![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > gicsym | Structured version Visualization version GIF version |
Description: Isomorphism is symmetric. (Contributed by Mario Carneiro, 21-Apr-2016.) |
Ref | Expression |
---|---|
gicsym | ⊢ (𝑅 ≃𝑔 𝑆 → 𝑆 ≃𝑔 𝑅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brgic 19137 | . 2 ⊢ (𝑅 ≃𝑔 𝑆 ↔ (𝑅 GrpIso 𝑆) ≠ ∅) | |
2 | n0 4345 | . . 3 ⊢ ((𝑅 GrpIso 𝑆) ≠ ∅ ↔ ∃𝑓 𝑓 ∈ (𝑅 GrpIso 𝑆)) | |
3 | gimcnv 19135 | . . . . 5 ⊢ (𝑓 ∈ (𝑅 GrpIso 𝑆) → ◡𝑓 ∈ (𝑆 GrpIso 𝑅)) | |
4 | brgici 19138 | . . . . 5 ⊢ (◡𝑓 ∈ (𝑆 GrpIso 𝑅) → 𝑆 ≃𝑔 𝑅) | |
5 | 3, 4 | syl 17 | . . . 4 ⊢ (𝑓 ∈ (𝑅 GrpIso 𝑆) → 𝑆 ≃𝑔 𝑅) |
6 | 5 | exlimiv 1933 | . . 3 ⊢ (∃𝑓 𝑓 ∈ (𝑅 GrpIso 𝑆) → 𝑆 ≃𝑔 𝑅) |
7 | 2, 6 | sylbi 216 | . 2 ⊢ ((𝑅 GrpIso 𝑆) ≠ ∅ → 𝑆 ≃𝑔 𝑅) |
8 | 1, 7 | sylbi 216 | 1 ⊢ (𝑅 ≃𝑔 𝑆 → 𝑆 ≃𝑔 𝑅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∃wex 1781 ∈ wcel 2106 ≠ wne 2940 ∅c0 4321 class class class wbr 5147 ◡ccnv 5674 (class class class)co 7405 GrpIso cgim 19125 ≃𝑔 cgic 19126 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-ov 7408 df-oprab 7409 df-mpo 7410 df-1st 7971 df-2nd 7972 df-1o 8462 df-mgm 18557 df-sgrp 18606 df-mnd 18622 df-grp 18818 df-ghm 19084 df-gim 19127 df-gic 19128 |
This theorem is referenced by: gicer 19144 cygznlem3 21116 cygth 21118 cyggic 21119 |
Copyright terms: Public domain | W3C validator |