| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > gictr | Structured version Visualization version GIF version | ||
| Description: Isomorphism is transitive. (Contributed by Mario Carneiro, 21-Apr-2016.) |
| Ref | Expression |
|---|---|
| gictr | ⊢ ((𝑅 ≃𝑔 𝑆 ∧ 𝑆 ≃𝑔 𝑇) → 𝑅 ≃𝑔 𝑇) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brgic 19188 | . 2 ⊢ (𝑅 ≃𝑔 𝑆 ↔ (𝑅 GrpIso 𝑆) ≠ ∅) | |
| 2 | brgic 19188 | . 2 ⊢ (𝑆 ≃𝑔 𝑇 ↔ (𝑆 GrpIso 𝑇) ≠ ∅) | |
| 3 | n0 4302 | . . 3 ⊢ ((𝑅 GrpIso 𝑆) ≠ ∅ ↔ ∃𝑓 𝑓 ∈ (𝑅 GrpIso 𝑆)) | |
| 4 | n0 4302 | . . 3 ⊢ ((𝑆 GrpIso 𝑇) ≠ ∅ ↔ ∃𝑔 𝑔 ∈ (𝑆 GrpIso 𝑇)) | |
| 5 | exdistrv 1956 | . . . 4 ⊢ (∃𝑓∃𝑔(𝑓 ∈ (𝑅 GrpIso 𝑆) ∧ 𝑔 ∈ (𝑆 GrpIso 𝑇)) ↔ (∃𝑓 𝑓 ∈ (𝑅 GrpIso 𝑆) ∧ ∃𝑔 𝑔 ∈ (𝑆 GrpIso 𝑇))) | |
| 6 | gimco 19186 | . . . . . . 7 ⊢ ((𝑔 ∈ (𝑆 GrpIso 𝑇) ∧ 𝑓 ∈ (𝑅 GrpIso 𝑆)) → (𝑔 ∘ 𝑓) ∈ (𝑅 GrpIso 𝑇)) | |
| 7 | brgici 19189 | . . . . . . 7 ⊢ ((𝑔 ∘ 𝑓) ∈ (𝑅 GrpIso 𝑇) → 𝑅 ≃𝑔 𝑇) | |
| 8 | 6, 7 | syl 17 | . . . . . 6 ⊢ ((𝑔 ∈ (𝑆 GrpIso 𝑇) ∧ 𝑓 ∈ (𝑅 GrpIso 𝑆)) → 𝑅 ≃𝑔 𝑇) |
| 9 | 8 | ancoms 458 | . . . . 5 ⊢ ((𝑓 ∈ (𝑅 GrpIso 𝑆) ∧ 𝑔 ∈ (𝑆 GrpIso 𝑇)) → 𝑅 ≃𝑔 𝑇) |
| 10 | 9 | exlimivv 1933 | . . . 4 ⊢ (∃𝑓∃𝑔(𝑓 ∈ (𝑅 GrpIso 𝑆) ∧ 𝑔 ∈ (𝑆 GrpIso 𝑇)) → 𝑅 ≃𝑔 𝑇) |
| 11 | 5, 10 | sylbir 235 | . . 3 ⊢ ((∃𝑓 𝑓 ∈ (𝑅 GrpIso 𝑆) ∧ ∃𝑔 𝑔 ∈ (𝑆 GrpIso 𝑇)) → 𝑅 ≃𝑔 𝑇) |
| 12 | 3, 4, 11 | syl2anb 598 | . 2 ⊢ (((𝑅 GrpIso 𝑆) ≠ ∅ ∧ (𝑆 GrpIso 𝑇) ≠ ∅) → 𝑅 ≃𝑔 𝑇) |
| 13 | 1, 2, 12 | syl2anb 598 | 1 ⊢ ((𝑅 ≃𝑔 𝑆 ∧ 𝑆 ≃𝑔 𝑇) → 𝑅 ≃𝑔 𝑇) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∃wex 1780 ∈ wcel 2111 ≠ wne 2928 ∅c0 4282 class class class wbr 5093 ∘ ccom 5623 (class class class)co 7352 GrpIso cgim 19175 ≃𝑔 cgic 19176 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-suc 6318 df-iota 6443 df-fun 6489 df-fn 6490 df-f 6491 df-f1 6492 df-fo 6493 df-f1o 6494 df-fv 6495 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-1st 7927 df-2nd 7928 df-1o 8391 df-map 8758 df-0g 17351 df-mgm 18554 df-sgrp 18633 df-mnd 18649 df-mhm 18697 df-grp 18855 df-ghm 19131 df-gim 19177 df-gic 19178 |
| This theorem is referenced by: gicer 19195 cyggic 21515 |
| Copyright terms: Public domain | W3C validator |