Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ballotlemsdom Structured version   Visualization version   GIF version

Theorem ballotlemsdom 31668
Description: Domain of 𝑆 for a given counting 𝐶. (Contributed by Thierry Arnoux, 12-Apr-2017.)
Hypotheses
Ref Expression
ballotth.m 𝑀 ∈ ℕ
ballotth.n 𝑁 ∈ ℕ
ballotth.o 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀}
ballotth.p 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂)))
ballotth.f 𝐹 = (𝑐𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐)))))
ballotth.e 𝐸 = {𝑐𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝑐)‘𝑖)}
ballotth.mgtn 𝑁 < 𝑀
ballotth.i 𝐼 = (𝑐 ∈ (𝑂𝐸) ↦ inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝑐)‘𝑘) = 0}, ℝ, < ))
ballotth.s 𝑆 = (𝑐 ∈ (𝑂𝐸) ↦ (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼𝑐), (((𝐼𝑐) + 1) − 𝑖), 𝑖)))
Assertion
Ref Expression
ballotlemsdom ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝑀 + 𝑁))) → ((𝑆𝐶)‘𝐽) ∈ (1...(𝑀 + 𝑁)))
Distinct variable groups:   𝑀,𝑐   𝑁,𝑐   𝑂,𝑐   𝑖,𝑀   𝑖,𝑁   𝑖,𝑂   𝑘,𝑀   𝑘,𝑁   𝑘,𝑂   𝑖,𝑐,𝐹,𝑘   𝐶,𝑖,𝑘   𝑖,𝐸,𝑘   𝐶,𝑘   𝑘,𝐼,𝑐   𝐸,𝑐   𝑖,𝐼,𝑐
Allowed substitution hints:   𝐶(𝑥,𝑐)   𝑃(𝑥,𝑖,𝑘,𝑐)   𝑆(𝑥,𝑖,𝑘,𝑐)   𝐸(𝑥)   𝐹(𝑥)   𝐼(𝑥)   𝐽(𝑥,𝑖,𝑘,𝑐)   𝑀(𝑥)   𝑁(𝑥)   𝑂(𝑥)

Proof of Theorem ballotlemsdom
StepHypRef Expression
1 ballotth.m . . 3 𝑀 ∈ ℕ
2 ballotth.n . . 3 𝑁 ∈ ℕ
3 ballotth.o . . 3 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀}
4 ballotth.p . . 3 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂)))
5 ballotth.f . . 3 𝐹 = (𝑐𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐)))))
6 ballotth.e . . 3 𝐸 = {𝑐𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹𝑐)‘𝑖)}
7 ballotth.mgtn . . 3 𝑁 < 𝑀
8 ballotth.i . . 3 𝐼 = (𝑐 ∈ (𝑂𝐸) ↦ inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹𝑐)‘𝑘) = 0}, ℝ, < ))
9 ballotth.s . . 3 𝑆 = (𝑐 ∈ (𝑂𝐸) ↦ (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼𝑐), (((𝐼𝑐) + 1) − 𝑖), 𝑖)))
101, 2, 3, 4, 5, 6, 7, 8, 9ballotlemsv 31666 . 2 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝑀 + 𝑁))) → ((𝑆𝐶)‘𝐽) = if(𝐽 ≤ (𝐼𝐶), (((𝐼𝐶) + 1) − 𝐽), 𝐽))
11 fzssuz 12936 . . . . . . . 8 (1...(𝑀 + 𝑁)) ⊆ (ℤ‘1)
12 uzssz 12252 . . . . . . . 8 (ℤ‘1) ⊆ ℤ
1311, 12sstri 3973 . . . . . . 7 (1...(𝑀 + 𝑁)) ⊆ ℤ
141, 2, 3, 4, 5, 6, 7, 8ballotlemiex 31658 . . . . . . . 8 (𝐶 ∈ (𝑂𝐸) → ((𝐼𝐶) ∈ (1...(𝑀 + 𝑁)) ∧ ((𝐹𝐶)‘(𝐼𝐶)) = 0))
