Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ballotlemsdom Structured version   Visualization version   GIF version

Theorem ballotlemsdom 32478
Description: Domain of 𝑆 for a given counting 𝐶. (Contributed by Thierry Arnoux, 12-Apr-2017.)
Hypotheses
Ref Expression
ballotth.m 𝑀 ∈ ℕ
ballotth.n 𝑁 ∈ ℕ
ballotth.o 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀}
ballotth.p 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂)))
ballotth.f 𝐹 = (𝑐𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐)))))
ballotth.e 𝐸 = {𝑐𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝑐)‘𝑖)}
ballotth.mgtn 𝑁 < 𝑀
ballotth.i 𝐼 = (𝑐 ∈ (𝑂𝐸) ↦ inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝑐)‘𝑘) = 0}, ℝ, < ))
ballotth.s 𝑆 = (𝑐 ∈ (𝑂𝐸) ↦ (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼𝑐), (((𝐼𝑐) + 1) − 𝑖), 𝑖)))
Assertion
Ref Expression
ballotlemsdom ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝑀 + 𝑁))) → ((𝑆𝐶)‘𝐽) ∈ (1...(𝑀 + 𝑁)))
Distinct variable groups:   𝑀,𝑐   𝑁,𝑐   𝑂,𝑐   𝑖,𝑀   𝑖,𝑁   𝑖,𝑂   𝑘,𝑀   𝑘,𝑁   𝑘,𝑂   𝑖,𝑐,𝐹,𝑘   𝐶,𝑖,𝑘   𝑖,𝐸,𝑘   𝐶,𝑘   𝑘,𝐼,𝑐   𝐸,𝑐   𝑖,𝐼,𝑐
Allowed substitution hints:   𝐶(𝑥,𝑐)   𝑃(𝑥,𝑖,𝑘,𝑐)   𝑆(𝑥,𝑖,𝑘,𝑐)   𝐸(𝑥)   𝐹(𝑥)   𝐼(𝑥)   𝐽(𝑥,𝑖,𝑘,𝑐)   𝑀(𝑥)   𝑁(𝑥)   𝑂(𝑥)

Proof of Theorem ballotlemsdom
StepHypRef Expression
1 ballotth.m . . 3 𝑀 ∈ ℕ
2 ballotth.n . . 3 𝑁 ∈ ℕ
3 ballotth.o . . 3 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀}
4 ballotth.p . . 3 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂)))
5 ballotth.f . . 3 𝐹 = (𝑐𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐)))))
6 ballotth.e . . 3 𝐸 = {𝑐𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝑐)‘𝑖)}
7 ballotth.mgtn . . 3 𝑁 < 𝑀
8 ballotth.i . . 3 𝐼 = (𝑐 ∈ (𝑂𝐸) ↦ inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝑐)‘𝑘) = 0}, ℝ, < ))
9 ballotth.s . . 3 𝑆 = (𝑐 ∈ (𝑂𝐸) ↦ (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼𝑐), (((𝐼𝑐) + 1) − 𝑖), 𝑖)))
101, 2, 3, 4, 5, 6, 7, 8, 9ballotlemsv 32476 . 2 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝑀 + 𝑁))) → ((𝑆𝐶)‘𝐽) = if(𝐽 ≤ (𝐼𝐶), (((𝐼𝐶) + 1) − 𝐽), 𝐽))
111, 2, 3, 4, 5, 6, 7, 8ballotlemiex 32468 . . . . . . . 8 (𝐶 ∈ (𝑂𝐸) → ((𝐼𝐶) ∈ (1...(𝑀 + 𝑁)) ∧ ((𝐹𝐶)‘(𝐼𝐶)) = 0))
