MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  qredeq Structured version   Visualization version   GIF version

Theorem qredeq 15993
Description: Two equal reduced fractions have the same numerator and denominator. (Contributed by Jeff Hankins, 29-Sep-2013.)
Assertion
Ref Expression
qredeq (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1) ∧ (𝑀 / 𝑁) = (𝑃 / 𝑄)) → (𝑀 = 𝑃𝑁 = 𝑄))

Proof of Theorem qredeq
StepHypRef Expression
1 zcn 11978 . . . . . . . . . 10 (𝑀 ∈ ℤ → 𝑀 ∈ ℂ)
21adantr 483 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 𝑀 ∈ ℂ)
3 nncn 11638 . . . . . . . . . 10 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
43adantl 484 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℂ)
5 nnne0 11663 . . . . . . . . . 10 (𝑁 ∈ ℕ → 𝑁 ≠ 0)
65adantl 484 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 𝑁 ≠ 0)
72, 4, 6divcld 11408 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑀 / 𝑁) ∈ ℂ)
873adant3 1127 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) → (𝑀 / 𝑁) ∈ ℂ)
98adantr 483 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) → (𝑀 / 𝑁) ∈ ℂ)
10 zcn 11978 . . . . . . . . . 10 (𝑃 ∈ ℤ → 𝑃 ∈ ℂ)
1110adantr 483 . . . . . . . . 9 ((𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ) → 𝑃 ∈ ℂ)
12 nncn 11638 . . . . . . . . . 10 (𝑄 ∈ ℕ → 𝑄 ∈ ℂ)
1312adantl 484 . . . . . . . . 9 ((𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ) → 𝑄 ∈ ℂ)
14 nnne0 11663 . . . . . . . . . 10 (𝑄 ∈ ℕ → 𝑄 ≠ 0)
1514adantl 484 . . . . . . . . 9 ((𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ) → 𝑄 ≠ 0)
1611, 13, 15divcld 11408 . . . . . . . 8 ((𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ) → (𝑃 / 𝑄) ∈ ℂ)
17163adant3 1127 . . . . . . 7 ((𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1) → (𝑃 / 𝑄) ∈ ℂ)
1817adantl 484 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) → (𝑃 / 𝑄) ∈ ℂ)
1933ad2ant2 1129 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) → 𝑁 ∈ ℂ)
2019adantr 483 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) → 𝑁 ∈ ℂ)
2153ad2ant2 1129 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) → 𝑁 ≠ 0)
2221adantr 483 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) → 𝑁 ≠ 0)
239, 18, 20, 22mulcand 11265 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) → ((𝑁 · (𝑀 / 𝑁)) = (𝑁 · (𝑃 / 𝑄)) ↔ (𝑀 / 𝑁) = (𝑃 / 𝑄)))
242, 4, 6divcan2d 11410 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑁 · (𝑀 / 𝑁)) = 𝑀)
25243adant3 1127 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) → (𝑁 · (𝑀 / 𝑁)) = 𝑀)
2625adantr 483 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) → (𝑁 · (𝑀 / 𝑁)) = 𝑀)
2726eqeq1d 2821 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) → ((𝑁 · (𝑀 / 𝑁)) = (𝑁 · (𝑃 / 𝑄)) ↔ 𝑀 = (𝑁 · (𝑃 / 𝑄))))
2823, 27bitr3d 283 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) → ((𝑀 / 𝑁) = (𝑃 / 𝑄) ↔ 𝑀 = (𝑁 · (𝑃 / 𝑄))))
2913ad2ant1 1128 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) → 𝑀 ∈ ℂ)
3029adantr 483 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) → 𝑀 ∈ ℂ)
31 mulcl 10613 . . . . . . 7 ((𝑁 ∈ ℂ ∧ (𝑃 / 𝑄) ∈ ℂ) → (𝑁 · (𝑃 / 𝑄)) ∈ ℂ)
3219, 17, 31syl2an 597 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) → (𝑁 · (𝑃 / 𝑄)) ∈ ℂ)
33123ad2ant2 1129 . . . . . . 7 ((𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1) → 𝑄 ∈ ℂ)
3433adantl 484 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) → 𝑄 ∈ ℂ)
35143ad2ant2 1129 . . . . . . 7 ((𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1) → 𝑄 ≠ 0)
3635adantl 484 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) → 𝑄 ≠ 0)
3730, 32, 34, 36mulcan2d 11266 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) → ((𝑀 · 𝑄) = ((𝑁 · (𝑃 / 𝑄)) · 𝑄) ↔ 𝑀 = (𝑁 · (𝑃 / 𝑄))))
3820, 18, 34mulassd 10656 . . . . . . 7 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) → ((𝑁 · (𝑃 / 𝑄)) · 𝑄) = (𝑁 · ((𝑃 / 𝑄) · 𝑄)))
3911, 13, 15divcan1d 11409 . . . . . . . . . 10 ((𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ) → ((𝑃 / 𝑄) · 𝑄) = 𝑃)
40393adant3 1127 . . . . . . . . 9 ((𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1) → ((𝑃 / 𝑄) · 𝑄) = 𝑃)
4140adantl 484 . . . . . . . 8 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) → ((𝑃 / 𝑄) · 𝑄) = 𝑃)
4241oveq2d 7164 . . . . . . 7 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) → (𝑁 · ((𝑃 / 𝑄) · 𝑄)) = (𝑁 · 𝑃))
4338, 42eqtrd 2854 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) → ((𝑁 · (𝑃 / 𝑄)) · 𝑄) = (𝑁 · 𝑃))
4443eqeq2d 2830 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) → ((𝑀 · 𝑄) = ((𝑁 · (𝑃 / 𝑄)) · 𝑄) ↔ (𝑀 · 𝑄) = (𝑁 · 𝑃)))
4537, 44bitr3d 283 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) → (𝑀 = (𝑁 · (𝑃 / 𝑄)) ↔ (𝑀 · 𝑄) = (𝑁 · 𝑃)))
4628, 45bitrd 281 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) → ((𝑀 / 𝑁) = (𝑃 / 𝑄) ↔ (𝑀 · 𝑄) = (𝑁 · 𝑃)))
47 nnz 11996 . . . . . . . . . 10 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
48473ad2ant2 1129 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) → 𝑁 ∈ ℤ)
49 simp2 1132 . . . . . . . . 9 ((𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1) → 𝑄 ∈ ℕ)
5048, 49anim12i 614 . . . . . . . 8 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) → (𝑁 ∈ ℤ ∧ 𝑄 ∈ ℕ))
5150adantr 483 . . . . . . 7 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) ∧ (𝑀 · 𝑄) = (𝑁 · 𝑃)) → (𝑁 ∈ ℤ ∧ 𝑄 ∈ ℕ))
5248adantr 483 . . . . . . . . . 10 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) → 𝑁 ∈ ℤ)
53 simpl1 1186 . . . . . . . . . 10 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) → 𝑀 ∈ ℤ)
54 nnz 11996 . . . . . . . . . . . 12 (𝑄 ∈ ℕ → 𝑄 ∈ ℤ)
55543ad2ant2 1129 . . . . . . . . . . 11 ((𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1) → 𝑄 ∈ ℤ)
5655adantl 484 . . . . . . . . . 10 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) → 𝑄 ∈ ℤ)
5752, 53, 563jca 1123 . . . . . . . . 9 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) → (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑄 ∈ ℤ))
5857adantr 483 . . . . . . . 8 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) ∧ (𝑀 · 𝑄) = (𝑁 · 𝑃)) → (𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑄 ∈ ℤ))
59 simp1 1131 . . . . . . . . . . . 12 ((𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1) → 𝑃 ∈ ℤ)
60 dvdsmul1 15623 . . . . . . . . . . . 12 ((𝑁 ∈ ℤ ∧ 𝑃 ∈ ℤ) → 𝑁 ∥ (𝑁 · 𝑃))
6148, 59, 60syl2an 597 . . . . . . . . . . 11 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) → 𝑁 ∥ (𝑁 · 𝑃))
6261adantr 483 . . . . . . . . . 10 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) ∧ (𝑀 · 𝑄) = (𝑁 · 𝑃)) → 𝑁 ∥ (𝑁 · 𝑃))
