Proof of Theorem ballotlemsel1i
| Step | Hyp | Ref
| Expression |
| 1 | | 1zzd 12628 |
. 2
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝐼‘𝐶))) → 1 ∈
ℤ) |
| 2 | | ballotth.m |
. . . . . 6
⊢ 𝑀 ∈ ℕ |
| 3 | | ballotth.n |
. . . . . 6
⊢ 𝑁 ∈ ℕ |
| 4 | | ballotth.o |
. . . . . 6
⊢ 𝑂 = {𝑐 ∈ 𝒫 (1...(𝑀 + 𝑁)) ∣ (♯‘𝑐) = 𝑀} |
| 5 | | ballotth.p |
. . . . . 6
⊢ 𝑃 = (𝑥 ∈ 𝒫 𝑂 ↦ ((♯‘𝑥) / (♯‘𝑂))) |
| 6 | | ballotth.f |
. . . . . 6
⊢ 𝐹 = (𝑐 ∈ 𝑂 ↦ (𝑖 ∈ ℤ ↦
((♯‘((1...𝑖)
∩ 𝑐)) −
(♯‘((1...𝑖)
∖ 𝑐))))) |
| 7 | | ballotth.e |
. . . . . 6
⊢ 𝐸 = {𝑐 ∈ 𝑂 ∣ ∀𝑖 ∈ (1...(𝑀 + 𝑁))0 < ((𝐹‘𝑐)‘𝑖)} |
| 8 | | ballotth.mgtn |
. . . . . 6
⊢ 𝑁 < 𝑀 |
| 9 | | ballotth.i |
. . . . . 6
⊢ 𝐼 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ inf({𝑘 ∈ (1...(𝑀 + 𝑁)) ∣ ((𝐹‘𝑐)‘𝑘) = 0}, ℝ, < )) |
| 10 | 2, 3, 4, 5, 6, 7, 8, 9 | ballotlemiex 34539 |
. . . . 5
⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → ((𝐼‘𝐶) ∈ (1...(𝑀 + 𝑁)) ∧ ((𝐹‘𝐶)‘(𝐼‘𝐶)) = 0)) |
| 11 | 10 | simpld 494 |
. . . 4
⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → (𝐼‘𝐶) ∈ (1...(𝑀 + 𝑁))) |
| 12 | 11 | elfzelzd 13547 |
. . 3
⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → (𝐼‘𝐶) ∈ ℤ) |
| 13 | 12 | adantr 480 |
. 2
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝐼‘𝐶))) → (𝐼‘𝐶) ∈ ℤ) |
| 14 | | nnaddcl 12268 |
. . . . . . . . . 10
⊢ ((𝑀 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑀 + 𝑁) ∈ ℕ) |
| 15 | 2, 3, 14 | mp2an 692 |
. . . . . . . . 9
⊢ (𝑀 + 𝑁) ∈ ℕ |
| 16 | 15 | nnzi 12621 |
. . . . . . . 8
⊢ (𝑀 + 𝑁) ∈ ℤ |
| 17 | 16 | a1i 11 |
. . . . . . 7
⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → (𝑀 + 𝑁) ∈ ℤ) |
| 18 | | elfzle2 13550 |
. . . . . . . 8
⊢ ((𝐼‘𝐶) ∈ (1...(𝑀 + 𝑁)) → (𝐼‘𝐶) ≤ (𝑀 + 𝑁)) |
| 19 | 11, 18 | syl 17 |
. . . . . . 7
⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → (𝐼‘𝐶) ≤ (𝑀 + 𝑁)) |
| 20 | | eluz2 12863 |
. . . . . . 7
⊢ ((𝑀 + 𝑁) ∈
(ℤ≥‘(𝐼‘𝐶)) ↔ ((𝐼‘𝐶) ∈ ℤ ∧ (𝑀 + 𝑁) ∈ ℤ ∧ (𝐼‘𝐶) ≤ (𝑀 + 𝑁))) |
| 21 | 12, 17, 19, 20 | syl3anbrc 1344 |
. . . . . 6
⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → (𝑀 + 𝑁) ∈
(ℤ≥‘(𝐼‘𝐶))) |
| 22 | | fzss2 13586 |
. . . . . 6
⊢ ((𝑀 + 𝑁) ∈
(ℤ≥‘(𝐼‘𝐶)) → (1...(𝐼‘𝐶)) ⊆ (1...(𝑀 + 𝑁))) |
| 23 | 21, 22 | syl 17 |
. . . . 5
⊢ (𝐶 ∈ (𝑂 ∖ 𝐸) → (1...(𝐼‘𝐶)) ⊆ (1...(𝑀 + 𝑁))) |
| 24 | 23 | sselda 3963 |
. . . 4
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝐼‘𝐶))) → 𝐽 ∈ (1...(𝑀 + 𝑁))) |
| 25 | | ballotth.s |
. . . . 5
⊢ 𝑆 = (𝑐 ∈ (𝑂 ∖ 𝐸) ↦ (𝑖 ∈ (1...(𝑀 + 𝑁)) ↦ if(𝑖 ≤ (𝐼‘𝑐), (((𝐼‘𝑐) + 1) − 𝑖), 𝑖))) |
| 26 | 2, 3, 4, 5, 6, 7, 8, 9, 25 | ballotlemsdom 34549 |
. . . 4
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝑀 + 𝑁))) → ((𝑆‘𝐶)‘𝐽) ∈ (1...(𝑀 + 𝑁))) |
| 27 | 24, 26 | syldan 591 |
. . 3
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝐼‘𝐶))) → ((𝑆‘𝐶)‘𝐽) ∈ (1...(𝑀 + 𝑁))) |
| 28 | 27 | elfzelzd 13547 |
. 2
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝐼‘𝐶))) → ((𝑆‘𝐶)‘𝐽) ∈ ℤ) |
| 29 | | elfzelz 13546 |
. . . . . 6