1211simpld 495 . . . . . . 7 (𝐶 ∈ (𝑂𝐸) → (𝐼𝐶) ∈ (1...(𝑀 + 𝑁)))
1312elfzelzd 13257 . . . . . 6 (𝐶 ∈ (𝑂𝐸) → (𝐼𝐶) ∈ ℤ)
1413ad2antrr 723 . . . . 5 (((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝑀 + 𝑁))) ∧ 𝐽 ≤ (𝐼𝐶)) → (𝐼𝐶) ∈ ℤ)
15 nnaddcl 11996 . . . . . . . 8 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑀 + 𝑁) ∈ ℕ)
161, 2, 15mp2an 689 . . . . . . 7 (𝑀 + 𝑁) ∈ ℕ
1716nnzi 12344 . . . . . 6 (𝑀 + 𝑁) ∈ ℤ
1817a1i 11 . . . . 5 (((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝑀 + 𝑁))) ∧ 𝐽 ≤ (𝐼𝐶)) → (𝑀 + 𝑁) ∈ ℤ)
1912ad2antrr 723 . . . . . 6 (((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝑀 + 𝑁))) ∧ 𝐽 ≤ (𝐼𝐶)) → (𝐼𝐶) ∈ (1...(𝑀 + 𝑁)))
20 elfzle2 13260 . . . . . 6 ((𝐼𝐶) ∈ (1...(𝑀 + 𝑁)) → (𝐼𝐶) ≤ (𝑀 + 𝑁))
2119, 20syl 17 . . . . 5 (((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝑀 + 𝑁))) ∧ 𝐽 ≤ (𝐼𝐶)) → (𝐼𝐶) ≤ (𝑀 + 𝑁))
22 eluz2 12588 . . . . . 6 ((𝑀 + 𝑁) ∈ (ℤ‘(𝐼𝐶)) ↔ ((𝐼𝐶) ∈ ℤ ∧ (𝑀 + 𝑁) ∈ ℤ ∧ (𝐼𝐶) ≤ (𝑀 + 𝑁)))
23 fzss2 13296 . . . . . 6 ((𝑀 + 𝑁) ∈ (ℤ‘(𝐼𝐶)) → (1...(𝐼𝐶)) ⊆ (1...(𝑀 + 𝑁)))
2422, 23sylbir 234 . . . . 5 (((𝐼𝐶) ∈ ℤ ∧ (𝑀 + 𝑁) ∈ ℤ ∧ (𝐼𝐶) ≤ (𝑀 + 𝑁)) → (1...(𝐼𝐶)) ⊆ (1...(𝑀 + 𝑁)))
2514, 18, 21, 24syl3anc 1370 . . . 4 (((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝑀 + 𝑁))) ∧ 𝐽 ≤ (𝐼𝐶)) → (1...(𝐼𝐶)) ⊆ (1...(𝑀 + 𝑁)))
26 1zzd 12351 . . . . . . 7 (((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝑀 + 𝑁))) ∧ 𝐽 ≤ (𝐼𝐶)) → 1 ∈ ℤ)
27 simplr 766 . . . . . . . 8 (((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝑀 + 𝑁))) ∧ 𝐽 ≤ (𝐼𝐶)) → 𝐽 ∈ (1...(𝑀 + 𝑁)))
2827elfzelzd 13257 . . . . . . 7 (((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝑀 + 𝑁))) ∧ 𝐽 ≤ (𝐼𝐶)) → 𝐽 ∈ ℤ)
29 elfzle1 13259 . . . . . . . 8 (𝐽 ∈ (1...(𝑀 + 𝑁)) → 1 ≤ 𝐽)
3027, 29syl 17 . . . . . . 7 (((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝑀 + 𝑁))) ∧ 𝐽 ≤ (𝐼𝐶)) → 1 ≤ 𝐽)
31 simpr 485 . . . . . . 7 (((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝑀 + 𝑁))) ∧ 𝐽 ≤ (𝐼𝐶)) → 𝐽 ≤ (𝐼𝐶))
3226, 14, 28, 30, 31elfzd 13247 . . . . . 6 (((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝑀 + 𝑁))) ∧ 𝐽 ≤ (𝐼𝐶)) → 𝐽 ∈ (1...(𝐼𝐶)))
33 fzrev3i 13323 . . . . . 6 (𝐽 ∈ (1...(𝐼𝐶)) → ((1 + (𝐼𝐶)) − 𝐽) ∈ (1...(𝐼𝐶)))
