![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > gicqusker | Structured version Visualization version GIF version |
Description: The image 𝐻 of a group homomorphism 𝐹 is isomorphic with the quotient group 𝑄 over 𝐹's kernel 𝐾. Together with ghmker 19284 and ghmima 19279, this is sometimes called the first isomorphism theorem for groups. (Contributed by Thierry Arnoux, 10-Mar-2025.) |
Ref | Expression |
---|---|
gicqusker.1 | ⊢ 0 = (0g‘𝐻) |
gicqusker.f | ⊢ (𝜑 → 𝐹 ∈ (𝐺 GrpHom 𝐻)) |
gicqusker.k | ⊢ 𝐾 = (◡𝐹 “ { 0 }) |
gicqusker.q | ⊢ 𝑄 = (𝐺 /s (𝐺 ~QG 𝐾)) |
gicqusker.s | ⊢ (𝜑 → ran 𝐹 = (Base‘𝐻)) |
Ref | Expression |
---|---|
gicqusker | ⊢ (𝜑 → 𝑄 ≃𝑔 𝐻) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gicqusker.1 | . . 3 ⊢ 0 = (0g‘𝐻) | |
2 | gicqusker.f | . . 3 ⊢ (𝜑 → 𝐹 ∈ (𝐺 GrpHom 𝐻)) | |
3 | gicqusker.k | . . 3 ⊢ 𝐾 = (◡𝐹 “ { 0 }) | |
4 | gicqusker.q | . . 3 ⊢ 𝑄 = (𝐺 /s (𝐺 ~QG 𝐾)) | |
5 | imaeq2 6087 | . . . . 5 ⊢ (𝑝 = 𝑞 → (𝐹 “ 𝑝) = (𝐹 “ 𝑞)) | |
6 | 5 | unieqd 4944 | . . . 4 ⊢ (𝑝 = 𝑞 → ∪ (𝐹 “ 𝑝) = ∪ (𝐹 “ 𝑞)) |
7 | 6 | cbvmptv 5279 | . . 3 ⊢ (𝑝 ∈ (Base‘𝑄) ↦ ∪ (𝐹 “ 𝑝)) = (𝑞 ∈ (Base‘𝑄) ↦ ∪ (𝐹 “ 𝑞)) |
8 | gicqusker.s | . . 3 ⊢ (𝜑 → ran 𝐹 = (Base‘𝐻)) | |
9 | 1, 2, 3, 4, 7, 8 | ghmqusker 19329 | . 2 ⊢ (𝜑 → (𝑝 ∈ (Base‘𝑄) ↦ ∪ (𝐹 “ 𝑝)) ∈ (𝑄 GrpIso 𝐻)) |
10 | brgici 19313 | . 2 ⊢ ((𝑝 ∈ (Base‘𝑄) ↦ ∪ (𝐹 “ 𝑝)) ∈ (𝑄 GrpIso 𝐻) → 𝑄 ≃𝑔 𝐻) | |
11 | 9, 10 | syl 17 | 1 ⊢ (𝜑 → 𝑄 ≃𝑔 𝐻) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 {csn 4648 ∪ cuni 4931 class class class wbr 5166 ↦ cmpt 5249 ◡ccnv 5699 ran crn 5701 “ cima 5703 ‘cfv 6575 (class class class)co 7450 Basecbs 17260 0gc0g 17501 /s cqus 17567 ~QG cqg 19164 GrpHom cghm 19254 GrpIso cgim 19299 ≃𝑔 cgic 19300 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7772 ax-cnex 11242 ax-resscn 11243 ax-1cn 11244 ax-icn 11245 ax-addcl 11246 ax-addrcl 11247 ax-mulcl 11248 ax-mulrcl 11249 ax-mulcom 11250 ax-addass 11251 ax-mulass 11252 ax-distr 11253 ax-i2m1 11254 ax-1ne0 11255 ax-1rid 11256 ax-rnegex 11257 ax-rrecex 11258 ax-cnre 11259 ax-pre-lttri 11260 ax-pre-lttrn 11261 ax-pre-ltadd 11262 ax-pre-mulgt0 11263 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-tp 4653 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6334 df-ord 6400 df-on 6401 df-lim 6402 df-suc 6403 df-iota 6527 df-fun 6577 df-fn 6578 df-f 6579 df-f1 6580 df-fo 6581 df-f1o 6582 df-fv 6583 df-riota 7406 df-ov 7453 df-oprab 7454 df-mpo 7455 df-om 7906 df-1st 8032 df-2nd 8033 df-frecs 8324 df-wrecs 8355 df-recs 8429 df-rdg 8468 df-1o 8524 df-er 8765 df-ec 8767 df-qs 8771 df-map 8888 df-en 9006 df-dom 9007 df-sdom 9008 df-fin 9009 df-sup 9513 df-inf 9514 df-pnf 11328 df-mnf 11329 df-xr 11330 df-ltxr 11331 df-le 11332 df-sub 11524 df-neg 11525 df-nn 12296 df-2 12358 df-3 12359 df-4 12360 df-5 12361 df-6 12362 df-7 12363 df-8 12364 df-9 12365 df-n0 12556 df-z 12642 df-dec 12761 df-uz 12906 df-fz 13570 df-struct 17196 df-sets 17213 df-slot 17231 df-ndx 17243 df-base 17261 df-ress 17290 df-plusg 17326 df-mulr 17327 df-sca 17329 df-vsca 17330 df-ip 17331 df-tset 17332 df-ple 17333 df-ds 17335 df-0g 17503 df-imas 17570 df-qus 17571 df-mgm 18680 df-sgrp 18759 df-mnd 18775 df-submnd 18821 df-grp 18978 df-minusg 18979 df-sbg 18980 df-subg 19165 df-nsg 19166 df-eqg 19167 df-ghm 19255 df-gim 19301 df-gic 19302 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |