Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-rest0 Structured version   Visualization version   GIF version

Theorem bj-rest0 37133
Description: An elementwise intersection on a family containing the empty set contains the empty set. (Contributed by BJ, 27-Apr-2021.)
Assertion
Ref Expression
bj-rest0 ((𝑋𝑉𝐴𝑊) → (∅ ∈ 𝑋 → ∅ ∈ (𝑋t 𝐴)))

Proof of Theorem bj-rest0
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 in0 4345 . . . . 5 (𝐴 ∩ ∅) = ∅
2 incom 4159 . . . . 5 (𝐴 ∩ ∅) = (∅ ∩ 𝐴)
31, 2eqtr3i 2756 . . . 4 ∅ = (∅ ∩ 𝐴)
4 0ex 5245 . . . . 5 ∅ ∈ V
5 eleq1 2819 . . . . . 6 (𝑥 = ∅ → (𝑥𝑋 ↔ ∅ ∈ 𝑋))
6 ineq1 4163 . . . . . . 7 (𝑥 = ∅ → (𝑥𝐴) = (∅ ∩ 𝐴))
76eqeq2d 2742 . . . . . 6 (𝑥 = ∅ → (∅ = (𝑥𝐴) ↔ ∅ = (∅ ∩ 𝐴)))
85, 7anbi12d 632 . . . . 5 (𝑥 = ∅ → ((𝑥𝑋 ∧ ∅ = (𝑥𝐴)) ↔ (∅ ∈ 𝑋 ∧ ∅ = (∅ ∩ 𝐴))))
94, 8spcev 3561 . . . 4 ((∅ ∈ 𝑋 ∧ ∅ = (∅ ∩ 𝐴)) → ∃𝑥(𝑥𝑋 ∧ ∅ = (𝑥𝐴)))
103, 9mpan2 691 . . 3 (∅ ∈ 𝑋 → ∃𝑥(𝑥𝑋 ∧ ∅ = (𝑥𝐴)))
11 df-rex 3057 . . 3 (∃𝑥𝑋 ∅ = (𝑥𝐴) ↔ ∃𝑥(𝑥𝑋 ∧ ∅ = (𝑥𝐴)))
1210, 11sylibr 234 . 2 (∅ ∈ 𝑋 → ∃𝑥𝑋 ∅ = (𝑥𝐴))
13 elrest 17331 . 2 ((𝑋𝑉𝐴𝑊) → (∅ ∈ (𝑋t 𝐴) ↔ ∃𝑥𝑋 ∅ = (𝑥𝐴)))
1412, 13imbitrrid 246 1 ((𝑋𝑉𝐴𝑊) → (∅ ∈ 𝑋 → ∅ ∈ (𝑋t 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wex 1780  wcel 2111  wrex 3056  cin 3901  c0 4283  (class class class)co 7346  t crest 17324
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-rest 17326
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator