MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gicsym Structured version   Visualization version   GIF version

Theorem gicsym 18393
Description: Isomorphism is symmetric. (Contributed by Mario Carneiro, 21-Apr-2016.)
Assertion
Ref Expression
gicsym (𝑅𝑔 𝑆𝑆𝑔 𝑅)

Proof of Theorem gicsym
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 brgic 18388 . 2 (𝑅𝑔 𝑆 ↔ (𝑅 GrpIso 𝑆) ≠ ∅)
2 n0 4286 . . 3 ((𝑅 GrpIso 𝑆) ≠ ∅ ↔ ∃𝑓 𝑓 ∈ (𝑅 GrpIso 𝑆))
3 gimcnv 18386 . . . . 5 (𝑓 ∈ (𝑅 GrpIso 𝑆) → 𝑓 ∈ (𝑆 GrpIso 𝑅))
4 brgici 18389 . . . . 5 (𝑓 ∈ (𝑆 GrpIso 𝑅) → 𝑆𝑔 𝑅)
53, 4syl 17 . . . 4 (𝑓 ∈ (𝑅 GrpIso 𝑆) → 𝑆𝑔 𝑅)
65exlimiv 1931 . . 3 (∃𝑓 𝑓 ∈ (𝑅 GrpIso 𝑆) → 𝑆𝑔 𝑅)
72, 6sylbi 219 . 2 ((𝑅 GrpIso 𝑆) ≠ ∅ → 𝑆𝑔 𝑅)
81, 7sylbi 219 1 (𝑅𝑔 𝑆𝑆𝑔 𝑅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wex 1780  wcel 2114  wne 3006  c0 4269   class class class wbr 5042  ccnv 5530  (class class class)co 7133   GrpIso cgim 18376  𝑔 cgic 18377
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2792  ax-rep 5166  ax-sep 5179  ax-nul 5186  ax-pow 5242  ax-pr 5306  ax-un 7439
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2891  df-nfc 2959  df-ne 3007  df-ral 3130  df-rex 3131  df-reu 3132  df-rab 3134  df-v 3475  df-sbc 3753  df-csb 3861  df-dif 3916  df-un 3918  df-in 3920  df-ss 3930  df-nul 4270  df-if 4444  df-pw 4517  df-sn 4544  df-pr 4546  df-op 4550  df-uni 4815  df-iun 4897  df-br 5043  df-opab 5105  df-mpt 5123  df-id 5436  df-xp 5537  df-rel 5538  df-cnv 5539  df-co 5540  df-dm 5541  df-rn 5542  df-res 5543  df-ima 5544  df-suc 6173  df-iota 6290  df-fun 6333  df-fn 6334  df-f 6335  df-f1 6336  df-fo 6337  df-f1o 6338  df-fv 6339  df-ov 7136  df-oprab 7137  df-mpo 7138  df-1st 7667  df-2nd 7668  df-1o 8080  df-mgm 17831  df-sgrp 17880  df-mnd 17891  df-grp 18085  df-ghm 18335  df-gim 18378  df-gic 18379
This theorem is referenced by:  gicer  18395  cygznlem3  20692  cygth  20694  cyggic  20695
  Copyright terms: Public domain W3C validator