| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-restb | Structured version Visualization version GIF version | ||
| Description: An elementwise intersection by a set on a family containing a superset of that set contains that set. (Contributed by BJ, 27-Apr-2021.) |
| Ref | Expression |
|---|---|
| bj-restb | ⊢ (𝑋 ∈ 𝑉 → ((𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝑋) → 𝐴 ∈ (𝑋 ↾t 𝐴))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . . . . . . . 8 ⊢ (𝐴 ⊆ 𝐵 → 𝐴 ⊆ 𝐵) | |
| 2 | ssidd 3970 | . . . . . . . 8 ⊢ (𝐴 ⊆ 𝐵 → 𝐴 ⊆ 𝐴) | |
| 3 | 1, 2 | ssind 4204 | . . . . . . 7 ⊢ (𝐴 ⊆ 𝐵 → 𝐴 ⊆ (𝐵 ∩ 𝐴)) |
| 4 | inss2 4201 | . . . . . . . 8 ⊢ (𝐵 ∩ 𝐴) ⊆ 𝐴 | |
| 5 | 4 | a1i 11 | . . . . . . 7 ⊢ (𝐴 ⊆ 𝐵 → (𝐵 ∩ 𝐴) ⊆ 𝐴) |
| 6 | 3, 5 | eqssd 3964 | . . . . . 6 ⊢ (𝐴 ⊆ 𝐵 → 𝐴 = (𝐵 ∩ 𝐴)) |
| 7 | eleq1 2816 | . . . . . . . . . 10 ⊢ (𝑦 = 𝐵 → (𝑦 ∈ 𝑋 ↔ 𝐵 ∈ 𝑋)) | |
| 8 | ineq1 4176 | . . . . . . . . . . 11 ⊢ (𝑦 = 𝐵 → (𝑦 ∩ 𝐴) = (𝐵 ∩ 𝐴)) | |
| 9 | 8 | eqeq2d 2740 | . . . . . . . . . 10 ⊢ (𝑦 = 𝐵 → (𝐴 = (𝑦 ∩ 𝐴) ↔ 𝐴 = (𝐵 ∩ 𝐴))) |
| 10 | 7, 9 | anbi12d 632 | . . . . . . . . 9 ⊢ (𝑦 = 𝐵 → ((𝑦 ∈ 𝑋 ∧ 𝐴 = (𝑦 ∩ 𝐴)) ↔ (𝐵 ∈ 𝑋 ∧ 𝐴 = (𝐵 ∩ 𝐴)))) |
| 11 | 10 | spcegv 3563 | . . . . . . . 8 ⊢ (𝐵 ∈ 𝑋 → ((𝐵 ∈ 𝑋 ∧ 𝐴 = (𝐵 ∩ 𝐴)) → ∃𝑦(𝑦 ∈ 𝑋 ∧ 𝐴 = (𝑦 ∩ 𝐴)))) |
| 12 | 11 | expd 415 | . . . . . . 7 ⊢ (𝐵 ∈ 𝑋 → (𝐵 ∈ 𝑋 → (𝐴 = (𝐵 ∩ 𝐴) → ∃𝑦(𝑦 ∈ 𝑋 ∧ 𝐴 = (𝑦 ∩ 𝐴))))) |
| 13 | 12 | pm2.43i 52 | . . . . . 6 ⊢ (𝐵 ∈ 𝑋 → (𝐴 = (𝐵 ∩ 𝐴) → ∃𝑦(𝑦 ∈ 𝑋 ∧ 𝐴 = (𝑦 ∩ 𝐴)))) |
| 14 | 6, 13 | mpan9 506 | . . . . 5 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝑋) → ∃𝑦(𝑦 ∈ 𝑋 ∧ 𝐴 = (𝑦 ∩ 𝐴))) |
| 15 | df-rex 3054 | . . . . 5 ⊢ (∃𝑦 ∈ 𝑋 𝐴 = (𝑦 ∩ 𝐴) ↔ ∃𝑦(𝑦 ∈ 𝑋 ∧ 𝐴 = (𝑦 ∩ 𝐴))) | |
| 16 | 14, 15 | sylibr 234 | . . . 4 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝑋) → ∃𝑦 ∈ 𝑋 𝐴 = (𝑦 ∩ 𝐴)) |
| 17 | 16 | adantl 481 | . . 3 ⊢ ((𝑋 ∈ 𝑉 ∧ (𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝑋)) → ∃𝑦 ∈ 𝑋 𝐴 = (𝑦 ∩ 𝐴)) |
| 18 | ssexg 5278 | . . . 4 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝑋) → 𝐴 ∈ V) | |
| 19 | elrest 17390 | . . . 4 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐴 ∈ V) → (𝐴 ∈ (𝑋 ↾t 𝐴) ↔ ∃𝑦 ∈ 𝑋 𝐴 = (𝑦 ∩ 𝐴))) | |
| 20 | 18, 19 | sylan2 593 | . . 3 ⊢ ((𝑋 ∈ 𝑉 ∧ (𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝑋)) → (𝐴 ∈ (𝑋 ↾t 𝐴) ↔ ∃𝑦 ∈ 𝑋 𝐴 = (𝑦 ∩ 𝐴))) |
| 21 | 17, 20 | mpbird 257 | . 2 ⊢ ((𝑋 ∈ 𝑉 ∧ (𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝑋)) → 𝐴 ∈ (𝑋 ↾t 𝐴)) |
| 22 | 21 | ex 412 | 1 ⊢ (𝑋 ∈ 𝑉 → ((𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝑋) → 𝐴 ∈ (𝑋 ↾t 𝐴))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2109 ∃wrex 3053 Vcvv 3447 ∩ cin 3913 ⊆ wss 3914 (class class class)co 7387 ↾t crest 17383 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-rest 17385 |
| This theorem is referenced by: bj-restv 37083 bj-resta 37084 |
| Copyright terms: Public domain | W3C validator |