|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > gicsym | Structured version Visualization version GIF version | ||
| Description: Isomorphism is symmetric. (Contributed by Mario Carneiro, 21-Apr-2016.) | 
| Ref | Expression | 
|---|---|
| gicsym | ⊢ (𝑅 ≃𝑔 𝑆 → 𝑆 ≃𝑔 𝑅) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | brgic 19289 | . 2 ⊢ (𝑅 ≃𝑔 𝑆 ↔ (𝑅 GrpIso 𝑆) ≠ ∅) | |
| 2 | n0 4352 | . . 3 ⊢ ((𝑅 GrpIso 𝑆) ≠ ∅ ↔ ∃𝑓 𝑓 ∈ (𝑅 GrpIso 𝑆)) | |
| 3 | gimcnv 19286 | . . . . 5 ⊢ (𝑓 ∈ (𝑅 GrpIso 𝑆) → ◡𝑓 ∈ (𝑆 GrpIso 𝑅)) | |
| 4 | brgici 19290 | . . . . 5 ⊢ (◡𝑓 ∈ (𝑆 GrpIso 𝑅) → 𝑆 ≃𝑔 𝑅) | |
| 5 | 3, 4 | syl 17 | . . . 4 ⊢ (𝑓 ∈ (𝑅 GrpIso 𝑆) → 𝑆 ≃𝑔 𝑅) | 
| 6 | 5 | exlimiv 1929 | . . 3 ⊢ (∃𝑓 𝑓 ∈ (𝑅 GrpIso 𝑆) → 𝑆 ≃𝑔 𝑅) | 
| 7 | 2, 6 | sylbi 217 | . 2 ⊢ ((𝑅 GrpIso 𝑆) ≠ ∅ → 𝑆 ≃𝑔 𝑅) | 
| 8 | 1, 7 | sylbi 217 | 1 ⊢ (𝑅 ≃𝑔 𝑆 → 𝑆 ≃𝑔 𝑅) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∃wex 1778 ∈ wcel 2107 ≠ wne 2939 ∅c0 4332 class class class wbr 5142 ◡ccnv 5683 (class class class)co 7432 GrpIso cgim 19276 ≃𝑔 cgic 19277 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-iun 4992 df-br 5143 df-opab 5205 df-mpt 5225 df-id 5577 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-suc 6389 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-ov 7435 df-oprab 7436 df-mpo 7437 df-1st 8015 df-2nd 8016 df-1o 8507 df-map 8869 df-mgm 18654 df-sgrp 18733 df-mnd 18749 df-grp 18955 df-ghm 19232 df-gim 19278 df-gic 19279 | 
| This theorem is referenced by: gicer 19296 cygznlem3 21589 cygth 21591 cyggic 21592 | 
| Copyright terms: Public domain | W3C validator |