MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gictr Structured version   Visualization version   GIF version

Theorem gictr 19181
Description: Isomorphism is transitive. (Contributed by Mario Carneiro, 21-Apr-2016.)
Assertion
Ref Expression
gictr ((𝑅𝑔 𝑆𝑆𝑔 𝑇) → 𝑅𝑔 𝑇)

Proof of Theorem gictr
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 brgic 19175 . 2 (𝑅𝑔 𝑆 ↔ (𝑅 GrpIso 𝑆) ≠ ∅)
2 brgic 19175 . 2 (𝑆𝑔 𝑇 ↔ (𝑆 GrpIso 𝑇) ≠ ∅)
3 n0 4301 . . 3 ((𝑅 GrpIso 𝑆) ≠ ∅ ↔ ∃𝑓 𝑓 ∈ (𝑅 GrpIso 𝑆))
4 n0 4301 . . 3 ((𝑆 GrpIso 𝑇) ≠ ∅ ↔ ∃𝑔 𝑔 ∈ (𝑆 GrpIso 𝑇))
5 exdistrv 1956 . . . 4 (∃𝑓𝑔(𝑓 ∈ (𝑅 GrpIso 𝑆) ∧ 𝑔 ∈ (𝑆 GrpIso 𝑇)) ↔ (∃𝑓 𝑓 ∈ (𝑅 GrpIso 𝑆) ∧ ∃𝑔 𝑔 ∈ (𝑆 GrpIso 𝑇)))
6 gimco 19173 . . . . . . 7 ((𝑔 ∈ (𝑆 GrpIso 𝑇) ∧ 𝑓 ∈ (𝑅 GrpIso 𝑆)) → (𝑔𝑓) ∈ (𝑅 GrpIso 𝑇))
7 brgici 19176 . . . . . . 7 ((𝑔𝑓) ∈ (𝑅 GrpIso 𝑇) → 𝑅𝑔 𝑇)
86, 7syl 17 . . . . . 6 ((𝑔 ∈ (𝑆 GrpIso 𝑇) ∧ 𝑓 ∈ (𝑅 GrpIso 𝑆)) → 𝑅𝑔 𝑇)
98ancoms 458 . . . . 5 ((𝑓 ∈ (𝑅 GrpIso 𝑆) ∧ 𝑔 ∈ (𝑆 GrpIso 𝑇)) → 𝑅𝑔 𝑇)
109exlimivv 1933 . . . 4 (∃𝑓𝑔(𝑓 ∈ (𝑅 GrpIso 𝑆) ∧ 𝑔 ∈ (𝑆 GrpIso 𝑇)) → 𝑅𝑔 𝑇)
115, 10sylbir 235 . . 3 ((∃𝑓 𝑓 ∈ (𝑅 GrpIso 𝑆) ∧ ∃𝑔 𝑔 ∈ (𝑆 GrpIso 𝑇)) → 𝑅𝑔 𝑇)
123, 4, 11syl2anb 598 . 2 (((𝑅 GrpIso 𝑆) ≠ ∅ ∧ (𝑆 GrpIso 𝑇) ≠ ∅) → 𝑅𝑔 𝑇)
131, 2, 12syl2anb 598 1 ((𝑅𝑔 𝑆𝑆𝑔 𝑇) → 𝑅𝑔 𝑇)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wex 1780  wcel 2110  wne 2926  c0 4281   class class class wbr 5089  ccom 5618  (class class class)co 7341   GrpIso cgim 19162  𝑔 cgic 19163
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7663
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3344  df-reu 3345  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4858  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-suc 6308  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-f1 6482  df-fo 6483  df-f1o 6484  df-fv 6485  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-1st 7916  df-2nd 7917  df-1o 8380  df-map 8747  df-0g 17337  df-mgm 18540  df-sgrp 18619  df-mnd 18635  df-mhm 18683  df-grp 18841  df-ghm 19118  df-gim 19164  df-gic 19165
This theorem is referenced by:  gicer  19182  cyggic  21502
  Copyright terms: Public domain W3C validator