Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-restb | Structured version Visualization version GIF version |
Description: An elementwise intersection by a set on a family containing a superset of that set contains that set. (Contributed by BJ, 27-Apr-2021.) |
Ref | Expression |
---|---|
bj-restb | ⊢ (𝑋 ∈ 𝑉 → ((𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝑋) → 𝐴 ∈ (𝑋 ↾t 𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . . . . . . . 8 ⊢ (𝐴 ⊆ 𝐵 → 𝐴 ⊆ 𝐵) | |
2 | ssidd 3940 | . . . . . . . 8 ⊢ (𝐴 ⊆ 𝐵 → 𝐴 ⊆ 𝐴) | |
3 | 1, 2 | ssind 4163 | . . . . . . 7 ⊢ (𝐴 ⊆ 𝐵 → 𝐴 ⊆ (𝐵 ∩ 𝐴)) |
4 | inss2 4160 | . . . . . . . 8 ⊢ (𝐵 ∩ 𝐴) ⊆ 𝐴 | |
5 | 4 | a1i 11 | . . . . . . 7 ⊢ (𝐴 ⊆ 𝐵 → (𝐵 ∩ 𝐴) ⊆ 𝐴) |
6 | 3, 5 | eqssd 3934 | . . . . . 6 ⊢ (𝐴 ⊆ 𝐵 → 𝐴 = (𝐵 ∩ 𝐴)) |
7 | eleq1 2826 | . . . . . . . . . 10 ⊢ (𝑦 = 𝐵 → (𝑦 ∈ 𝑋 ↔ 𝐵 ∈ 𝑋)) | |
8 | ineq1 4136 | . . . . . . . . . . 11 ⊢ (𝑦 = 𝐵 → (𝑦 ∩ 𝐴) = (𝐵 ∩ 𝐴)) | |
9 | 8 | eqeq2d 2749 | . . . . . . . . . 10 ⊢ (𝑦 = 𝐵 → (𝐴 = (𝑦 ∩ 𝐴) ↔ 𝐴 = (𝐵 ∩ 𝐴))) |
10 | 7, 9 | anbi12d 630 | . . . . . . . . 9 ⊢ (𝑦 = 𝐵 → ((𝑦 ∈ 𝑋 ∧ 𝐴 = (𝑦 ∩ 𝐴)) ↔ (𝐵 ∈ 𝑋 ∧ 𝐴 = (𝐵 ∩ 𝐴)))) |
11 | 10 | spcegv 3526 | . . . . . . . 8 ⊢ (𝐵 ∈ 𝑋 → ((𝐵 ∈ 𝑋 ∧ 𝐴 = (𝐵 ∩ 𝐴)) → ∃𝑦(𝑦 ∈ 𝑋 ∧ 𝐴 = (𝑦 ∩ 𝐴)))) |
12 | 11 | expd 415 | . . . . . . 7 ⊢ (𝐵 ∈ 𝑋 → (𝐵 ∈ 𝑋 → (𝐴 = (𝐵 ∩ 𝐴) → ∃𝑦(𝑦 ∈ 𝑋 ∧ 𝐴 = (𝑦 ∩ 𝐴))))) |
13 | 12 | pm2.43i 52 | . . . . . 6 ⊢ (𝐵 ∈ 𝑋 → (𝐴 = (𝐵 ∩ 𝐴) → ∃𝑦(𝑦 ∈ 𝑋 ∧ 𝐴 = (𝑦 ∩ 𝐴)))) |
14 | 6, 13 | mpan9 506 | . . . . 5 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝑋) → ∃𝑦(𝑦 ∈ 𝑋 ∧ 𝐴 = (𝑦 ∩ 𝐴))) |
15 | df-rex 3069 | . . . . 5 ⊢ (∃𝑦 ∈ 𝑋 𝐴 = (𝑦 ∩ 𝐴) ↔ ∃𝑦(𝑦 ∈ 𝑋 ∧ 𝐴 = (𝑦 ∩ 𝐴))) | |
16 | 14, 15 | sylibr 233 | . . . 4 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝑋) → ∃𝑦 ∈ 𝑋 𝐴 = (𝑦 ∩ 𝐴)) |
17 | 16 | adantl 481 | . . 3 ⊢ ((𝑋 ∈ 𝑉 ∧ (𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝑋)) → ∃𝑦 ∈ 𝑋 𝐴 = (𝑦 ∩ 𝐴)) |
18 | ssexg 5242 | . . . 4 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝑋) → 𝐴 ∈ V) | |
19 | elrest 17055 | . . . 4 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐴 ∈ V) → (𝐴 ∈ (𝑋 ↾t 𝐴) ↔ ∃𝑦 ∈ 𝑋 𝐴 = (𝑦 ∩ 𝐴))) | |
20 | 18, 19 | sylan2 592 | . . 3 ⊢ ((𝑋 ∈ 𝑉 ∧ (𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝑋)) → (𝐴 ∈ (𝑋 ↾t 𝐴) ↔ ∃𝑦 ∈ 𝑋 𝐴 = (𝑦 ∩ 𝐴))) |
21 | 17, 20 | mpbird 256 | . 2 ⊢ ((𝑋 ∈ 𝑉 ∧ (𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝑋)) → 𝐴 ∈ (𝑋 ↾t 𝐴)) |
22 | 21 | ex 412 | 1 ⊢ (𝑋 ∈ 𝑉 → ((𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝑋) → 𝐴 ∈ (𝑋 ↾t 𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∃wex 1783 ∈ wcel 2108 ∃wrex 3064 Vcvv 3422 ∩ cin 3882 ⊆ wss 3883 (class class class)co 7255 ↾t crest 17048 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-rest 17050 |
This theorem is referenced by: bj-restv 35193 bj-resta 35194 |
Copyright terms: Public domain | W3C validator |