Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > brgici | Structured version Visualization version GIF version |
Description: Prove isomorphic by an explicit isomorphism. (Contributed by Stefan O'Rear, 25-Jan-2015.) |
Ref | Expression |
---|---|
brgici | ⊢ (𝐹 ∈ (𝑅 GrpIso 𝑆) → 𝑅 ≃𝑔 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ne0i 4280 | . 2 ⊢ (𝐹 ∈ (𝑅 GrpIso 𝑆) → (𝑅 GrpIso 𝑆) ≠ ∅) | |
2 | brgic 18973 | . 2 ⊢ (𝑅 ≃𝑔 𝑆 ↔ (𝑅 GrpIso 𝑆) ≠ ∅) | |
3 | 1, 2 | sylibr 233 | 1 ⊢ (𝐹 ∈ (𝑅 GrpIso 𝑆) → 𝑅 ≃𝑔 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2105 ≠ wne 2940 ∅c0 4268 class class class wbr 5089 (class class class)co 7329 GrpIso cgim 18961 ≃𝑔 cgic 18962 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-sep 5240 ax-nul 5247 ax-pr 5369 ax-un 7642 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3404 df-v 3443 df-sbc 3727 df-csb 3843 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4269 df-if 4473 df-sn 4573 df-pr 4575 df-op 4579 df-uni 4852 df-iun 4940 df-br 5090 df-opab 5152 df-mpt 5173 df-id 5512 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-suc 6302 df-iota 6425 df-fun 6475 df-fn 6476 df-f 6477 df-fv 6481 df-ov 7332 df-oprab 7333 df-mpo 7334 df-1st 7891 df-2nd 7892 df-1o 8359 df-gim 18963 df-gic 18964 |
This theorem is referenced by: gicref 18975 gicsym 18978 gictr 18979 oppggic 19056 ricgic 20080 cygznlem3 20875 pconnpi1 33439 isnumbasgrplem1 41177 |
Copyright terms: Public domain | W3C validator |