Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  climreeq Structured version   Visualization version   GIF version

Theorem climreeq 41457
Description: If 𝐹 is a real function, then 𝐹 converges to 𝐴 with respect to the standard topology on the reals if and only if it converges to 𝐴 with respect to the standard topology on complex numbers. In the theorem, 𝑅 is defined to be convergence w.r.t. the standard topology on the reals and then 𝐹𝑅𝐴 represents the statement "𝐹 converges to 𝐴, with respect to the standard topology on the reals". Notice that there is no need for the hypothesis that 𝐴 is a real number. (Contributed by Glauco Siliprandi, 2-Jul-2017.)
Hypotheses
Ref Expression
climreeq.1 𝑅 = (⇝𝑡‘(topGen‘ran (,)))
climreeq.2 𝑍 = (ℤ𝑀)
climreeq.3 (𝜑𝑀 ∈ ℤ)
climreeq.4 (𝜑𝐹:𝑍⟶ℝ)
Assertion
Ref Expression
climreeq (𝜑 → (𝐹𝑅𝐴𝐹𝐴))

Proof of Theorem climreeq
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 climreeq.3 . . . 4 (𝜑𝑀 ∈ ℤ)
2 climreeq.4 . . . . 5 (𝜑𝐹:𝑍⟶ℝ)
3 ax-resscn 10447 . . . . . 6 ℝ ⊆ ℂ
43a1i 11 . . . . 5 (𝜑 → ℝ ⊆ ℂ)
52, 4fssd 6403 . . . 4 (𝜑𝐹:𝑍⟶ℂ)
6 eqid 2797 . . . . 5 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
7 climreeq.2 . . . . 5 𝑍 = (ℤ𝑀)
86, 7lmclimf 23594 . . . 4 ((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℂ) → (𝐹(⇝𝑡‘(TopOpen‘ℂfld))𝐴𝐹𝐴))
91, 5, 8syl2anc 584 . . 3 (𝜑 → (𝐹(⇝𝑡‘(TopOpen‘ℂfld))𝐴𝐹𝐴))
106tgioo2 23098 . . . . . 6 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
11 reex 10481 . . . . . . 7 ℝ ∈ V
1211a1i 11 . . . . . 6 ((𝜑𝐴 ∈ ℝ) → ℝ ∈ V)
136cnfldtop 23079 . . . . . . 7 (TopOpen‘ℂfld) ∈ Top
1413a1i 11 . . . . . 6 ((𝜑𝐴 ∈ ℝ) → (TopOpen‘ℂfld) ∈ Top)
15 simpr 485 . . . . . 6 ((𝜑𝐴 ∈ ℝ) → 𝐴 ∈ ℝ)
161adantr 481 . . . . . 6 ((𝜑𝐴 ∈ ℝ) → 𝑀 ∈ ℤ)
172adantr 481 . . . . . 6 ((𝜑𝐴 ∈ ℝ) → 𝐹:𝑍⟶ℝ)
1810, 7, 12, 14, 15, 16, 17lmss 21594 . . . . 5 ((𝜑𝐴 ∈ ℝ) → (𝐹(⇝𝑡‘(TopOpen‘ℂfld))𝐴𝐹(⇝𝑡‘(topGen‘ran (,)))𝐴))
1918pm5.32da 579 . . . 4 (𝜑 → ((𝐴 ∈ ℝ ∧ 𝐹(⇝𝑡‘(TopOpen‘ℂfld))𝐴) ↔ (𝐴 ∈ ℝ ∧ 𝐹(⇝𝑡‘(topGen‘ran (,)))𝐴)))
20 simpr 485 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐹(⇝𝑡‘(TopOpen‘ℂfld))𝐴) → 𝐹(⇝𝑡‘(TopOpen‘ℂfld))𝐴)
211adantr 481 . . . . . . . 8 ((𝜑𝐹(⇝𝑡‘(TopOpen‘ℂfld))𝐴) → 𝑀 ∈ ℤ)
229biimpa 477 . . . . . . . 8 ((𝜑𝐹(⇝𝑡‘(TopOpen‘ℂfld))𝐴) → 𝐹𝐴)
232ffvelrnda 6723 . . . . . . . . 9 ((𝜑𝑛𝑍) → (𝐹𝑛) ∈ ℝ)
2423adantlr 711 . . . . . . . 8 (((𝜑𝐹(⇝𝑡‘(TopOpen‘ℂfld))𝐴) ∧ 𝑛𝑍) → (𝐹𝑛) ∈ ℝ)
257, 21, 22, 24climrecl 14778 . . . . . . 7 ((𝜑𝐹(⇝𝑡‘(TopOpen‘ℂfld))𝐴) → 𝐴 ∈ ℝ)
2625ex 413 . . . . . 6 (𝜑 → (𝐹(⇝𝑡‘(TopOpen‘ℂfld))𝐴𝐴 ∈ ℝ))
2726ancrd 552 . . . . 5 (𝜑 → (𝐹(⇝𝑡‘(TopOpen‘ℂfld))𝐴 → (𝐴 ∈ ℝ ∧ 𝐹(⇝𝑡‘(TopOpen‘ℂfld))𝐴)))
2820, 27impbid2 227 . . . 4 (𝜑 → ((𝐴 ∈ ℝ ∧ 𝐹(⇝𝑡‘(TopOpen‘ℂfld))𝐴) ↔ 𝐹(⇝𝑡‘(TopOpen‘ℂfld))𝐴))
29 simpr 485 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐹(⇝𝑡‘(topGen‘ran (,)))𝐴) → 𝐹(⇝𝑡‘(topGen‘ran (,)))𝐴)
30 retopon 23059 . . . . . . . . 9 (topGen‘ran (,)) ∈ (TopOn‘ℝ)
3130a1i 11 . . . . . . . 8 ((𝜑𝐹(⇝𝑡‘(topGen‘ran (,)))𝐴) → (topGen‘ran (,)) ∈ (TopOn‘ℝ))
32 simpr 485 . . . . . . . 8 ((𝜑𝐹(⇝𝑡‘(topGen‘ran (,)))𝐴) → 𝐹(⇝𝑡‘(topGen‘ran (,)))𝐴)
33 lmcl 21593 . . . . . . . 8 (((topGen‘ran (,)) ∈ (TopOn‘ℝ) ∧ 𝐹(⇝𝑡‘(topGen‘ran (,)))𝐴) → 𝐴 ∈ ℝ)
3431, 32, 33syl2anc 584 . . . . . . 7 ((𝜑𝐹(⇝𝑡‘(topGen‘ran (,)))𝐴) → 𝐴 ∈ ℝ)
3534ex 413 . . . . . 6 (𝜑 → (𝐹(⇝𝑡‘(topGen‘ran (,)))𝐴𝐴 ∈ ℝ))
3635ancrd 552 . . . . 5 (𝜑 → (𝐹(⇝𝑡‘(topGen‘ran (,)))𝐴 → (𝐴 ∈ ℝ ∧ 𝐹(⇝𝑡‘(topGen‘ran (,)))𝐴)))
3729, 36impbid2 227 . . . 4 (𝜑 → ((𝐴 ∈ ℝ ∧ 𝐹(⇝𝑡‘(topGen‘ran (,)))𝐴) ↔ 𝐹(⇝𝑡‘(topGen‘ran (,)))𝐴))
3819, 28, 373bitr3d 310 . . 3 (𝜑 → (𝐹(⇝𝑡‘(TopOpen‘ℂfld))𝐴𝐹(⇝𝑡‘(topGen‘ran (,)))𝐴))
399, 38bitr3d 282 . 2 (𝜑 → (𝐹𝐴𝐹(⇝𝑡‘(topGen‘ran (,)))𝐴))
40 climreeq.1 . . 3 𝑅 = (⇝𝑡‘(topGen‘ran (,)))
4140breqi 4974 . 2 (𝐹𝑅𝐴𝐹(⇝𝑡‘(topGen‘ran (,)))𝐴)
4239, 41syl6rbbr 291 1 (𝜑 → (𝐹𝑅𝐴𝐹𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396   = wceq 1525  wcel 2083  Vcvv 3440  wss 3865   class class class wbr 4968  ran crn 5451  wf 6228  cfv 6232  cc 10388  cr 10389  cz 11835  cuz 12097  (,)cioo 12592  cli 14679  TopOpenctopn 16528  topGenctg 16544  fldccnfld 20231  Topctop 21189  TopOnctopon 21206  𝑡clm 21522
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1781  ax-4 1795  ax-5 1892  ax-6 1951  ax-7 1996  ax-8 2085  ax-9 2093  ax-10 2114  ax-11 2128  ax-12 2143  ax-13 2346  ax-ext 2771  ax-rep 5088  ax-sep 5101  ax-nul 5108  ax-pow 5164  ax-pr 5228  ax-un 7326  ax-cnex 10446  ax-resscn 10447  ax-1cn 10448  ax-icn 10449  ax-addcl 10450  ax-addrcl 10451  ax-mulcl 10452  ax-mulrcl 10453  ax-mulcom 10454  ax-addass 10455  ax-mulass 10456  ax-distr 10457  ax-i2m1 10458  ax-1ne0 10459  ax-1rid 10460  ax-rnegex 10461  ax-rrecex 10462  ax-cnre 10463  ax-pre-lttri 10464  ax-pre-lttrn 10465  ax-pre-ltadd 10466  ax-pre-mulgt0 10467  ax-pre-sup 10468
