| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > climreeq | Structured version Visualization version GIF version | ||
| Description: If 𝐹 is a real function, then 𝐹 converges to 𝐴 with respect to the standard topology on the reals if and only if it converges to 𝐴 with respect to the standard topology on complex numbers. In the theorem, 𝑅 is defined to be convergence w.r.t. the standard topology on the reals and then 𝐹𝑅𝐴 represents the statement "𝐹 converges to 𝐴, with respect to the standard topology on the reals". Notice that there is no need for the hypothesis that 𝐴 is a real number. (Contributed by Glauco Siliprandi, 2-Jul-2017.) |
| Ref | Expression |
|---|---|
| climreeq.1 | ⊢ 𝑅 = (⇝𝑡‘(topGen‘ran (,))) |
| climreeq.2 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
| climreeq.3 | ⊢ (𝜑 → 𝑀 ∈ ℤ) |
| climreeq.4 | ⊢ (𝜑 → 𝐹:𝑍⟶ℝ) |
| Ref | Expression |
|---|---|
| climreeq | ⊢ (𝜑 → (𝐹𝑅𝐴 ↔ 𝐹 ⇝ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | climreeq.1 | . . 3 ⊢ 𝑅 = (⇝𝑡‘(topGen‘ran (,))) | |
| 2 | 1 | breqi 5098 | . 2 ⊢ (𝐹𝑅𝐴 ↔ 𝐹(⇝𝑡‘(topGen‘ran (,)))𝐴) |
| 3 | climreeq.3 | . . . 4 ⊢ (𝜑 → 𝑀 ∈ ℤ) | |
| 4 | climreeq.4 | . . . . 5 ⊢ (𝜑 → 𝐹:𝑍⟶ℝ) | |
| 5 | ax-resscn 11066 | . . . . . 6 ⊢ ℝ ⊆ ℂ | |
| 6 | 5 | a1i 11 | . . . . 5 ⊢ (𝜑 → ℝ ⊆ ℂ) |
| 7 | 4, 6 | fssd 6669 | . . . 4 ⊢ (𝜑 → 𝐹:𝑍⟶ℂ) |
| 8 | eqid 2729 | . . . . 5 ⊢ (TopOpen‘ℂfld) = (TopOpen‘ℂfld) | |
| 9 | climreeq.2 | . . . . 5 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
| 10 | 8, 9 | lmclimf 25202 | . . . 4 ⊢ ((𝑀 ∈ ℤ ∧ 𝐹:𝑍⟶ℂ) → (𝐹(⇝𝑡‘(TopOpen‘ℂfld))𝐴 ↔ 𝐹 ⇝ 𝐴)) |
| 11 | 3, 7, 10 | syl2anc 584 | . . 3 ⊢ (𝜑 → (𝐹(⇝𝑡‘(TopOpen‘ℂfld))𝐴 ↔ 𝐹 ⇝ 𝐴)) |
| 12 | tgioo4 24691 | . . . . . 6 ⊢ (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ) | |
| 13 | reex 11100 | . . . . . . 7 ⊢ ℝ ∈ V | |
| 14 | 13 | a1i 11 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐴 ∈ ℝ) → ℝ ∈ V) |
| 15 | 8 | cnfldtop 24669 | . . . . . . 7 ⊢ (TopOpen‘ℂfld) ∈ Top |
| 16 | 15 | a1i 11 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐴 ∈ ℝ) → (TopOpen‘ℂfld) ∈ Top) |
| 17 | simpr 484 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐴 ∈ ℝ) → 𝐴 ∈ ℝ) | |
| 18 | 3 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐴 ∈ ℝ) → 𝑀 ∈ ℤ) |
| 19 | 4 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐴 ∈ ℝ) → 𝐹:𝑍⟶ℝ) |
| 20 | 12, 9, 14, 16, 17, 18, 19 | lmss 23183 | . . . . 5 ⊢ ((𝜑 ∧ 𝐴 ∈ ℝ) → (𝐹(⇝𝑡‘(TopOpen‘ℂfld))𝐴 ↔ 𝐹(⇝𝑡‘(topGen‘ran (,)))𝐴)) |
| 21 | 20 | pm5.32da 579 | . . . 4 ⊢ (𝜑 → ((𝐴 ∈ ℝ ∧ 𝐹(⇝𝑡‘(TopOpen‘ℂfld))𝐴) ↔ (𝐴 ∈ ℝ ∧ 𝐹(⇝𝑡‘(topGen‘ran (,)))𝐴))) |
| 22 | simpr 484 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐹(⇝𝑡‘(TopOpen‘ℂfld))𝐴) → 𝐹(⇝𝑡‘(TopOpen‘ℂfld))𝐴) | |
| 23 | 3 | adantr 480 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝐹(⇝𝑡‘(TopOpen‘ℂfld))𝐴) → 𝑀 ∈ ℤ) |
| 24 | 11 | biimpa 476 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝐹(⇝𝑡‘(TopOpen‘ℂfld))𝐴) → 𝐹 ⇝ 𝐴) |
| 25 | 4 | ffvelcdmda 7018 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝐹‘𝑛) ∈ ℝ) |
| 26 | 25 | adantlr 715 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝐹(⇝𝑡‘(TopOpen‘ℂfld))𝐴) ∧ 𝑛 ∈ 𝑍) → (𝐹‘𝑛) ∈ ℝ) |