3432, 33syl 17 . . . . 5 (((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝑀 + 𝑁))) ∧ 𝐽 ≤ (𝐼𝐶)) → ((1 + (𝐼𝐶)) − 𝐽) ∈ (1...(𝐼𝐶)))
35 1cnd 10970 . . . . . . . . 9 (𝐶 ∈ (𝑂𝐸) → 1 ∈ ℂ)
3613zcnd 12427 . . . . . . . . 9 (𝐶 ∈ (𝑂𝐸) → (𝐼𝐶) ∈ ℂ)
3735, 36addcomd 11177 . . . . . . . 8 (𝐶 ∈ (𝑂𝐸) → (1 + (𝐼𝐶)) = ((𝐼𝐶) + 1))
3837oveq1d 7290 . . . . . . 7 (𝐶 ∈ (𝑂𝐸) → ((1 + (𝐼𝐶)) − 𝐽) = (((𝐼𝐶) + 1) − 𝐽))
3938eleq1d 2823 . . . . . 6 (𝐶 ∈ (𝑂𝐸) → (((1 + (𝐼𝐶)) − 𝐽) ∈ (1...(𝐼𝐶)) ↔ (((𝐼𝐶) + 1) − 𝐽) ∈ (1...(𝐼𝐶))))
4039ad2antrr 723 . . . . 5 (((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝑀 + 𝑁))) ∧ 𝐽 ≤ (𝐼𝐶)) → (((1 + (𝐼𝐶)) − 𝐽) ∈ (1...(𝐼𝐶)) ↔ (((𝐼𝐶) + 1) − 𝐽) ∈ (1...(𝐼𝐶))))
4134, 40mpbid 231 . . . 4 (((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝑀 + 𝑁))) ∧ 𝐽 ≤ (𝐼𝐶)) → (((𝐼𝐶) + 1) − 𝐽) ∈ (1...(𝐼𝐶)))
4225, 41sseldd 3922 . . 3 (((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝑀 + 𝑁))) ∧ 𝐽 ≤ (𝐼𝐶)) → (((𝐼𝐶) + 1) − 𝐽) ∈ (1...(𝑀 + 𝑁)))
43 simplr 766 . . 3 (((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝑀 + 𝑁))) ∧ ¬ 𝐽 ≤ (𝐼𝐶)) → 𝐽 ∈ (1...(𝑀 + 𝑁)))
4442, 43ifclda 4494 . 2 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝑀 + 𝑁))) → if(𝐽 ≤ (𝐼𝐶), (((𝐼𝐶) + 1) − 𝐽), 𝐽) ∈ (1...(𝑀 + 𝑁)))
4510, 44eqeltrd 2839 1 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝑀 + 𝑁))) → ((𝑆𝐶)‘𝐽) ∈ (1...(𝑀 + 𝑁)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  wral 3064  {crab 3068  cdif 3884  cin 3886  wss 3887  ifcif 4459  𝒫 cpw 4533   class class class wbr 5074  cmpt 5157  cfv 6433  (class class class)co 7275  infcinf 9200  cr 10870  0cc0 10871  1c1 10872   + caddc 10874   < clt 11009  cle 11010  cmin 11205   / cdiv 11632  cn 11973  cz 12319  cuz 12582  ...cfz 13239  chash 14044
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-oadd 8301  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-sup 9201  df-inf 9202  df-dju 9659  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-n0 12234  df-z 12320  df-uz 12583  df-fz 13240  df-hash 14045
This theorem is referenced by:  ballotlemsel1i  32479  ballotlemsf1o  32480  ballotlemfrceq  32495  ballotlemfrcn0  32496
  Copyright terms: Public domain W3C validator