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1528  df-ex 1766  df-nf 1770  df-sb 2045  df-mo 2578  df-eu 2614  df-clab 2778  df-cleq 2790  df-clel 2865  df-nfc 2937  df-ne 2987  df-nel 3093  df-ral 3112  df-rex 3113  df-reu 3114  df-rmo 3115  df-rab 3116  df-v 3442  df-sbc 3712  df-csb 3818  df-dif 3868  df-un 3870  df-in 3872  df-ss 3880  df-pss 3882  df-nul 4218  df-if 4388  df-pw 4461  df-sn 4479  df-pr 4481  df-tp 4483  df-op 4485  df-uni 4752  df-int 4789  df-iun 4833  df-br 4969  df-opab 5031  df-mpt 5048  df-tr 5071  df-id 5355  df-eprel 5360  df-po 5369  df-so 5370  df-fr 5409  df-we 5411  df-xp 5456  df-rel 5457  df-cnv 5458  df-co 5459  df-dm 5460  df-rn 5461  df-res 5462  df-ima 5463  df-pred 6030  df-ord 6076  df-on 6077  df-lim 6078  df-suc 6079  df-iota 6196  df-fun 6234  df-fn 6235  df-f 6236  df-f1 6237  df-fo 6238  df-f1o 6239  df-fv 6240  df-riota 6984  df-ov 7026  df-oprab 7027  df-mpo 7028  df-om 7444  df-1st 7552  df-2nd 7553  df-wrecs 7805  df-recs 7867  df-rdg 7905  df-1o 7960  df-oadd 7964  df-er 8146  df-map 8265  df-pm 8266  df-en 8365  df-dom 8366  df-sdom 8367  df-fin 8368  df-fi 8728  df-sup 8759  df-inf 8760  df-pnf 10530  df-mnf 10531  df-xr 10532  df-ltxr 10533  df-le 10534  df-sub 10725  df-neg 10726  df-div 11152  df-nn 11493  df-2 11554  df-3 11555  df-4 11556  df-5 11557  df-6 11558  df-7 11559  df-8 11560  df-9 11561  df-n0 11752  df-z 11836  df-dec 11953  df-uz 12098  df-q 12202  df-rp 12244  df-xneg 12361  df-xadd 12362  df-xmul 12363  df-ioo 12596  df-fz 12747  df-fl 13016  df-seq 13224  df-exp 13284  df-cj 14296  df-re 14297  df-im 14298  df-sqrt 14432  df-abs 14433  df-clim 14683  df-rlim 14684  df-struct 16318  df-ndx 16319  df-slot 16320  df-base 16322  df-plusg 16411  df-mulr 16412  df-starv 16413  df-tset 16417  df-ple 16418  df-ds 16420  df-unif 16421  df-rest 16529  df-topn 16530  df-topgen 16550  df-psmet 20223  df-xmet 20224  df-met 20225  df-bl 20226  df-mopn 20227  df-cnfld 20232  df-top 21190  df-topon 21207  df-topsp 21229  df-bases 21242  df-lm 21525  df-xms 22617  df-ms 22618
This theorem is referenced by:  xlimclim  41668  stirlingr  41939
  Copyright terms: Public domain W3C validator