| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-rest0 | Structured version Visualization version GIF version | ||
| Description: An elementwise intersection on a family containing the empty set contains the empty set. (Contributed by BJ, 27-Apr-2021.) |
| Ref | Expression |
|---|---|
| bj-rest0 | ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊) → (∅ ∈ 𝑋 → ∅ ∈ (𝑋 ↾t 𝐴))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | in0 4345 | . . . . 5 ⊢ (𝐴 ∩ ∅) = ∅ | |
| 2 | incom 4159 | . . . . 5 ⊢ (𝐴 ∩ ∅) = (∅ ∩ 𝐴) | |
| 3 | 1, 2 | eqtr3i 2756 | . . . 4 ⊢ ∅ = (∅ ∩ 𝐴) |
| 4 | 0ex 5245 | . . . . 5 ⊢ ∅ ∈ V | |
| 5 | eleq1 2819 | . . . . . 6 ⊢ (𝑥 = ∅ → (𝑥 ∈ 𝑋 ↔ ∅ ∈ 𝑋)) | |
| 6 | ineq1 4163 | . . . . . . 7 ⊢ (𝑥 = ∅ → (𝑥 ∩ 𝐴) = (∅ ∩ 𝐴)) | |
| 7 | 6 | eqeq2d 2742 | . . . . . 6 ⊢ (𝑥 = ∅ → (∅ = (𝑥 ∩ 𝐴) ↔ ∅ = (∅ ∩ 𝐴))) |
| 8 | 5, 7 | anbi12d 632 | . . . . 5 ⊢ (𝑥 = ∅ → ((𝑥 ∈ 𝑋 ∧ ∅ = (𝑥 ∩ 𝐴)) ↔ (∅ ∈ 𝑋 ∧ ∅ = (∅ ∩ 𝐴)))) |
| 9 | 4, 8 | spcev 3561 | . . . 4 ⊢ ((∅ ∈ 𝑋 ∧ ∅ = (∅ ∩ 𝐴)) → ∃𝑥(𝑥 ∈ 𝑋 ∧ ∅ = (𝑥 ∩ 𝐴))) |
| 10 | 3, 9 | mpan2 691 | . . 3 ⊢ (∅ ∈ 𝑋 → ∃𝑥(𝑥 ∈ 𝑋 ∧ ∅ = (𝑥 ∩ 𝐴))) |
| 11 | df-rex 3057 | . . 3 ⊢ (∃𝑥 ∈ 𝑋 ∅ = (𝑥 ∩ 𝐴) ↔ ∃𝑥(𝑥 ∈ 𝑋 ∧ ∅ = (𝑥 ∩ 𝐴))) | |
| 12 | 10, 11 | sylibr 234 | . 2 ⊢ (∅ ∈ 𝑋 → ∃𝑥 ∈ 𝑋 ∅ = (𝑥 ∩ 𝐴)) |
| 13 | elrest 17331 | . 2 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊) → (∅ ∈ (𝑋 ↾t 𝐴) ↔ ∃𝑥 ∈ 𝑋 ∅ = (𝑥 ∩ 𝐴))) | |
| 14 | 12, 13 | imbitrrid 246 | 1 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊) → (∅ ∈ 𝑋 → ∅ ∈ (𝑋 ↾t 𝐴))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∃wex 1780 ∈ wcel 2111 ∃wrex 3056 ∩ cin 3901 ∅c0 4283 (class class class)co 7346 ↾t crest 17324 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-rest 17326 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |