝐹(⇝𝑡‘(TopOpen‘ℂfld))𝐴 → 𝐴 ∈ ℝ)) |
| 29 | 28 | ancrd 551 | . . . . 5 ⊢ (𝜑 → (𝐹(⇝𝑡‘(TopOpen‘ℂfld))𝐴 → (𝐴 ∈ ℝ ∧ 𝐹(⇝𝑡‘(TopOpen‘ℂfld))𝐴))) |
| 30 | 22, 29 | impbid2 226 | . . . 4 ⊢ (𝜑 → ((𝐴 ∈ ℝ ∧ 𝐹(⇝𝑡‘(TopOpen‘ℂfld))𝐴) ↔ 𝐹(⇝𝑡‘(TopOpen‘ℂfld))𝐴)) |
| 31 | simpr 484 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐹(⇝𝑡‘(topGen‘ran (,)))𝐴) → 𝐹(⇝𝑡‘(topGen‘ran (,)))𝐴) | |
| 32 | retopon 24627 | . . . . . . . . 9 ⊢ (topGen‘ran (,)) ∈ (TopOn‘ℝ) | |
| 33 | 32 | a1i 11 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝐹(⇝𝑡‘(topGen‘ran (,)))𝐴) → (topGen‘ran (,)) ∈ (TopOn‘ℝ)) |
| 34 | simpr 484 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝐹(⇝𝑡‘(topGen‘ran (,)))𝐴) → 𝐹(⇝𝑡‘(topGen‘ran (,)))𝐴) | |
| 35 | lmcl 23160 | . . . . . . . 8 ⊢ (((topGen‘ran (,)) ∈ (TopOn‘ℝ) ∧ 𝐹(⇝𝑡‘(topGen‘ran (,)))𝐴) → 𝐴 ∈ ℝ) | |
| 36 | 33, 34, 35 | syl2anc 584 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝐹(⇝𝑡‘(topGen‘ran (,)))𝐴) → 𝐴 ∈ ℝ) |
| 37 | 36 | ex 412 | . . . . . 6 ⊢ (𝜑 → (𝐹(⇝𝑡‘(topGen‘ran (,)))𝐴 → 𝐴 ∈ ℝ)) |
| 38 | 37 | ancrd 551 | . . . . 5 ⊢ (𝜑 → (𝐹(⇝𝑡‘(topGen‘ran (,)))𝐴 → (𝐴 ∈ ℝ ∧ 𝐹(⇝𝑡‘(topGen‘ran (,)))𝐴))) |
| 39 | 31, 38 | impbid2 226 | . . . 4 ⊢ (𝜑 → ((𝐴 ∈ ℝ ∧ 𝐹(⇝𝑡‘(topGen‘ran (,)))𝐴) ↔ 𝐹(⇝𝑡‘(topGen‘ran (,)))𝐴)) |
| 40 | 21, 30, 39 | 3bitr3d 309 | . . 3 ⊢ (𝜑 → (𝐹(⇝𝑡‘(TopOpen‘ℂfld))𝐴 ↔ 𝐹(⇝𝑡‘(topGen‘ran (,)))𝐴)) |
| 41 | 11, 40 | bitr3d 281 | . 2 ⊢ (𝜑 → (𝐹 ⇝ 𝐴 ↔ 𝐹(⇝𝑡‘(topGen‘ran (,)))𝐴)) |
| 42 | 2, 41 | bitr4id 290 | 1 ⊢ (𝜑 → (𝐹𝑅𝐴 ↔ 𝐹 ⇝ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3444 ⊆ wss 3911 class class class wbr 5102 ran crn 5632 ⟶wf 6495 ‘cfv 6499 ℂcc 11042 ℝcr 11043 ℤcz 12505 ℤ≥cuz 12769 (,)cioo 13282 ⇝ cli 15426 TopOpenctopn 17360 topGenctg 17376 ℂfldccnfld 21240 Topctop 22756 TopOnctopon 22773 ⇝𝑡clm 23089 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 ax-pre-sup 11122 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-tp 4590 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-er 8648 df-map 8778 df-pm 8779 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-fi 9338 df-sup 9369 df-inf 9370 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-div 11812 df-nn 12163 df-2 12225 df-3 12226 df-4 12227 df-5 12228 df-6 12229 df-7 12230 df-8 12231 df-9 12232 df-n0 12419 df-z 12506 df-dec 12626 df-uz 12770 df-q 12884 df-rp 12928 df-xneg 13048 df-xadd 13049 df-xmul 13050 df-ioo 13286 df-fz 13445 df-fl 13730 df-seq 13943 df-exp 14003 df-cj 15041 df-re 15042 df-im 15043 df-sqrt 15177 df-abs 15178 df-clim 15430 df-rlim 15431 df-struct 17093 df-slot 17128 df-ndx 17140 df-base 17156 df-plusg 17209 df-mulr 17210 df-starv 17211 df-tset 17215 df-ple 17216 df-ds 17218 df-unif 17219 df-rest 17361 df-topn 17362 df-topgen 17382 df-psmet 21232 df-xmet 21233 df-met 21234 df-bl 21235 df-mopn 21236 df-cnfld 21241 df-top 22757 df-topon 22774 df-topsp 22796 df-bases 22809 df-lm 23092 df-xms 24184 df-ms 24185 |
| This theorem is referenced by: xlimclim 45795 stirlingr 46061 |
| Copyright terms: Public domain | W3C validator |