Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-restb Structured version   Visualization version   GIF version

Theorem bj-restb 37089
Description: An elementwise intersection by a set on a family containing a superset of that set contains that set. (Contributed by BJ, 27-Apr-2021.)
Assertion
Ref Expression
bj-restb (𝑋𝑉 → ((𝐴𝐵𝐵𝑋) → 𝐴 ∈ (𝑋t 𝐴)))

Proof of Theorem bj-restb
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 id 22 . . . . . . . 8 (𝐴𝐵𝐴𝐵)
2 ssidd 3973 . . . . . . . 8 (𝐴𝐵𝐴𝐴)
31, 2ssind 4207 . . . . . . 7 (𝐴𝐵𝐴 ⊆ (𝐵𝐴))
4 inss2 4204 . . . . . . . 8 (𝐵𝐴) ⊆ 𝐴
54a1i 11 . . . . . . 7 (𝐴𝐵 → (𝐵𝐴) ⊆ 𝐴)
63, 5eqssd 3967 . . . . . 6 (𝐴𝐵𝐴 = (𝐵𝐴))
7 eleq1 2817 . . . . . . . . . 10 (𝑦 = 𝐵 → (𝑦𝑋𝐵𝑋))
8 ineq1 4179 . . . . . . . . . . 11 (𝑦 = 𝐵 → (𝑦𝐴) = (𝐵𝐴))
98eqeq2d 2741 . . . . . . . . . 10 (𝑦 = 𝐵 → (𝐴 = (𝑦𝐴) ↔ 𝐴 = (𝐵𝐴)))
107, 9anbi12d 632 . . . . . . . . 9 (𝑦 = 𝐵 → ((𝑦𝑋𝐴 = (𝑦𝐴)) ↔ (𝐵𝑋𝐴 = (𝐵𝐴))))
1110spcegv 3566 . . . . . . . 8 (𝐵𝑋 → ((𝐵𝑋𝐴 = (𝐵𝐴)) → ∃𝑦(𝑦𝑋𝐴 = (𝑦𝐴))))
1211expd 415 . . . . . . 7 (𝐵𝑋 → (𝐵𝑋 → (𝐴 = (𝐵𝐴) → ∃𝑦(𝑦𝑋𝐴 = (𝑦𝐴)))))
1312pm2.43i 52 . . . . . 6 (𝐵𝑋 → (𝐴 = (𝐵𝐴) → ∃𝑦(𝑦𝑋𝐴 = (𝑦𝐴))))
146, 13mpan9 506 . . . . 5 ((𝐴𝐵𝐵𝑋) → ∃𝑦(𝑦𝑋𝐴 = (𝑦𝐴)))
15 df-rex 3055 . . . . 5 (∃𝑦𝑋 𝐴 = (𝑦𝐴) ↔ ∃𝑦(𝑦𝑋𝐴 = (𝑦𝐴)))
1614, 15sylibr 234 . . . 4 ((𝐴𝐵𝐵𝑋) → ∃𝑦𝑋 𝐴 = (𝑦𝐴))
1716adantl 481 . . 3 ((𝑋𝑉 ∧ (𝐴𝐵𝐵𝑋)) → ∃𝑦𝑋 𝐴 = (𝑦𝐴))
18 ssexg 5281 . . . 4 ((𝐴𝐵𝐵𝑋) → 𝐴 ∈ V)
19 elrest 17397 . . . 4 ((𝑋𝑉𝐴 ∈ V) → (𝐴 ∈ (𝑋t 𝐴) ↔ ∃𝑦𝑋 𝐴 = (𝑦𝐴)))
2018, 19sylan2 593 . . 3 ((𝑋𝑉 ∧ (𝐴𝐵𝐵𝑋)) → (𝐴 ∈ (𝑋t 𝐴) ↔ ∃𝑦𝑋 𝐴 = (𝑦𝐴)))
2117, 20mpbird 257 . 2 ((𝑋𝑉 ∧ (𝐴𝐵𝐵𝑋)) → 𝐴 ∈ (𝑋t 𝐴))
2221ex 412 1 (𝑋𝑉 → ((𝐴𝐵𝐵𝑋) → 𝐴 ∈ (𝑋t 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wex 1779  wcel 2109  wrex 3054  Vcvv 3450  cin 3916  wss 3917  (class class class)co 7390  t crest 17390
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-rest 17392
This theorem is referenced by:  bj-restv  37090  bj-resta  37091
  Copyright terms: Public domain W3C validator