Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ballotlemsdom Structured version   Visualization version   GIF version

Theorem ballotlemsdom 34476
Description: Domain of 𝑆 for a given counting 𝐶. (Contributed by Thierry Arnoux, 12-Apr-2017.)
Hypotheses
Ref Expression
ballotth.m 𝑀 ∈ ℕ
ballotth.n 𝑁 ∈ ℕ
ballotth.o 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀}
ballotth.p 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂)))
ballotth.f 𝐹 = (𝑐𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐)))))
ballotth.e 𝐸 = {𝑐𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝑐)‘𝑖)}
ballotth.mgtn 𝑁 < 𝑀
ballotth.i 𝐼 = (𝑐 ∈ (𝑂𝐸) ↦ inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝑐)‘𝑘) = 0}, ℝ, < ))
ballotth.s 𝑆 = (𝑐 ∈ (𝑂𝐸) ↦ (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼𝑐), (((𝐼𝑐) + 1) − 𝑖), 𝑖)))
Assertion
Ref Expression
ballotlemsdom ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝑀 + 𝑁))) → ((𝑆𝐶)‘𝐽) ∈ (1...(𝑀 + 𝑁)))
Distinct variable groups:   𝑀,𝑐   𝑁,𝑐   𝑂,𝑐   𝑖,𝑀   𝑖,𝑁   𝑖,𝑂   𝑘,𝑀   𝑘,𝑁   𝑘,𝑂   𝑖,𝑐,𝐹,𝑘   𝐶,𝑖,𝑘   𝑖,𝐸,𝑘   𝐶,𝑘   𝑘,𝐼,𝑐   𝐸,𝑐   𝑖,𝐼,𝑐
Allowed substitution hints:   𝐶(𝑥,𝑐)   𝑃(𝑥,𝑖,𝑘,𝑐)   𝑆(𝑥,𝑖,𝑘,𝑐)   𝐸(𝑥)   𝐹(𝑥)   𝐼(𝑥)   𝐽(𝑥,𝑖,𝑘,𝑐)   𝑀(𝑥)   𝑁(𝑥)   𝑂(𝑥)

Proof of Theorem ballotlemsdom
StepHypRef Expression
1 ballotth.m . . 3 𝑀 ∈ ℕ
2 ballotth.n . . 3 𝑁 ∈ ℕ
3 ballotth.o . . 3 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀}
4 ballotth.p . . 3 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂)))
5 ballotth.f . . 3 𝐹 = (𝑐𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐)))))
6 ballotth.e . . 3 𝐸 = {𝑐𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝑐)‘𝑖)}
7 ballotth.mgtn . . 3 𝑁 < 𝑀
8 ballotth.i . . 3 𝐼 = (𝑐 ∈ (𝑂𝐸) ↦ inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝑐)‘𝑘) = 0}, ℝ, < ))
9 ballotth.s . . 3 𝑆 = (𝑐 ∈ (𝑂𝐸) ↦ (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼𝑐), (((𝐼𝑐) + 1) − 𝑖), 𝑖)))
101, 2, 3, 4, 5, 6, 7, 8, 9ballotlemsv 34474 . 2 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝑀 + 𝑁))) → ((𝑆𝐶)‘𝐽) = if(𝐽 ≤ (𝐼𝐶), (((𝐼𝐶) + 1) − 𝐽), 𝐽))
111, 2, 3, 4, 5, 6, 7, 8ballotlemiex 34466 . . . . . . . 8 (𝐶 ∈ (𝑂𝐸) → ((𝐼𝐶) ∈ (1...(𝑀 + 𝑁)) ∧ ((𝐹𝐶)‘(𝐼𝐶)) = 0))
1211simpld 494 . . . . . . 7 (𝐶 ∈ (𝑂𝐸) → (𝐼𝐶) ∈ (1...(𝑀 + 𝑁)))
1312elfzelzd 13462 . . . . . 6 (𝐶 ∈ (𝑂𝐸) → (𝐼𝐶) ∈ ℤ)
1413ad2antrr 726 . . . . 5 (((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝑀 + 𝑁))) ∧ 𝐽 ≤ (𝐼𝐶)) → (𝐼𝐶) ∈ ℤ)
15 nnaddcl 12185 . . . . . . . 8 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑀 + 𝑁) ∈ ℕ)
161, 2, 15mp2an 692 . . . . . . 7 (𝑀 + 𝑁) ∈ ℕ
1716nnzi 12533 . . . . . 6 (𝑀 + 𝑁) ∈ ℤ
1817a1i 11 . . . . 5 (((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝑀 + 𝑁))) ∧ 𝐽 ≤ (𝐼𝐶)) → (𝑀 + 𝑁) ∈ ℤ)
1912ad2antrr 726 . . . . . 6 (((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝑀 + 𝑁))) ∧ 𝐽 ≤ (𝐼𝐶)) → (𝐼𝐶) ∈ (1...(𝑀 + 𝑁)))
20 elfzle2 13465 . . . . . 6 ((𝐼𝐶) ∈ (1...(𝑀 + 𝑁)) → (𝐼𝐶) ≤ (𝑀 + 𝑁))
2119, 20syl 17 . . . . 5 (((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝑀 + 𝑁))) ∧ 𝐽 ≤ (𝐼𝐶)) → (𝐼𝐶) ≤ (𝑀 + 𝑁))
22 eluz2 12775 . . . . . 6 ((𝑀 + 𝑁) ∈ (ℤ‘(𝐼𝐶)) ↔ ((𝐼𝐶) ∈ ℤ ∧ (𝑀 + 𝑁) ∈ ℤ ∧ (𝐼𝐶) ≤ (𝑀 + 𝑁)))
23 fzss2 13501 . . . . . 6 ((𝑀 + 𝑁) ∈ (ℤ‘(𝐼𝐶)) → (1...(𝐼𝐶)) ⊆ (1...(𝑀 + 𝑁)))
2422, 23sylbir 235 . . . . 5 (((𝐼𝐶) ∈ ℤ ∧ (𝑀 + 𝑁) ∈ ℤ ∧ (𝐼𝐶) ≤ (𝑀 + 𝑁)) → (1...(𝐼𝐶)) ⊆ (1...(𝑀 + 𝑁)))
2514, 18, 21, 24syl3anc 1373 . . . 4 (((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝑀 + 𝑁))) ∧ 𝐽 ≤ (𝐼𝐶)) → (1...(𝐼𝐶)) ⊆ (1...(𝑀 + 𝑁)))
26 1zzd 12540 . . . . . . 7 (((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝑀 + 𝑁))) ∧ 𝐽 ≤ (𝐼𝐶)) → 1 ∈ ℤ)
27 simplr 768 . . . . . . . 8 (((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝑀 + 𝑁))) ∧ 𝐽 ≤ (𝐼𝐶)) → 𝐽 ∈ (1...(𝑀 + 𝑁)))
2827elfzelzd 13462 . . . . . . 7 (((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝑀 + 𝑁))) ∧ 𝐽 ≤ (𝐼𝐶)) → 𝐽 ∈ ℤ)
29 elfzle1 13464 . . . . . . . 8 (𝐽 ∈ (1...(𝑀 + 𝑁)) → 1 ≤ 𝐽)
3027, 29syl 17 . . . . . . 7 (((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝑀 + 𝑁))) ∧ 𝐽 ≤ (𝐼𝐶)) → 1 ≤ 𝐽)
31 simpr 484 . . . . . . 7 (((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝑀 + 𝑁))) ∧ 𝐽 ≤ (𝐼𝐶)) → 𝐽 ≤ (𝐼𝐶))
3226, 14, 28, 30, 31elfzd 13452 . . . . . 6 (((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝑀 + 𝑁))) ∧ 𝐽 ≤ (𝐼𝐶)) → 𝐽 ∈ (1...(𝐼𝐶)))
33 fzrev3i 13528 . . . . . 6 (𝐽 ∈ (1...(𝐼𝐶)) → ((1 + (𝐼𝐶)) − 𝐽) ∈ (1...(𝐼𝐶)))