63 simpr 487 . . . . . . . . . 10 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) ∧ (𝑀 · 𝑄) = (𝑁 · 𝑃)) → (𝑀 · 𝑄) = (𝑁 · 𝑃))
6462, 63breqtrrd 5085 . . . . . . . . 9 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) ∧ (𝑀 · 𝑄) = (𝑁 · 𝑃)) → 𝑁 ∥ (𝑀 · 𝑄))
65 gcdcom 15854 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑁 gcd 𝑀) = (𝑀 gcd 𝑁))
6647, 65sylan 582 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℤ) → (𝑁 gcd 𝑀) = (𝑀 gcd 𝑁))
6766ancoms 461 . . . . . . . . . . . 12 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑁 gcd 𝑀) = (𝑀 gcd 𝑁))
68673adant3 1127 . . . . . . . . . . 11 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) → (𝑁 gcd 𝑀) = (𝑀 gcd 𝑁))
69 simp3 1133 . . . . . . . . . . 11 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) → (𝑀 gcd 𝑁) = 1)
7068, 69eqtrd 2854 . . . . . . . . . 10 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) → (𝑁 gcd 𝑀) = 1)
7170ad2antrr 724 . . . . . . . . 9 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) ∧ (𝑀 · 𝑄) = (𝑁 · 𝑃)) → (𝑁 gcd 𝑀) = 1)
7264, 71jca 514 . . . . . . . 8 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) ∧ (𝑀 · 𝑄) = (𝑁 · 𝑃)) → (𝑁 ∥ (𝑀 · 𝑄) ∧ (𝑁 gcd 𝑀) = 1))
73 coprmdvds 15989 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑄 ∈ ℤ) → ((𝑁 ∥ (𝑀 · 𝑄) ∧ (𝑁 gcd 𝑀) = 1) → 𝑁𝑄))
7458, 72, 73sylc 65 . . . . . . 7 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) ∧ (𝑀 · 𝑄) = (𝑁 · 𝑃)) → 𝑁𝑄)
75 dvdsle 15652 . . . . . . 7 ((𝑁 ∈ ℤ ∧ 𝑄 ∈ ℕ) → (𝑁𝑄𝑁𝑄))
7651, 74, 75sylc 65 . . . . . 6 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) ∧ (𝑀 · 𝑄) = (𝑁 · 𝑃)) → 𝑁𝑄)
77 simp2 1132 . . . . . . . . . 10 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) → 𝑁 ∈ ℕ)
7855, 77anim12i 614 . . . . . . . . 9 (((𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1)) → (𝑄 ∈ ℤ ∧ 𝑁 ∈ ℕ))
7978ancoms 461 . . . . . . . 8 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) → (𝑄 ∈ ℤ ∧ 𝑁 ∈ ℕ))
8079adantr 483 . . . . . . 7 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) ∧ (𝑀 · 𝑄) = (𝑁 · 𝑃)) → (𝑄 ∈ ℤ ∧ 𝑁 ∈ ℕ))
81 simpr1 1189 . . . . . . . . . 10 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) → 𝑃 ∈ ℤ)
8256, 81, 523jca 1123 . . . . . . . . 9 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) → (𝑄 ∈ ℤ ∧ 𝑃 ∈ ℤ ∧ 𝑁 ∈ ℤ))
8382adantr 483 . . . . . . . 8 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) ∧ (𝑀 · 𝑄) = (𝑁 · 𝑃)) → (𝑄 ∈ ℤ ∧ 𝑃 ∈ ℤ ∧ 𝑁 ∈ ℤ))
84 simp1 1131 . . . . . . . . . . . 12 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) → 𝑀 ∈ ℤ)
85 dvdsmul2 15624 . . . . . . . . . . . 12 ((𝑀 ∈ ℤ ∧ 𝑄 ∈ ℤ) → 𝑄 ∥ (𝑀 · 𝑄))
8684, 55, 85syl2an 597 . . . . . . . . . . 11 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) → 𝑄 ∥ (𝑀 · 𝑄))
8786adantr 483 . . . . . . . . . 10 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) ∧ (𝑀 · 𝑄) = (𝑁 · 𝑃)) → 𝑄 ∥ (𝑀 · 𝑄))
88103ad2ant1 1128 . . . . . . . . . . . . 13 ((𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1) → 𝑃 ∈ ℂ)
89 mulcom 10615 . . . . . . . . . . . . 13 ((𝑁 ∈ ℂ ∧ 𝑃 ∈ ℂ) → (𝑁 · 𝑃) = (𝑃 · 𝑁))
9019, 88, 89syl2an 597 . . . . . . . . . . . 12 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) → (𝑁 · 𝑃) = (𝑃 · 𝑁))