1514simpld 495 . . . . . . 7 (𝐶 ∈ (𝑂𝐸) → (𝐼𝐶) ∈ (1...(𝑀 + 𝑁)))
1613, 15sseldi 3962 . . . . . 6 (𝐶 ∈ (𝑂𝐸) → (𝐼𝐶) ∈ ℤ)
1716ad2antrr 722 . . . . 5 (((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝑀 + 𝑁))) ∧ 𝐽 ≤ (𝐼𝐶)) → (𝐼𝐶) ∈ ℤ)
18 nnaddcl 11648 . . . . . . . 8 ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑀 + 𝑁) ∈ ℕ)
191, 2, 18mp2an 688 . . . . . . 7 (𝑀 + 𝑁) ∈ ℕ
2019nnzi 11994 . . . . . 6 (𝑀 + 𝑁) ∈ ℤ
2120a1i 11 . . . . 5 (((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝑀 + 𝑁))) ∧ 𝐽 ≤ (𝐼𝐶)) → (𝑀 + 𝑁) ∈ ℤ)
2215ad2antrr 722 . . . . . 6 (((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝑀 + 𝑁))) ∧ 𝐽 ≤ (𝐼𝐶)) → (𝐼𝐶) ∈ (1...(𝑀 + 𝑁)))
23 elfzle2 12899 . . . . . 6 ((𝐼𝐶) ∈ (1...(𝑀 + 𝑁)) → (𝐼𝐶) ≤ (𝑀 + 𝑁))
2422, 23syl 17 . . . . 5 (((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝑀 + 𝑁))) ∧ 𝐽 ≤ (𝐼𝐶)) → (𝐼𝐶) ≤ (𝑀 + 𝑁))
25 eluz2 12237 . . . . . 6 ((𝑀 + 𝑁) ∈ (ℤ‘(𝐼𝐶)) ↔ ((𝐼𝐶) ∈ ℤ ∧ (𝑀 + 𝑁) ∈ ℤ ∧ (𝐼𝐶) ≤ (𝑀 + 𝑁)))
26 fzss2 12935 . . . . . 6 ((𝑀 + 𝑁) ∈ (ℤ‘(𝐼𝐶)) → (1...(𝐼𝐶)) ⊆ (1...(𝑀 + 𝑁)))
2725, 26sylbir 236 . . . . 5 (((𝐼𝐶) ∈ ℤ ∧ (𝑀 + 𝑁) ∈ ℤ ∧ (𝐼𝐶) ≤ (𝑀 + 𝑁)) → (1...(𝐼𝐶)) ⊆ (1...(𝑀 + 𝑁)))
2817, 21, 24, 27syl3anc 1363 . . . 4 (((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝑀 + 𝑁))) ∧ 𝐽 ≤ (𝐼𝐶)) → (1...(𝐼𝐶)) ⊆ (1...(𝑀 + 𝑁)))
29 1zzd 12001 . . . . . . 7 (((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝑀 + 𝑁))) ∧ 𝐽 ≤ (𝐼𝐶)) → 1 ∈ ℤ)
30 simplr 765 . . . . . . . 8 (((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝑀 + 𝑁))) ∧ 𝐽 ≤ (𝐼𝐶)) → 𝐽 ∈ (1...(𝑀 + 𝑁)))
3113, 30sseldi 3962 . . . . . . 7 (((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝑀 + 𝑁))) ∧ 𝐽 ≤ (𝐼𝐶)) → 𝐽 ∈ ℤ)
32 elfzle1 12898 . . . . . . . 8 (𝐽 ∈ (1...(𝑀 + 𝑁)) → 1 ≤ 𝐽)
3330, 32syl 17 . . . . . . 7 (((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝑀 + 𝑁))) ∧ 𝐽 ≤ (𝐼𝐶)) → 1 ≤ 𝐽)
34 simpr 485 . . . . . . 7 (((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝑀 + 𝑁))) ∧ 𝐽 ≤ (𝐼𝐶)) → 𝐽 ≤ (𝐼𝐶))
35 elfz4 12889 . . . . . . 7 (((1 ∈ ℤ ∧ (𝐼𝐶) ∈ ℤ ∧ 𝐽 ∈ ℤ) ∧ (1 ≤ 𝐽𝐽 ≤ (𝐼𝐶))) → 𝐽 ∈ (1...(𝐼𝐶)))
3629, 17, 31, 33, 34, 35syl32anc 1370 . . . . . 6 (((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝑀 + 𝑁))) ∧ 𝐽 ≤ (𝐼𝐶)) → 𝐽 ∈ (1...(𝐼𝐶)))
37 fzrev3i 12962 . . . . . 6 (𝐽 ∈ (1...(𝐼𝐶)) → ((1 + (𝐼𝐶)) − 𝐽) ∈ (1...(𝐼𝐶)))
3836, 37syl 17 . . . . 5 (((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝑀 + 𝑁))) ∧ 𝐽 ≤ (𝐼𝐶)) → ((1 + (𝐼𝐶)) − 𝐽) ∈ (1...(𝐼𝐶)))
39 1cnd 10624 . . . . . . . . 9 (𝐶 ∈ (𝑂𝐸) → 1 ∈ ℂ)
4016zcnd 12076 . . . . . . . . 9 (𝐶 ∈ (𝑂𝐸) → (𝐼𝐶) ∈ ℂ)
4139, 40addcomd 10830 . . . . . . . 8 (𝐶 ∈ (𝑂𝐸) → (1 + (𝐼𝐶)) = ((𝐼𝐶) + 1))
4241oveq1d 7160 . . . . . . 7 (𝐶 ∈ (𝑂𝐸) → ((1 + (𝐼𝐶)) − 𝐽) = (((𝐼𝐶) + 1) − 𝐽))
4342eleq1d 2894 . . . . . 6 (𝐶 ∈ (𝑂𝐸) → (((1 + (𝐼𝐶)) − 𝐽) ∈ (1...(𝐼𝐶)) ↔ (((𝐼𝐶) + 1) − 𝐽) ∈ (1...(𝐼𝐶))))
4443ad2antrr 722 . . . . 5 (((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝑀 + 𝑁))) ∧ 𝐽 ≤ (𝐼𝐶)) → (((1 + (𝐼𝐶)) − 𝐽) ∈ (1...(𝐼𝐶)) ↔ (((𝐼𝐶) + 1) − 𝐽) ∈ (1...(𝐼𝐶))))
4538, 44mpbid 233 . . . 4 (((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝑀 + 𝑁))) ∧ 𝐽 ≤ (𝐼𝐶)) → (((𝐼𝐶) + 1) − 𝐽) ∈ (1...(𝐼𝐶)))
4628, 45sseldd 3965 . . 3 (((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝑀 + 𝑁))) ∧ 𝐽 ≤ (𝐼𝐶)) → (((𝐼𝐶) + 1) − 𝐽) ∈ (1...(𝑀 + 𝑁)))
47 simplr 765 . . 3 (((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝑀 + 𝑁))) ∧ ¬ 𝐽 ≤ (𝐼𝐶)) → 𝐽 ∈ (1...(𝑀 + 𝑁)))
4846, 47ifclda 4497 . 2 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝑀 + 𝑁))) → if(𝐽 ≤ (𝐼𝐶), (((𝐼𝐶) + 1) − 𝐽), 𝐽) ∈ (1...(𝑀 + 𝑁)))
4910, 48eqeltrd 2910 1 ((𝐶 ∈ (𝑂𝐸) ∧ 𝐽 ∈ (1...(𝑀 + 𝑁))) → ((𝑆𝐶)‘𝐽) ∈ (1...(𝑀 + 𝑁)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 207  wa 396  w3a 1079   = wceq 1528  wcel 2105  wral 3135  {crab 3139  cdif 3930  cin 3932  wss 3933  ifcif 4463  𝒫 cpw 4535   class class class wbr 5057  cmpt 5137  cfv 6348  (class class class)co 7145  infcinf 8893  cr 10524  0cc0 10525  1c1 10526   + caddc 10528   < clt 10663  cle 10664  cmin 10858   / cdiv 11285  cn 11626  cz 11969  cuz 12231  ...cfz 12880  chash 13678
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rmo 3143  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-int 4868  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7570  df-1st 7678  df-2nd 7679  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-1o 8091  df-oadd 8095  df-er 8278  df-en 8498  df-dom 8499  df-sdom 8500  df-fin 8501  df-sup 8894  df-inf 8895  df-dju 9318  df-card 9356  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-nn 11627  df-2 11688  df-n0 11886  df-z 11970  df-uz 12232  df-fz 12881  df-hash 13679
This theorem is referenced by:  ballotlemsel1i  31669  ballotlemsf1o  31670  ballotlemfrceq  31685  ballotlemfrcn0  31686
  Copyright terms: Public domain W3C validator