⊢ (𝐽 ∈ (1...(𝐼‘𝐶)) → 𝐽 ∈ ℤ) |
| 30 | 29 | adantl 481 |
. . . . 5
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝐼‘𝐶))) → 𝐽 ∈ ℤ) |
| 31 | 30 | zred 12702 |
. . . 4
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝐼‘𝐶))) → 𝐽 ∈ ℝ) |
| 32 | 13 | zred 12702 |
. . . . 5
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝐼‘𝐶))) → (𝐼‘𝐶) ∈ ℝ) |
| 33 | | 1red 11241 |
. . . . 5
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝐼‘𝐶))) → 1 ∈
ℝ) |
| 34 | 32, 33 | readdcld 11269 |
. . . 4
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝐼‘𝐶))) → ((𝐼‘𝐶) + 1) ∈ ℝ) |
| 35 | | elfzle2 13550 |
. . . . . 6
⊢ (𝐽 ∈ (1...(𝐼‘𝐶)) → 𝐽 ≤ (𝐼‘𝐶)) |
| 36 | 35 | adantl 481 |
. . . . 5
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝐼‘𝐶))) → 𝐽 ≤ (𝐼‘𝐶)) |
| 37 | 13 | zcnd 12703 |
. . . . . 6
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝐼‘𝐶))) → (𝐼‘𝐶) ∈ ℂ) |
| 38 | | 1cnd 11235 |
. . . . . 6
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝐼‘𝐶))) → 1 ∈
ℂ) |
| 39 | 37, 38 | pncand 11600 |
. . . . 5
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝐼‘𝐶))) → (((𝐼‘𝐶) + 1) − 1) = (𝐼‘𝐶)) |
| 40 | 36, 39 | breqtrrd 5152 |
. . . 4
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝐼‘𝐶))) → 𝐽 ≤ (((𝐼‘𝐶) + 1) − 1)) |
| 41 | 31, 34, 33, 40 | lesubd 11846 |
. . 3
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝐼‘𝐶))) → 1 ≤ (((𝐼‘𝐶) + 1) − 𝐽)) |
| 42 | 2, 3, 4, 5, 6, 7, 8, 9, 25 | ballotlemsv 34547 |
. . . . 5
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝑀 + 𝑁))) → ((𝑆‘𝐶)‘𝐽) = if(𝐽 ≤ (𝐼‘𝐶), (((𝐼‘𝐶) + 1) − 𝐽), 𝐽)) |
| 43 | 24, 42 | syldan 591 |
. . . 4
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝐼‘𝐶))) → ((𝑆‘𝐶)‘𝐽) = if(𝐽 ≤ (𝐼‘𝐶), (((𝐼‘𝐶) + 1) − 𝐽), 𝐽)) |
| 44 | 36 | iftrued 4513 |
. . . 4
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝐼‘𝐶))) → if(𝐽 ≤ (𝐼‘𝐶), (((𝐼‘𝐶) + 1) − 𝐽), 𝐽) = (((𝐼‘𝐶) + 1) − 𝐽)) |
| 45 | 43, 44 | eqtrd 2771 |
. . 3
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝐼‘𝐶))) → ((𝑆‘𝐶)‘𝐽) = (((𝐼‘𝐶) + 1) − 𝐽)) |
| 46 | 41, 45 | breqtrrd 5152 |
. 2
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝐼‘𝐶))) → 1 ≤ ((𝑆‘𝐶)‘𝐽)) |
| 47 | 12 | adantr 480 |
. . . . 5
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝑀 + 𝑁))) → (𝐼‘𝐶) ∈ ℤ) |
| 48 | | elfznn 13575 |
. . . . . 6
⊢ (𝐽 ∈ (1...(𝑀 + 𝑁)) → 𝐽 ∈ ℕ) |
| 49 | 48 | adantl 481 |
. . . . 5
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝑀 + 𝑁))) → 𝐽 ∈ ℕ) |
| 50 | 47, 49 | ltesubnnd 32806 |
. . . 4
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝑀 + 𝑁))) → (((𝐼‘𝐶) + 1) − 𝐽) ≤ (𝐼‘𝐶)) |
| 51 | 24, 50 | syldan 591 |
. . 3
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝐼‘𝐶))) → (((𝐼‘𝐶) + 1) − 𝐽) ≤ (𝐼‘𝐶)) |
| 52 | 45, 51 | eqbrtrd 5146 |
. 2
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝐼‘𝐶))) → ((𝑆‘𝐶)‘𝐽) ≤ (𝐼‘𝐶)) |
| 53 | 1, 13, 28, 46, 52 | elfzd 13537 |
1
⊢ ((𝐶 ∈ (𝑂 ∖ 𝐸) ∧ 𝐽 ∈ (1...(𝐼‘𝐶))) → ((𝑆‘𝐶)‘𝐽) ∈ (1...(𝐼‘𝐶))) |