Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-restb Structured version   Visualization version   GIF version

Theorem bj-restb 34919
Description: An elementwise intersection by a set on a family containing a superset of that set contains that set. (Contributed by BJ, 27-Apr-2021.)
Assertion
Ref Expression
bj-restb (𝑋𝑉 → ((𝐴𝐵𝐵𝑋) → 𝐴 ∈ (𝑋t 𝐴)))

Proof of Theorem bj-restb
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 id 22 . . . . . . . 8 (𝐴𝐵𝐴𝐵)
2 ssidd 3910 . . . . . . . 8 (𝐴𝐵𝐴𝐴)
31, 2ssind 4133 . . . . . . 7 (𝐴𝐵𝐴 ⊆ (𝐵𝐴))
4 inss2 4130 . . . . . . . 8 (𝐵𝐴) ⊆ 𝐴
54a1i 11 . . . . . . 7 (𝐴𝐵 → (𝐵𝐴) ⊆ 𝐴)
63, 5eqssd 3904 . . . . . 6 (𝐴𝐵𝐴 = (𝐵𝐴))
7 eleq1 2821 . . . . . . . . . 10 (𝑦 = 𝐵 → (𝑦𝑋𝐵𝑋))
8 ineq1 4106 . . . . . . . . . . 11 (𝑦 = 𝐵 → (𝑦𝐴) = (𝐵𝐴))
98eqeq2d 2750 . . . . . . . . . 10 (𝑦 = 𝐵 → (𝐴 = (𝑦𝐴) ↔ 𝐴 = (𝐵𝐴)))
107, 9anbi12d 634 . . . . . . . . 9 (𝑦 = 𝐵 → ((𝑦𝑋𝐴 = (𝑦𝐴)) ↔ (𝐵𝑋𝐴 = (𝐵𝐴))))
1110spcegv 3504 . . . . . . . 8 (𝐵𝑋 → ((𝐵𝑋𝐴 = (𝐵𝐴)) → ∃𝑦(𝑦𝑋𝐴 = (𝑦𝐴))))
1211expd 419 . . . . . . 7 (𝐵𝑋 → (𝐵𝑋 → (𝐴 = (𝐵𝐴) → ∃𝑦(𝑦𝑋𝐴 = (𝑦𝐴)))))
1312pm2.43i 52 . . . . . 6 (𝐵𝑋 → (𝐴 = (𝐵𝐴) → ∃𝑦(𝑦𝑋𝐴 = (𝑦𝐴))))
146, 13mpan9 510 . . . . 5 ((𝐴𝐵𝐵𝑋) → ∃𝑦(𝑦𝑋𝐴 = (𝑦𝐴)))
15 df-rex 3060 . . . . 5 (∃𝑦𝑋 𝐴 = (𝑦𝐴) ↔ ∃𝑦(𝑦𝑋𝐴 = (𝑦𝐴)))
1614, 15sylibr 237 . . . 4 ((𝐴𝐵𝐵𝑋) → ∃𝑦𝑋 𝐴 = (𝑦𝐴))
1716adantl 485 . . 3 ((𝑋𝑉 ∧ (𝐴𝐵𝐵𝑋)) → ∃𝑦𝑋 𝐴 = (𝑦𝐴))
18 ssexg 5201 . . . 4 ((𝐴𝐵𝐵𝑋) → 𝐴 ∈ V)
19 elrest 16817 . . . 4 ((𝑋𝑉𝐴 ∈ V) → (𝐴 ∈ (𝑋t 𝐴) ↔ ∃𝑦𝑋 𝐴 = (𝑦𝐴)))
2018, 19sylan2 596 . . 3 ((𝑋𝑉 ∧ (𝐴𝐵𝐵𝑋)) → (𝐴 ∈ (𝑋t 𝐴) ↔ ∃𝑦𝑋 𝐴 = (𝑦𝐴)))
2117, 20mpbird 260 . 2 ((𝑋𝑉 ∧ (𝐴𝐵𝐵𝑋)) → 𝐴 ∈ (𝑋t 𝐴))
2221ex 416 1 (𝑋𝑉 → ((𝐴𝐵𝐵𝑋) → 𝐴 ∈ (𝑋t 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1542  wex 1786  wcel 2114  wrex 3055  Vcvv 3400  cin 3852  wss 3853  (class class class)co 7183  t crest 16810
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2711  ax-rep 5164  ax-sep 5177  ax-nul 5184  ax-pr 5306  ax-un 7492
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2541  df-eu 2571  df-clab 2718  df-cleq 2731  df-clel 2812  df-nfc 2882  df-ne 2936  df-ral 3059  df-rex 3060  df-reu 3061  df-rab 3063  df-v 3402  df-sbc 3686  df-csb 3801  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-nul 4222  df-if 4425  df-sn 4527  df-pr 4529  df-op 4533  df-uni 4807  df-iun 4893  df-br 5041  df-opab 5103  df-mpt 5121  df-id 5439  df-xp 5541  df-rel 5542  df-cnv 5543  df-co 5544  df-dm 5545  df-rn 5546  df-res 5547  df-ima 5548  df-iota 6308  df-fun 6352  df-fn 6353  df-f 6354  df-f1 6355  df-fo 6356  df-f1o 6357  df-fv 6358  df-ov 7186  df-oprab 7187  df-mpo 7188  df-rest 16812
This theorem is referenced by:  bj-restv  34920  bj-resta  34921
  Copyright terms: Public domain W3C validator