Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-restb | Structured version Visualization version GIF version |
Description: An elementwise intersection by a set on a family containing a superset of that set contains that set. (Contributed by BJ, 27-Apr-2021.) |
Ref | Expression |
---|---|
bj-restb | ⊢ (𝑋 ∈ 𝑉 → ((𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝑋) → 𝐴 ∈ (𝑋 ↾t 𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . . . . . . . 8 ⊢ (𝐴 ⊆ 𝐵 → 𝐴 ⊆ 𝐵) | |
2 | ssidd 3946 | . . . . . . . 8 ⊢ (𝐴 ⊆ 𝐵 → 𝐴 ⊆ 𝐴) | |
3 | 1, 2 | ssind 4169 | . . . . . . 7 ⊢ (𝐴 ⊆ 𝐵 → 𝐴 ⊆ (𝐵 ∩ 𝐴)) |
4 | inss2 4166 | . . . . . . . 8 ⊢ (𝐵 ∩ 𝐴) ⊆ 𝐴 | |
5 | 4 | a1i 11 | . . . . . . 7 ⊢ (𝐴 ⊆ 𝐵 → (𝐵 ∩ 𝐴) ⊆ 𝐴) |
6 | 3, 5 | eqssd 3940 | . . . . . 6 ⊢ (𝐴 ⊆ 𝐵 → 𝐴 = (𝐵 ∩ 𝐴)) |
7 | eleq1 2821 | . . . . . . . . . 10 ⊢ (𝑦 = 𝐵 → (𝑦 ∈ 𝑋 ↔ 𝐵 ∈ 𝑋)) | |
8 | ineq1 4142 | . . . . . . . . . . 11 ⊢ (𝑦 = 𝐵 → (𝑦 ∩ 𝐴) = (𝐵 ∩ 𝐴)) | |
9 | 8 | eqeq2d 2744 | . . . . . . . . . 10 ⊢ (𝑦 = 𝐵 → (𝐴 = (𝑦 ∩ 𝐴) ↔ 𝐴 = (𝐵 ∩ 𝐴))) |
10 | 7, 9 | anbi12d 630 | . . . . . . . . 9 ⊢ (𝑦 = 𝐵 → ((𝑦 ∈ 𝑋 ∧ 𝐴 = (𝑦 ∩ 𝐴)) ↔ (𝐵 ∈ 𝑋 ∧ 𝐴 = (𝐵 ∩ 𝐴)))) |
11 | 10 | spcegv 3538 | . . . . . . . 8 ⊢ (𝐵 ∈ 𝑋 → ((𝐵 ∈ 𝑋 ∧ 𝐴 = (𝐵 ∩ 𝐴)) → ∃𝑦(𝑦 ∈ 𝑋 ∧ 𝐴 = (𝑦 ∩ 𝐴)))) |
12 | 11 | expd 415 | . . . . . . 7 ⊢ (𝐵 ∈ 𝑋 → (𝐵 ∈ 𝑋 → (𝐴 = (𝐵 ∩ 𝐴) → ∃𝑦(𝑦 ∈ 𝑋 ∧ 𝐴 = (𝑦 ∩ 𝐴))))) |
13 | 12 | pm2.43i 52 | . . . . . 6 ⊢ (𝐵 ∈ 𝑋 → (𝐴 = (𝐵 ∩ 𝐴) → ∃𝑦(𝑦 ∈ 𝑋 ∧ 𝐴 = (𝑦 ∩ 𝐴)))) |
14 | 6, 13 | mpan9 506 | . . . . 5 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝑋) → ∃𝑦(𝑦 ∈ 𝑋 ∧ 𝐴 = (𝑦 ∩ 𝐴))) |
15 | df-rex 3069 | . . . . 5 ⊢ (∃𝑦 ∈ 𝑋 𝐴 = (𝑦 ∩ 𝐴) ↔ ∃𝑦(𝑦 ∈ 𝑋 ∧ 𝐴 = (𝑦 ∩ 𝐴))) | |
16 | 14, 15 | sylibr 233 | . . . 4 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝑋) → ∃𝑦 ∈ 𝑋 𝐴 = (𝑦 ∩ 𝐴)) |
17 | 16 | adantl 481 | . . 3 ⊢ ((𝑋 ∈ 𝑉 ∧ (𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝑋)) → ∃𝑦 ∈ 𝑋 𝐴 = (𝑦 ∩ 𝐴)) |
18 | ssexg 5250 | . . . 4 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝑋) → 𝐴 ∈ V) | |
19 | elrest 17166 | . . . 4 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐴 ∈ V) → (𝐴 ∈ (𝑋 ↾t 𝐴) ↔ ∃𝑦 ∈ 𝑋 𝐴 = (𝑦 ∩ 𝐴))) | |
20 | 18, 19 | sylan2 592 | . . 3 ⊢ ((𝑋 ∈ 𝑉 ∧ (𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝑋)) → (𝐴 ∈ (𝑋 ↾t 𝐴) ↔ ∃𝑦 ∈ 𝑋 𝐴 = (𝑦 ∩ 𝐴))) |
21 | 17, 20 | mpbird 256 | . 2 ⊢ ((𝑋 ∈ 𝑉 ∧ (𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝑋)) → 𝐴 ∈ (𝑋 ↾t 𝐴)) |
22 | 21 | ex 412 | 1 ⊢ (𝑋 ∈ 𝑉 → ((𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝑋) → 𝐴 ∈ (𝑋 ↾t 𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1537 ∃wex 1777 ∈ wcel 2101 ∃wrex 3068 Vcvv 3434 ∩ cin 3888 ⊆ wss 3889 (class class class)co 7295 ↾t crest 17159 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2103 ax-9 2111 ax-10 2132 ax-11 2149 ax-12 2166 ax-ext 2704 ax-rep 5212 ax-sep 5226 ax-nul 5233 ax-pr 5355 ax-un 7608 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2063 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2884 df-ne 2939 df-ral 3060 df-rex 3069 df-reu 3223 df-rab 3224 df-v 3436 df-sbc 3719 df-csb 3835 df-dif 3892 df-un 3894 df-in 3896 df-ss 3906 df-nul 4260 df-if 4463 df-sn 4565 df-pr 4567 df-op 4571 df-uni 4842 df-iun 4929 df-br 5078 df-opab 5140 df-mpt 5161 df-id 5491 df-xp 5597 df-rel 5598 df-cnv 5599 df-co 5600 df-dm 5601 df-rn 5602 df-res 5603 df-ima 5604 df-iota 6399 df-fun 6449 df-fn 6450 df-f 6451 df-f1 6452 df-fo 6453 df-f1o 6454 df-fv 6455 df-ov 7298 df-oprab 7299 df-mpo 7300 df-rest 17161 |
This theorem is referenced by: bj-restv 35294 bj-resta 35295 |
Copyright terms: Public domain | W3C validator |