![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > gictr | Structured version Visualization version GIF version |
Description: Isomorphism is transitive. (Contributed by Mario Carneiro, 21-Apr-2016.) |
Ref | Expression |
---|---|
gictr | ⊢ ((𝑅 ≃𝑔 𝑆 ∧ 𝑆 ≃𝑔 𝑇) → 𝑅 ≃𝑔 𝑇) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brgic 19191 | . 2 ⊢ (𝑅 ≃𝑔 𝑆 ↔ (𝑅 GrpIso 𝑆) ≠ ∅) | |
2 | brgic 19191 | . 2 ⊢ (𝑆 ≃𝑔 𝑇 ↔ (𝑆 GrpIso 𝑇) ≠ ∅) | |
3 | n0 4339 | . . 3 ⊢ ((𝑅 GrpIso 𝑆) ≠ ∅ ↔ ∃𝑓 𝑓 ∈ (𝑅 GrpIso 𝑆)) | |
4 | n0 4339 | . . 3 ⊢ ((𝑆 GrpIso 𝑇) ≠ ∅ ↔ ∃𝑔 𝑔 ∈ (𝑆 GrpIso 𝑇)) | |
5 | exdistrv 1951 | . . . 4 ⊢ (∃𝑓∃𝑔(𝑓 ∈ (𝑅 GrpIso 𝑆) ∧ 𝑔 ∈ (𝑆 GrpIso 𝑇)) ↔ (∃𝑓 𝑓 ∈ (𝑅 GrpIso 𝑆) ∧ ∃𝑔 𝑔 ∈ (𝑆 GrpIso 𝑇))) | |
6 | gimco 19189 | . . . . . . 7 ⊢ ((𝑔 ∈ (𝑆 GrpIso 𝑇) ∧ 𝑓 ∈ (𝑅 GrpIso 𝑆)) → (𝑔 ∘ 𝑓) ∈ (𝑅 GrpIso 𝑇)) | |
7 | brgici 19192 | . . . . . . 7 ⊢ ((𝑔 ∘ 𝑓) ∈ (𝑅 GrpIso 𝑇) → 𝑅 ≃𝑔 𝑇) | |
8 | 6, 7 | syl 17 | . . . . . 6 ⊢ ((𝑔 ∈ (𝑆 GrpIso 𝑇) ∧ 𝑓 ∈ (𝑅 GrpIso 𝑆)) → 𝑅 ≃𝑔 𝑇) |
9 | 8 | ancoms 458 | . . . . 5 ⊢ ((𝑓 ∈ (𝑅 GrpIso 𝑆) ∧ 𝑔 ∈ (𝑆 GrpIso 𝑇)) → 𝑅 ≃𝑔 𝑇) |
10 | 9 | exlimivv 1927 | . . . 4 ⊢ (∃𝑓∃𝑔(𝑓 ∈ (𝑅 GrpIso 𝑆) ∧ 𝑔 ∈ (𝑆 GrpIso 𝑇)) → 𝑅 ≃𝑔 𝑇) |
11 | 5, 10 | sylbir 234 | . . 3 ⊢ ((∃𝑓 𝑓 ∈ (𝑅 GrpIso 𝑆) ∧ ∃𝑔 𝑔 ∈ (𝑆 GrpIso 𝑇)) → 𝑅 ≃𝑔 𝑇) |
12 | 3, 4, 11 | syl2anb 597 | . 2 ⊢ (((𝑅 GrpIso 𝑆) ≠ ∅ ∧ (𝑆 GrpIso 𝑇) ≠ ∅) → 𝑅 ≃𝑔 𝑇) |
13 | 1, 2, 12 | syl2anb 597 | 1 ⊢ ((𝑅 ≃𝑔 𝑆 ∧ 𝑆 ≃𝑔 𝑇) → 𝑅 ≃𝑔 𝑇) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∃wex 1773 ∈ wcel 2098 ≠ wne 2932 ∅c0 4315 class class class wbr 5139 ∘ ccom 5671 (class class class)co 7402 GrpIso cgim 19178 ≃𝑔 cgic 19179 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5276 ax-sep 5290 ax-nul 5297 ax-pow 5354 ax-pr 5418 ax-un 7719 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-ral 3054 df-rex 3063 df-rmo 3368 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3771 df-csb 3887 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-nul 4316 df-if 4522 df-pw 4597 df-sn 4622 df-pr 4624 df-op 4628 df-uni 4901 df-iun 4990 df-br 5140 df-opab 5202 df-mpt 5223 df-id 5565 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-suc 6361 df-iota 6486 df-fun 6536 df-fn 6537 df-f 6538 df-f1 6539 df-fo 6540 df-f1o 6541 df-fv 6542 df-riota 7358 df-ov 7405 df-oprab 7406 df-mpo 7407 df-1st 7969 df-2nd 7970 df-1o 8462 df-map 8819 df-0g 17392 df-mgm 18569 df-sgrp 18648 df-mnd 18664 df-mhm 18709 df-grp 18862 df-ghm 19135 df-gim 19180 df-gic 19181 |
This theorem is referenced by: gicer 19198 cyggic 21456 |
Copyright terms: Public domain | W3C validator |