9190adantr 483 . . . . . . . . . . 11 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) ∧ (𝑀 · 𝑄) = (𝑁 · 𝑃)) → (𝑁 · 𝑃) = (𝑃 · 𝑁))
9263, 91eqtrd 2854 . . . . . . . . . 10 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) ∧ (𝑀 · 𝑄) = (𝑁 · 𝑃)) → (𝑀 · 𝑄) = (𝑃 · 𝑁))
9387, 92breqtrd 5083 . . . . . . . . 9 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) ∧ (𝑀 · 𝑄) = (𝑁 · 𝑃)) → 𝑄 ∥ (𝑃 · 𝑁))
94 gcdcom 15854 . . . . . . . . . . . . . 14 ((𝑄 ∈ ℤ ∧ 𝑃 ∈ ℤ) → (𝑄 gcd 𝑃) = (𝑃 gcd 𝑄))
9554, 94sylan 582 . . . . . . . . . . . . 13 ((𝑄 ∈ ℕ ∧ 𝑃 ∈ ℤ) → (𝑄 gcd 𝑃) = (𝑃 gcd 𝑄))
9695ancoms 461 . . . . . . . . . . . 12 ((𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ) → (𝑄 gcd 𝑃) = (𝑃 gcd 𝑄))
97963adant3 1127 . . . . . . . . . . 11 ((𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1) → (𝑄 gcd 𝑃) = (𝑃 gcd 𝑄))
98 simp3 1133 . . . . . . . . . . 11 ((𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1) → (𝑃 gcd 𝑄) = 1)
9997, 98eqtrd 2854 . . . . . . . . . 10 ((𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1) → (𝑄 gcd 𝑃) = 1)
10099ad2antlr 725 . . . . . . . . 9 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) ∧ (𝑀 · 𝑄) = (𝑁 · 𝑃)) → (𝑄 gcd 𝑃) = 1)
10193, 100jca 514 . . . . . . . 8 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) ∧ (𝑀 · 𝑄) = (𝑁 · 𝑃)) → (𝑄 ∥ (𝑃 · 𝑁) ∧ (𝑄 gcd 𝑃) = 1))
102 coprmdvds 15989 . . . . . . . 8 ((𝑄 ∈ ℤ ∧ 𝑃 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑄 ∥ (𝑃 · 𝑁) ∧ (𝑄 gcd 𝑃) = 1) → 𝑄𝑁))
10383, 101, 102sylc 65 . . . . . . 7 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) ∧ (𝑀 · 𝑄) = (𝑁 · 𝑃)) → 𝑄𝑁)
104 dvdsle 15652 . . . . . . 7 ((𝑄 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑄𝑁𝑄𝑁))
10580, 103, 104sylc 65 . . . . . 6 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) ∧ (𝑀 · 𝑄) = (𝑁 · 𝑃)) → 𝑄𝑁)
106 nnre 11637 . . . . . . . . 9 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
1071063ad2ant2 1129 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) → 𝑁 ∈ ℝ)
108107ad2antrr 724 . . . . . . 7 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) ∧ (𝑀 · 𝑄) = (𝑁 · 𝑃)) → 𝑁 ∈ ℝ)
109 nnre 11637 . . . . . . . . 9 (𝑄 ∈ ℕ → 𝑄 ∈ ℝ)
1101093ad2ant2 1129 . . . . . . . 8 ((𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1) → 𝑄 ∈ ℝ)
111110ad2antlr 725 . . . . . . 7 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) ∧ (𝑀 · 𝑄) = (𝑁 · 𝑃)) → 𝑄 ∈ ℝ)
112108, 111letri3d 10774 . . . . . 6 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) ∧ (𝑀 · 𝑄) = (𝑁 · 𝑃)) → (𝑁 = 𝑄 ↔ (𝑁𝑄𝑄𝑁)))
11376, 105, 112mpbir2and 711 . . . . 5 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) ∧ (𝑀 · 𝑄) = (𝑁 · 𝑃)) → 𝑁 = 𝑄)
114 oveq2 7156 . . . . . . . . . 10 (𝑁 = 𝑄 → (𝑀 · 𝑁) = (𝑀 · 𝑄))
115114eqeq1d 2821 . . . . . . . . 9 (𝑁 = 𝑄 → ((𝑀 · 𝑁) = (𝑁 · 𝑃) ↔ (𝑀 · 𝑄) = (𝑁 · 𝑃)))
116115anbi2d 630 . . . . . . . 8 (𝑁 = 𝑄 → ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) ∧ (𝑀 · 𝑁) = (𝑁 · 𝑃)) ↔ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) ∧ (𝑀 · 𝑄) = (𝑁 · 𝑃))))
117 mulcom 10615 . . . . . . . . . . . . . 14 ((𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ) → (𝑀 · 𝑁) = (𝑁 · 𝑀))
1181, 3, 117syl2an 597 . . . . . . . . . . . . 13 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑀 · 𝑁) = (𝑁 · 𝑀))
