![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-rest0 | Structured version Visualization version GIF version |
Description: An elementwise intersection on a family containing the empty set contains the empty set. (Contributed by BJ, 27-Apr-2021.) |
Ref | Expression |
---|---|
bj-rest0 | ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊) → (∅ ∈ 𝑋 → ∅ ∈ (𝑋 ↾t 𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | in0 4391 | . . . . 5 ⊢ (𝐴 ∩ ∅) = ∅ | |
2 | incom 4201 | . . . . 5 ⊢ (𝐴 ∩ ∅) = (∅ ∩ 𝐴) | |
3 | 1, 2 | eqtr3i 2761 | . . . 4 ⊢ ∅ = (∅ ∩ 𝐴) |
4 | 0ex 5307 | . . . . 5 ⊢ ∅ ∈ V | |
5 | eleq1 2820 | . . . . . 6 ⊢ (𝑥 = ∅ → (𝑥 ∈ 𝑋 ↔ ∅ ∈ 𝑋)) | |
6 | ineq1 4205 | . . . . . . 7 ⊢ (𝑥 = ∅ → (𝑥 ∩ 𝐴) = (∅ ∩ 𝐴)) | |
7 | 6 | eqeq2d 2742 | . . . . . 6 ⊢ (𝑥 = ∅ → (∅ = (𝑥 ∩ 𝐴) ↔ ∅ = (∅ ∩ 𝐴))) |
8 | 5, 7 | anbi12d 630 | . . . . 5 ⊢ (𝑥 = ∅ → ((𝑥 ∈ 𝑋 ∧ ∅ = (𝑥 ∩ 𝐴)) ↔ (∅ ∈ 𝑋 ∧ ∅ = (∅ ∩ 𝐴)))) |
9 | 4, 8 | spcev 3596 | . . . 4 ⊢ ((∅ ∈ 𝑋 ∧ ∅ = (∅ ∩ 𝐴)) → ∃𝑥(𝑥 ∈ 𝑋 ∧ ∅ = (𝑥 ∩ 𝐴))) |
10 | 3, 9 | mpan2 688 | . . 3 ⊢ (∅ ∈ 𝑋 → ∃𝑥(𝑥 ∈ 𝑋 ∧ ∅ = (𝑥 ∩ 𝐴))) |
11 | df-rex 3070 | . . 3 ⊢ (∃𝑥 ∈ 𝑋 ∅ = (𝑥 ∩ 𝐴) ↔ ∃𝑥(𝑥 ∈ 𝑋 ∧ ∅ = (𝑥 ∩ 𝐴))) | |
12 | 10, 11 | sylibr 233 | . 2 ⊢ (∅ ∈ 𝑋 → ∃𝑥 ∈ 𝑋 ∅ = (𝑥 ∩ 𝐴)) |
13 | elrest 17378 | . 2 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊) → (∅ ∈ (𝑋 ↾t 𝐴) ↔ ∃𝑥 ∈ 𝑋 ∅ = (𝑥 ∩ 𝐴))) | |
14 | 12, 13 | imbitrrid 245 | 1 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊) → (∅ ∈ 𝑋 → ∅ ∈ (𝑋 ↾t 𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∃wex 1780 ∈ wcel 2105 ∃wrex 3069 ∩ cin 3947 ∅c0 4322 (class class class)co 7412 ↾t crest 17371 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pr 5427 ax-un 7728 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7415 df-oprab 7416 df-mpo 7417 df-rest 17373 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |