![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ricgic | Structured version Visualization version GIF version |
Description: If two rings are (ring) isomorphic, their additive groups are (group) isomorphic. (Contributed by AV, 24-Dec-2019.) |
Ref | Expression |
---|---|
ricgic | ⊢ (𝑅 ≃𝑟 𝑆 → 𝑅 ≃𝑔 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brric2 20406 | . 2 ⊢ (𝑅 ≃𝑟 𝑆 ↔ ((𝑅 ∈ Ring ∧ 𝑆 ∈ Ring) ∧ ∃𝑓 𝑓 ∈ (𝑅 RingIso 𝑆))) | |
2 | rimgim 20397 | . . . 4 ⊢ (𝑓 ∈ (𝑅 RingIso 𝑆) → 𝑓 ∈ (𝑅 GrpIso 𝑆)) | |
3 | brgici 19194 | . . . 4 ⊢ (𝑓 ∈ (𝑅 GrpIso 𝑆) → 𝑅 ≃𝑔 𝑆) | |
4 | 2, 3 | syl 17 | . . 3 ⊢ (𝑓 ∈ (𝑅 RingIso 𝑆) → 𝑅 ≃𝑔 𝑆) |
5 | 4 | exlimiv 1925 | . 2 ⊢ (∃𝑓 𝑓 ∈ (𝑅 RingIso 𝑆) → 𝑅 ≃𝑔 𝑆) |
6 | 1, 5 | simplbiim 504 | 1 ⊢ (𝑅 ≃𝑟 𝑆 → 𝑅 ≃𝑔 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∃wex 1773 ∈ wcel 2098 class class class wbr 5141 (class class class)co 7404 GrpIso cgim 19180 ≃𝑔 cgic 19181 Ringcrg 20136 RingIso crs 20370 ≃𝑟 cric 20371 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7721 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-nel 3041 df-ral 3056 df-rex 3065 df-rmo 3370 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6293 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6488 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7360 df-ov 7407 df-oprab 7408 df-mpo 7409 df-om 7852 df-1st 7971 df-2nd 7972 df-frecs 8264 df-wrecs 8295 df-recs 8369 df-rdg 8408 df-1o 8464 df-er 8702 df-map 8821 df-en 8939 df-dom 8940 df-sdom 8941 df-pnf 11251 df-mnf 11252 df-xr 11253 df-ltxr 11254 df-le 11255 df-sub 11447 df-neg 11448 df-nn 12214 df-2 12276 df-sets 17104 df-slot 17122 df-ndx 17134 df-base 17152 df-plusg 17217 df-0g 17394 df-mgm 18571 df-sgrp 18650 df-mnd 18666 df-mhm 18711 df-grp 18864 df-ghm 19137 df-gim 19182 df-gic 19183 df-mgp 20038 df-ur 20085 df-ring 20138 df-rhm 20372 df-rim 20373 df-ric 20375 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |