Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ballotlemsi | Structured version Visualization version GIF version |
Description: The image by 𝑆 of the first tie pick is the first pick. (Contributed by Thierry Arnoux, 14-Apr-2017.) |
Ref | Expression |
---|---|
ballotth.m | ⊢ 𝑀 ∈ ℕ |
ballotth.n | ⊢ 𝑁 ∈ ℕ |
ballotth.o | ⊢ 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀} |
ballotth.p | ⊢ 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂))) |
ballotth.f | ⊢ 𝐹 = (𝑐 ∈ 𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐))))) |
ballotth.e | ⊢ 𝐸 = {𝑐 ∈ 𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹‘𝑐)‘𝑖)} |
ballotth.mgtn | ⊢ 𝑁 < 𝑀 |
ballotth.i | ⊢ 𝐼 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹‘𝑐)‘𝑘) = 0}, ℝ, < )) |
ballotth.s | ⊢ 𝑆 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼‘𝑐), (((𝐼‘𝑐) + 1) − 𝑖), 𝑖))) |
Ref | Expression |
---|---|
ballotlemsi | ⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → ((𝑆‘𝐶)‘(𝐼‘𝐶)) = 1) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ballotth.m | . . . . 5 ⊢ 𝑀 ∈ ℕ | |
2 | ballotth.n | . . . . 5 ⊢ 𝑁 ∈ ℕ | |
3 | ballotth.o | . . . . 5 ⊢ 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀} | |
4 | ballotth.p | . . . . 5 ⊢ 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂))) | |
5 | ballotth.f | . . . . 5 ⊢ 𝐹 = (𝑐 ∈ 𝑂 ↦ (𝑖 ∈ ℤ ↦ ((♯‘((1...𝑖) ∩ 𝑐)) − (♯‘((1...𝑖) ∖ 𝑐))))) | |
6 | ballotth.e | . . . . 5 ⊢ 𝐸 = {𝑐 ∈ 𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹‘𝑐)‘𝑖)} | |
7 | ballotth.mgtn | . . . . 5 ⊢ 𝑁 < 𝑀 | |
8 | ballotth.i | . . . . 5 ⊢ 𝐼 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹‘𝑐)‘𝑘) = 0}, ℝ, < )) | |
9 | 1, 2, 3, 4, 5, 6, 7, 8 | ballotlemiex 31980 | . . . 4 ⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → ((𝐼‘𝐶) ∈ (1...(𝑀 + 𝑁)) ∧ ((𝐹‘𝐶)‘(𝐼‘𝐶)) = 0)) |
10 | 9 | simpld 499 | . . 3 ⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → (𝐼‘𝐶) ∈ (1...(𝑀 + 𝑁))) |
11 | ballotth.s | . . . 4 ⊢ 𝑆 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼‘𝑐), (((𝐼‘𝑐) + 1) − 𝑖), 𝑖))) | |
12 | 1, 2, 3, 4, 5, 6, 7, 8, 11 | ballotlemsv 31988 | . . 3 ⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ (𝐼‘𝐶) ∈ (1...(𝑀 + 𝑁))) → ((𝑆‘𝐶)‘(𝐼‘𝐶)) = if((𝐼‘𝐶) ≤ (𝐼‘𝐶), (((𝐼‘𝐶) + 1) − (𝐼‘𝐶)), (𝐼‘𝐶))) |
13 | 10, 12 | mpdan 687 | . 2 ⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → ((𝑆‘𝐶)‘(𝐼‘𝐶)) = if((𝐼‘𝐶) ≤ (𝐼‘𝐶), (((𝐼‘𝐶) + 1) − (𝐼‘𝐶)), (𝐼‘𝐶))) |
14 | elfzelz 12949 | . . . . . 6 ⊢ ((𝐼‘𝐶) ∈ (1...(𝑀 + 𝑁)) → (𝐼‘𝐶) ∈ ℤ) | |
15 | 14 | zred 12119 | . . . . 5 ⊢ ((𝐼‘𝐶) ∈ (1...(𝑀 + 𝑁)) → (𝐼‘𝐶) ∈ ℝ) |
16 | 10, 15 | syl 17 | . . . 4 ⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → (𝐼‘𝐶) ∈ ℝ) |
17 | 16 | leidd 11237 | . . 3 ⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → (𝐼‘𝐶) ≤ (𝐼‘𝐶)) |