1191183adant3 1127 . . . . . . . . . . . 12 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) → (𝑀 · 𝑁) = (𝑁 · 𝑀))
120119adantr 483 . . . . . . . . . . 11 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) → (𝑀 · 𝑁) = (𝑁 · 𝑀))
121120eqeq1d 2821 . . . . . . . . . 10 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) → ((𝑀 · 𝑁) = (𝑁 · 𝑃) ↔ (𝑁 · 𝑀) = (𝑁 · 𝑃)))
12288adantl 484 . . . . . . . . . . 11 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) → 𝑃 ∈ ℂ)
12330, 122, 20, 22mulcand 11265 . . . . . . . . . 10 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) → ((𝑁 · 𝑀) = (𝑁 · 𝑃) ↔ 𝑀 = 𝑃))
124121, 123bitrd 281 . . . . . . . . 9 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) → ((𝑀 · 𝑁) = (𝑁 · 𝑃) ↔ 𝑀 = 𝑃))
125124biimpa 479 . . . . . . . 8 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) ∧ (𝑀 · 𝑁) = (𝑁 · 𝑃)) → 𝑀 = 𝑃)
126116, 125syl6bir 256 . . . . . . 7 (𝑁 = 𝑄 → ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) ∧ (𝑀 · 𝑄) = (𝑁 · 𝑃)) → 𝑀 = 𝑃))
127126com12 32 . . . . . 6 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) ∧ (𝑀 · 𝑄) = (𝑁 · 𝑃)) → (𝑁 = 𝑄𝑀 = 𝑃))
128127ancrd 554 . . . . 5 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) ∧ (𝑀 · 𝑄) = (𝑁 · 𝑃)) → (𝑁 = 𝑄 → (𝑀 = 𝑃𝑁 = 𝑄)))
129113, 128mpd 15 . . . 4 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) ∧ (𝑀 · 𝑄) = (𝑁 · 𝑃)) → (𝑀 = 𝑃𝑁 = 𝑄))
130129ex 415 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) → ((𝑀 · 𝑄) = (𝑁 · 𝑃) → (𝑀 = 𝑃𝑁 = 𝑄)))
13146, 130sylbid 242 . 2 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1)) → ((𝑀 / 𝑁) = (𝑃 / 𝑄) → (𝑀 = 𝑃𝑁 = 𝑄)))
1321313impia 1112 1 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ (𝑀 gcd 𝑁) = 1) ∧ (𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ (𝑃 gcd 𝑄) = 1) ∧ (𝑀 / 𝑁) = (𝑃 / 𝑄)) → (𝑀 = 𝑃𝑁 = 𝑄))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1082   = wceq 1531  wcel 2108  wne 3014   class class class wbr 5057  (class class class)co 7148  cc 10527  cr 10528  0cc0 10529  1c1 10530   · cmul 10534  cle 10668   / cdiv 11289  cn 11630  cz 11973  cdvds 15599   gcd cgcd 15835
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1905  ax-6 1964  ax-7 2009  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2154  ax-12 2170  ax-ext 2791  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606  ax-pre-sup 10607
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1083  df-3an 1084  df-tru 1534  df-ex 1775  df-nf 1779  df-sb 2064  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-nel 3122  df-ral 3141  df-rex 3142  df-reu 3143  df-rmo 3144  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-pss 3952  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-tp 4564  df-op 4566  df-uni 4831  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-om 7573  df-2nd 7682  df-wrecs 7939  df-recs 8000  df-rdg 8038  df-er 8281  df-en 8502  df-dom 8503  df-sdom 8504  df-sup 8898  df-inf 8899  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-div 11290  df-nn 11631  df-2 11692  df-3 11693  df-n0 11890  df-z 11974  df-uz 12236  df-rp 12382  df-fl 13154  df-mod 13230  df-seq 13362  df-exp 13422  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-dvds 15600  df-gcd 15836
This theorem is referenced by:  qredeu  15994
  Copyright terms: Public domain W3C validator