![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-restb | Structured version Visualization version GIF version |
Description: An elementwise intersection by a set on a family containing a superset of that set contains that set. (Contributed by BJ, 27-Apr-2021.) |
Ref | Expression |
---|---|
bj-restb | ⊢ (𝑋 ∈ 𝑉 → ((𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝑋) → 𝐴 ∈ (𝑋 ↾t 𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . . . . . . . 8 ⊢ (𝐴 ⊆ 𝐵 → 𝐴 ⊆ 𝐵) | |
2 | ssidd 4005 | . . . . . . . 8 ⊢ (𝐴 ⊆ 𝐵 → 𝐴 ⊆ 𝐴) | |
3 | 1, 2 | ssind 4232 | . . . . . . 7 ⊢ (𝐴 ⊆ 𝐵 → 𝐴 ⊆ (𝐵 ∩ 𝐴)) |
4 | inss2 4229 | . . . . . . . 8 ⊢ (𝐵 ∩ 𝐴) ⊆ 𝐴 | |
5 | 4 | a1i 11 | . . . . . . 7 ⊢ (𝐴 ⊆ 𝐵 → (𝐵 ∩ 𝐴) ⊆ 𝐴) |
6 | 3, 5 | eqssd 3999 | . . . . . 6 ⊢ (𝐴 ⊆ 𝐵 → 𝐴 = (𝐵 ∩ 𝐴)) |
7 | eleq1 2821 | . . . . . . . . . 10 ⊢ (𝑦 = 𝐵 → (𝑦 ∈ 𝑋 ↔ 𝐵 ∈ 𝑋)) | |
8 | ineq1 4205 | . . . . . . . . . . 11 ⊢ (𝑦 = 𝐵 → (𝑦 ∩ 𝐴) = (𝐵 ∩ 𝐴)) | |
9 | 8 | eqeq2d 2743 | . . . . . . . . . 10 ⊢ (𝑦 = 𝐵 → (𝐴 = (𝑦 ∩ 𝐴) ↔ 𝐴 = (𝐵 ∩ 𝐴))) |
10 | 7, 9 | anbi12d 631 | . . . . . . . . 9 ⊢ (𝑦 = 𝐵 → ((𝑦 ∈ 𝑋 ∧ 𝐴 = (𝑦 ∩ 𝐴)) ↔ (𝐵 ∈ 𝑋 ∧ 𝐴 = (𝐵 ∩ 𝐴)))) |
11 | 10 | spcegv 3587 | . . . . . . . 8 ⊢ (𝐵 ∈ 𝑋 → ((𝐵 ∈ 𝑋 ∧ 𝐴 = (𝐵 ∩ 𝐴)) → ∃𝑦(𝑦 ∈ 𝑋 ∧ 𝐴 = (𝑦 ∩ 𝐴)))) |
12 | 11 | expd 416 | . . . . . . 7 ⊢ (𝐵 ∈ 𝑋 → (𝐵 ∈ 𝑋 → (𝐴 = (𝐵 ∩ 𝐴) → ∃𝑦(𝑦 ∈ 𝑋 ∧ 𝐴 = (𝑦 ∩ 𝐴))))) |
13 | 12 | pm2.43i 52 | . . . . . 6 ⊢ (𝐵 ∈ 𝑋 → (𝐴 = (𝐵 ∩ 𝐴) → ∃𝑦(𝑦 ∈ 𝑋 ∧ 𝐴 = (𝑦 ∩ 𝐴)))) |
14 | 6, 13 | mpan9 507 | . . . . 5 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝑋) → ∃𝑦(𝑦 ∈ 𝑋 ∧ 𝐴 = (𝑦 ∩ 𝐴))) |
15 | df-rex 3071 | . . . . 5 ⊢ (∃𝑦 ∈ 𝑋 𝐴 = (𝑦 ∩ 𝐴) ↔ ∃𝑦(𝑦 ∈ 𝑋 ∧ 𝐴 = (𝑦 ∩ 𝐴))) | |
16 | 14, 15 | sylibr 233 | . . . 4 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝑋) → ∃𝑦 ∈ 𝑋 𝐴 = (𝑦 ∩ 𝐴)) |
17 | 16 | adantl 482 | . . 3 ⊢ ((𝑋 ∈ 𝑉 ∧ (𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝑋)) → ∃𝑦 ∈ 𝑋 𝐴 = (𝑦 ∩ 𝐴)) |
18 | ssexg 5323 | . . . 4 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝑋) → 𝐴 ∈ V) | |
19 | elrest 17377 | . . . 4 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝐴 ∈ V) → (𝐴 ∈ (𝑋 ↾t 𝐴) ↔ ∃𝑦 ∈ 𝑋 𝐴 = (𝑦 ∩ 𝐴))) | |
20 | 18, 19 | sylan2 593 | . . 3 ⊢ ((𝑋 ∈ 𝑉 ∧ (𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝑋)) → (𝐴 ∈ (𝑋 ↾t 𝐴) ↔ ∃𝑦 ∈ 𝑋 𝐴 = (𝑦 ∩ 𝐴))) |
21 | 17, 20 | mpbird 256 | . 2 ⊢ ((𝑋 ∈ 𝑉 ∧ (𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝑋)) → 𝐴 ∈ (𝑋 ↾t 𝐴)) |
22 | 21 | ex 413 | 1 ⊢ (𝑋 ∈ 𝑉 → ((𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝑋) → 𝐴 ∈ (𝑋 ↾t 𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1541 ∃wex 1781 ∈ wcel 2106 ∃wrex 3070 Vcvv 3474 ∩ cin 3947 ⊆ wss 3948 (class class class)co 7411 ↾t crest 17370 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pr 5427 ax-un 7727 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7414 df-oprab 7415 df-mpo 7416 df-rest 17372 |
This theorem is referenced by: bj-restv 36279 bj-resta 36280 |
Copyright terms: Public domain | W3C validator |