![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-restb | Structured version Visualization version GIF version |
Description: An elementwise intersection by a set on a family containing a superset of that set contains that set. (Contributed by BJ, 27-Apr-2021.) |
Ref | Expression |
---|---|
bj-restb | ⊢ (𝑋 ∈ 𝑉 → ((𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝑋) → 𝐴 ∈ (𝑋 ↾t 𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . . . . . . . 8 ⊢ (𝐴 ⊆ 𝐵 → 𝐴 ⊆ 𝐵) | |
2 | ssidd 4032 | . . . . . . . 8 ⊢ (𝐴 ⊆ 𝐵 → 𝐴 ⊆ 𝐴) | |
3 | 1, 2 | ssind 4262 | . . . . . . 7 ⊢ (𝐴 ⊆ 𝐵 → 𝐴 ⊆ (𝐵 ∩ 𝐴)) |
4 | inss2 4259 | . . . . . . . 8 ⊢ (𝐵 ∩ 𝐴) ⊆ 𝐴 | |
5 | 4 | a1i 11 | . . . . . . 7 ⊢ (𝐴 ⊆ 𝐵 → (𝐵 ∩ 𝐴) ⊆ 𝐴) |
6 | 3, 5 | eqssd 4026 | . . . . . 6 ⊢ (𝐴 ⊆ 𝐵 → 𝐴 = (𝐵 ∩ 𝐴)) |
7 | eleq1 2832 | . . . . . . . . . 10 ⊢ (𝑦 = 𝐵 → (𝑦 ∈ 𝑋 ↔ 𝐵 ∈ 𝑋)) | |
8 | ineq1 4234 | . . . . . . . . . . 11 ⊢ (𝑦 = 𝐵 → (𝑦 ∩ 𝐴) = (𝐵 ∩ 𝐴)) | |
9 | 8 | eqeq2d 2751 | . . . . . . . . . 10 ⊢ (𝑦 = 𝐵 → (𝐴 = (𝑦 ∩ 𝐴) ↔ 𝐴 = (𝐵 ∩ 𝐴))) |
10 | 7, 9 | anbi12d 631 | . . . . . . . . 9 ⊢ (𝑦 = 𝐵 → ((𝑦 ∈ 𝑋 ∧ 𝐴 = (𝑦 ∩ 𝐴)) ↔ (𝐵 ∈ 𝑋 ∧ 𝐴 = (𝐵 ∩ 𝐴)))) |
11 | 10 | spcegv 3610 | . . . . . . . 8 ⊢ (𝐵 ∈ 𝑋 → ((𝐵 ∈ 𝑋 ∧ 𝐴 = (𝐵 ∩ 𝐴)) → ∃𝑦(𝑦 ∈ 𝑋 ∧ 𝐴 = (𝑦 ∩ 𝐴)))) |
12 | 11 | expd 415 | . . . . . . 7 ⊢ (𝐵 ∈ 𝑋 → (𝐵 ∈ 𝑋 → (𝐴 = (𝐵 ∩ 𝐴) → ∃𝑦(𝑦 ∈ 𝑋 ∧ 𝐴 = (𝑦 ∩ 𝐴))))) |
13 | 12 | pm2.43i 52 | . . . . . 6 ⊢ (𝐵 ∈ 𝑋 → (𝐴 = (𝐵 ∩ 𝐴) → ∃𝑦(𝑦 ∈ 𝑋 ∧ 𝐴 = (𝑦 ∩ 𝐴)))) |
14 | 6, 13 | mpan9 506 | . . . . 5 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝑋) → ∃𝑦(𝑦 ∈ 𝑋 ∧ 𝐴 = (𝑦 ∩ 𝐴))) |
15 | df-rex 3077 | . . . . 5 ⊢ (∃𝑦 ∈ 𝑋 𝐴 = (𝑦 ∩ 𝐴) ↔ ∃𝑦(𝑦 ∈ 𝑋 ∧ 𝐴 = (𝑦 ∩ 𝐴))) | |
16 | 14, 15 | sylibr 234 | . . . 4 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝑋) → ∃𝑦 ∈ 𝑋 𝐴 = (𝑦 ∩ 𝐴)) |
17 | 16 | adantl 481 | . . 3 ⊢ ((𝑋 ∈ 𝑉 ∧ (𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝑋)) → ∃𝑦 ∈ 𝑋 𝐴 = (𝑦 ∩ 𝐴)) |
18 | ssexg 5341 | . . . 4 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝑋) → 𝐴 ∈ V) | |
19 | elrest 17487 | . . . 4 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐴 ∈ V) → (𝐴 ∈ (𝑋 ↾t 𝐴) ↔ ∃𝑦 ∈ 𝑋 𝐴 = (𝑦 ∩ 𝐴))) | |
20 | 18, 19 | sylan2 592 | . . 3 ⊢ ((𝑋 ∈ 𝑉 ∧ (𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝑋)) → (𝐴 ∈ (𝑋 ↾t 𝐴) ↔ ∃𝑦 ∈ 𝑋 𝐴 = (𝑦 ∩ 𝐴))) |
21 | 17, 20 | mpbird 257 | . 2 ⊢ ((𝑋 ∈ 𝑉 ∧ (𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝑋)) → 𝐴 ∈ (𝑋 ↾t 𝐴)) |
22 | 21 | ex 412 | 1 ⊢ (𝑋 ∈ 𝑉 → ((𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝑋) → 𝐴 ∈ (𝑋 ↾t 𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∃wex 1777 ∈ wcel 2108 ∃wrex 3076 Vcvv 3488 ∩ cin 3975 ⊆ wss 3976 (class class class)co 7448 ↾t crest 17480 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-rest 17482 |
This theorem is referenced by: bj-restv 37061 bj-resta 37062 |
Copyright terms: Public domain | W3C validator |