| 27 | 9, 23, 24, 26 | climrecl 15490 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝐹(⇝𝑡‘(TopOpen‘ℂfld))𝐴) → 𝐴 ∈ ℝ) |
| 28 | 27 | ex 412 | . . . . . 6 ⊢ (𝜑 → (𝐹(⇝𝑡‘(TopOpen‘ℂfld))𝐴 → 𝐴 ∈ ℝ)) |
| 29 | 28 | ancrd 551 | . . . . 5 ⊢ (𝜑 → (𝐹(⇝𝑡‘(TopOpen‘ℂfld))𝐴 → (𝐴 ∈ ℝ ∧ 𝐹(⇝𝑡‘(TopOpen‘ℂfld))𝐴))) |
| 30 | 22, 29 | impbid2 226 | . . . 4 ⊢ (𝜑 → ((𝐴 ∈ ℝ ∧ 𝐹(⇝𝑡‘(TopOpen‘ℂfld))𝐴) ↔ 𝐹(⇝𝑡‘(TopOpen‘ℂfld))𝐴)) |
| 31 | simpr 484 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐹(⇝𝑡‘(topGen‘ran (,)))𝐴) → 𝐹(⇝𝑡‘(topGen‘ran (,)))𝐴) | |
| 32 | retopon 24649 | . . . . . . . . 9 ⊢ (topGen‘ran (,)) ∈ (TopOn‘ℝ) | |
| 33 | 32 | a1i 11 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝐹(⇝𝑡‘(topGen‘ran (,)))𝐴) → (topGen‘ran (,)) ∈ (TopOn‘ℝ)) |
| 34 | simpr 484 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝐹(⇝𝑡‘(topGen‘ran (,)))𝐴) → 𝐹(⇝𝑡‘(topGen‘ran (,)))𝐴) | |
| 35 | lmcl 23182 | . . . . . . . 8 ⊢ (((topGen‘ran (,)) ∈ (TopOn‘ℝ) ∧ 𝐹(⇝𝑡‘(topGen‘ran (,)))𝐴) → 𝐴 ∈ ℝ) | |
| 36 | 33, 34, 35 | syl2anc 584 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝐹(⇝𝑡‘(topGen‘ran (,)))𝐴) → 𝐴 ∈ ℝ) |
| 37 | 36 | ex 412 | . . . . . 6 ⊢ (𝜑 → (𝐹(⇝𝑡‘(topGen‘ran (,)))𝐴 → 𝐴 ∈ ℝ)) |
| 38 | 37 | ancrd 551 | . . . . 5 ⊢ (𝜑 → (𝐹(⇝𝑡‘(topGen‘ran (,)))𝐴 → (𝐴 ∈ ℝ ∧ 𝐹(⇝𝑡‘(topGen‘ran (,)))𝐴))) |
| 39 | 31, 38 | impbid2 226 | . . . 4 ⊢ (𝜑 → ((𝐴 ∈ ℝ ∧ 𝐹(⇝𝑡‘(topGen‘ran (,)))𝐴) ↔ 𝐹(⇝𝑡‘(topGen‘ran (,)))𝐴)) |
| 40 | 21, 30, 39 | 3bitr3d 309 | . . 3 ⊢ (𝜑 → (𝐹(⇝𝑡‘(TopOpen‘ℂfld))𝐴 ↔ 𝐹(⇝𝑡‘(topGen‘ran (,)))𝐴)) |
| 41 | 11, 40 | bitr3d 281 | . 2 ⊢ (𝜑 → (𝐹 ⇝ 𝐴 ↔ 𝐹(⇝𝑡‘(topGen‘ran (,)))𝐴)) |
| 42 | 2, 41 | bitr4id 290 | 1 ⊢ (𝜑 → (𝐹𝑅𝐴 ↔ 𝐹 ⇝ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3436 ⊆ wss 3903 class class class wbr 5092 ran crn 5620 ⟶wf 6478 ‘cfv 6482 ℂcc 11007 ℝcr 11008 ℤcz 12471 ℤ≥cuz 12735 (,)cioo 13248 ⇝ cli 15391 TopOpenctopn 17325 topGenctg 17341 ℂfldccnfld 21261 Topctop 22778 TopOnctopon 22795 ⇝𝑡clm 23111 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 ax-pre-sup 11087 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4859 df-int 4897 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-1st 7924 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-1o 8388 df-er 8625 df-map 8755 df-pm 8756 df-en 8873 df-dom 8874 df-sdom 8875 df-fin 8876 df-fi 9301 df-sup 9332 df-inf 9333 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-div 11778 df-nn 12129 df-2 12191 df-3 12192 df-4 12193 df-5 12194 df-6 12195 df-7 12196 df-8 12197 df-9 12198 df-n0 12385 df-z 12472 df-dec 12592 df-uz 12736 df-q 12850 df-rp 12894 df-xneg 13014 df-xadd 13015 df-xmul 13016 df-ioo 13252 df-fz 13411 df-fl 13696 df-seq 13909 df-exp 13969 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-clim 15395 df-rlim 15396 df-struct 17058 df-slot 17093 df-ndx 17105 df-base 17121 df-plusg 17174 df-mulr 17175 df-starv 17176 df-tset 17180 df-ple 17181 df-ds 17183 df-unif 17184 df-rest 17326 df-topn 17327 df-topgen 17347 df-psmet 21253 df-xmet 21254 df-met 21255 df-bl 21256 df-mopn 21257 df-cnfld 21262 df-top 22779 df-topon 22796 df-topsp 22818 df-bases 22831 df-lm 23114 df-xms 24206 df-ms 24207 |
| This theorem is referenced by: xlimclim 45809 stirlingr 46075 |
| Copyright terms: Public domain | W3C validator |