3432, 33syl 17 . . . . 5 (((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝑀 + 𝑁))) ∧ 𝐽 ≤ (𝐼𝐶)) → ((1 + (𝐼𝐶)) − 𝐽) ∈ (1...(𝐼𝐶)))
35 1cnd 11145 . . . . . . . . 9 (𝐶 ∈ (𝑂𝐸) → 1 ∈ ℂ)
3613zcnd 12615 . . . . . . . . 9 (𝐶 ∈ (𝑂𝐸) → (𝐼𝐶) ∈ ℂ)
3735, 36addcomd 11352 . . . . . . . 8 (𝐶 ∈ (𝑂𝐸) → (1 + (𝐼𝐶)) = ((𝐼𝐶) + 1))
3837oveq1d 7384 . . . . . . 7 (𝐶 ∈ (𝑂𝐸) → ((1 + (𝐼𝐶)) − 𝐽) = (((𝐼𝐶) + 1) − 𝐽))
3938eleq1d 2813 . . . . . 6 (𝐶 ∈ (𝑂𝐸) → (((1 + (𝐼𝐶)) − 𝐽) ∈ (1...(𝐼𝐶)) ↔ (((𝐼𝐶) + 1) − 𝐽) ∈ (1...(𝐼𝐶))))
4039ad2antrr 726 . . . . 5 (((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝑀 + 𝑁))) ∧ 𝐽 ≤ (𝐼𝐶)) → (((1 + (𝐼𝐶)) − 𝐽) ∈ (1...(𝐼𝐶)) ↔ (((𝐼𝐶) + 1) − 𝐽) ∈ (1...(𝐼𝐶))))
4134, 40mpbid 232 . . . 4 (((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝑀 + 𝑁))) ∧ 𝐽 ≤ (𝐼𝐶)) → (((𝐼𝐶) + 1) − 𝐽) ∈ (1...(𝐼𝐶)))
4225, 41sseldd 3944 . . 3 (((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝑀 + 𝑁))) ∧ 𝐽 ≤ (𝐼𝐶)) → (((𝐼𝐶) + 1) − 𝐽) ∈ (1...(𝑀 + 𝑁)))
43 simplr 768 . . 3 (((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝑀 + 𝑁))) ∧ ¬ 𝐽 ≤ (𝐼𝐶)) → 𝐽 ∈ (1...(𝑀 + 𝑁)))
4442, 43ifclda 4520 . 2 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝑀 + 𝑁))) → if(𝐽 ≤ (𝐼𝐶), (((𝐼𝐶) + 1) − 𝐽), 𝐽) ∈ (1...(𝑀 + 𝑁)))
4510, 44eqeltrd 2828 1 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝑀 + 𝑁))) → ((𝑆𝐶)‘𝐽) ∈ (1...(𝑀 + 𝑁)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  {crab 3402  cdif 3908  cin 3910  wss 3911  ifcif 4484  𝒫 cpw 4559   class class class wbr 5102  cmpt 5183  cfv 6499  (class class class)co 7369  infcinf 9368  cr 11043  0cc0 11044  1c1 11045   + caddc 11047   < clt 11184  cle 11185  cmin 11381   / cdiv 11811  cn 12162  cz 12505  cuz 12769  ...cfz 13444  chash 14271
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-oadd 8415  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-sup 9369  df-inf 9370  df-dju 9830  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-2 12225  df-n0 12419  df-z 12506  df-uz 12770  df-fz 13445  df-hash 14272
This theorem is referenced by:  ballotlemsel1i  34477  ballotlemsf1o  34478  ballotlemfrceq  34493  ballotlemfrcn0  34494
  Copyright terms: Public domain W3C validator