18 | 17 | iftrued 4429 | . 2 ⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → if((𝐼‘𝐶) ≤ (𝐼‘𝐶), (((𝐼‘𝐶) + 1) − (𝐼‘𝐶)), (𝐼‘𝐶)) = (((𝐼‘𝐶) + 1) − (𝐼‘𝐶))) |
19 | 16 | recnd 10700 | . . 3 ⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → (𝐼‘𝐶) ∈ ℂ) |
20 | 1cnd 10667 | . . 3 ⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → 1 ∈ ℂ) | |
21 | 19, 20 | pncan2d 11030 | . 2 ⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → (((𝐼‘𝐶) + 1) − (𝐼‘𝐶)) = 1) |
22 | 13, 18, 21 | 3eqtrd 2798 | 1 ⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → ((𝑆‘𝐶)‘(𝐼‘𝐶)) = 1) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2112 ∀wral 3071 {crab 3075 ∖ cdif 3856 ∩ cin 3858 ifcif 4421 𝒫 cpw 4495 class class class wbr 5033 ↦ cmpt 5113 ‘cfv 6336 (class class class)co 7151 infcinf 8931 ℝcr 10567 0cc0 10568 1c1 10569 + caddc 10571 < clt 10706 ≤ cle 10707 − cmin 10901 / cdiv 11328 ℕcn 11667 ℤcz 12013 ...cfz 12932 ♯chash 13733 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-rep 5157 ax-sep 5170 ax-nul 5177 ax-pow 5235 ax-pr 5299 ax-un 7460 ax-cnex 10624 ax-resscn 10625 ax-1cn 10626 ax-icn 10627 ax-addcl 10628 ax-addrcl 10629 ax-mulcl 10630 ax-mulrcl 10631 ax-mulcom 10632 ax-addass 10633 ax-mulass 10634 ax-distr 10635 ax-i2m1 10636 ax-1ne0 10637 ax-1rid 10638 ax-rnegex 10639 ax-rrecex 10640 ax-cnre 10641 ax-pre-lttri 10642 ax-pre-lttrn 10643 ax-pre-ltadd 10644 ax-pre-mulgt0 10645 |
This theorem depends on definitions: df-bi 210 df-an 401 df-or 846 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2071 df-mo 2558 df-eu 2589 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2902 df-ne 2953 df-nel 3057 df-ral 3076 df-rex 3077 df-reu 3078 df-rmo 3079 df-rab 3080 df-v 3412 df-sbc 3698 df-csb 3807 df-dif 3862 df-un 3864 df-in 3866 df-ss 3876 df-pss 3878 df-nul 4227 df-if 4422 df-pw 4497 df-sn 4524 df-pr 4526 df-tp 4528 df-op 4530 df-uni 4800 df-int 4840 df-iun 4886 df-br 5034 df-opab 5096 df-mpt 5114 df-tr 5140 df-id 5431 df-eprel 5436 df-po 5444 df-so 5445 df-fr 5484 df-we 5486 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-pred 6127 df-ord 6173 df-on 6174 df-lim 6175 df-suc 6176 df-iota 6295 df-fun 6338 df-fn 6339 df-f 6340 df-f1 6341 df-fo 6342 df-f1o 6343 df-fv 6344 df-riota 7109 df-ov 7154 df-oprab 7155 df-mpo 7156 df-om 7581 df-1st 7694 df-2nd 7695 df-wrecs 7958 df-recs 8019 df-rdg 8057 df-1o 8113 df-oadd 8117 df-er 8300 df-en 8529 df-dom 8530 df-sdom 8531 df-fin 8532 df-sup 8932 df-inf 8933 df-dju 9356 df-card 9394 df-pnf 10708 df-mnf 10709 df-xr 10710 df-ltxr 10711 df-le 10712 df-sub 10903 df-neg 10904 df-nn 11668 df-2 11730 df-n0 11928 df-z 12014 df-uz 12276 df-fz 12933 df-hash 13734 |
This theorem is referenced by: ballotlemfrci 32006 |
Copyright terms: Public domain | W3C validator |