Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isnumbasgrplem1 Structured version   Visualization version   GIF version

Theorem isnumbasgrplem1 41828
Description: A set which is equipollent to the base set of a definable Abelian group is the base set of some (relabeled) Abelian group. (Contributed by Stefan O'Rear, 8-Jul-2015.)
Hypothesis
Ref Expression
isnumbasgrplem1.b 𝐵 = (Base‘𝑅)
Assertion
Ref Expression
isnumbasgrplem1 ((𝑅 ∈ Abel ∧ 𝐶𝐵) → 𝐶 ∈ (Base “ Abel))

Proof of Theorem isnumbasgrplem1
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 ensymb 8994 . . 3 (𝐶𝐵𝐵𝐶)
2 bren 8945 . . 3 (𝐵𝐶 ↔ ∃𝑓 𝑓:𝐵1-1-onto𝐶)
31, 2bitri 274 . 2 (𝐶𝐵 ↔ ∃𝑓 𝑓:𝐵1-1-onto𝐶)
4 eqidd 2733 . . . . . . 7 ((𝑓:𝐵1-1-onto𝐶𝑅 ∈ Abel) → (𝑓s 𝑅) = (𝑓s 𝑅))
5 isnumbasgrplem1.b . . . . . . . 8 𝐵 = (Base‘𝑅)
65a1i 11 . . . . . . 7 ((𝑓:𝐵1-1-onto𝐶𝑅 ∈ Abel) → 𝐵 = (Base‘𝑅))
7 f1ofo 6837 . . . . . . . 8 (𝑓:𝐵1-1-onto𝐶𝑓:𝐵onto𝐶)
87adantr 481 . . . . . . 7 ((𝑓:𝐵1-1-onto𝐶𝑅 ∈ Abel) → 𝑓:𝐵onto𝐶)
9 simpr 485 . . . . . . 7 ((𝑓:𝐵1-1-onto𝐶𝑅 ∈ Abel) → 𝑅 ∈ Abel)
104, 6, 8, 9imasbas 17454 . . . . . 6 ((𝑓:𝐵1-1-onto𝐶𝑅 ∈ Abel) → 𝐶 = (Base‘(𝑓s 𝑅)))
11 simpl 483 . . . . . . . . . 10 ((𝑓:𝐵1-1-onto𝐶𝑅 ∈ Abel) → 𝑓:𝐵1-1-onto𝐶)
12 ablgrp 19647 . . . . . . . . . . 11 (𝑅 ∈ Abel → 𝑅 ∈ Grp)
1312adantl 482 . . . . . . . . . 10 ((𝑓:𝐵1-1-onto𝐶𝑅 ∈ Abel) → 𝑅 ∈ Grp)
144, 6, 11, 13imasgim 41827 . . . . . . . . 9 ((𝑓:𝐵1-1-onto𝐶𝑅 ∈ Abel) → 𝑓 ∈ (𝑅 GrpIso (𝑓s 𝑅)))
15 brgici 19138 . . . . . . . . 9 (𝑓 ∈ (𝑅 GrpIso (𝑓s 𝑅)) → 𝑅𝑔 (𝑓s 𝑅))
16 gicabl 41826 . . . . . . . . 9 (𝑅𝑔 (𝑓s 𝑅) → (𝑅 ∈ Abel ↔ (𝑓s 𝑅) ∈ Abel))
1714, 15, 163syl 18 . . . . . . . 8 ((𝑓:𝐵1-1-onto𝐶𝑅 ∈ Abel) → (𝑅 ∈ Abel ↔ (𝑓s 𝑅) ∈ Abel))
189, 17mpbid 231 . . . . . . 7 ((𝑓:𝐵1-1-onto𝐶𝑅 ∈ Abel) → (𝑓s 𝑅) ∈ Abel)
19 basfn 17144 . . . . . . . 8 Base Fn V
20 ssv 4005 . . . . . . . 8 Abel ⊆ V
21 fnfvima 7231 . . . . . . . 8 ((Base Fn V ∧ Abel ⊆ V ∧ (𝑓s 𝑅) ∈ Abel) → (Base‘(𝑓s 𝑅)) ∈ (Base “ Abel))
2219, 20, 21mp3an12 1451 . . . . . . 7 ((𝑓s 𝑅) ∈ Abel → (Base‘(𝑓s 𝑅)) ∈ (Base “ Abel))
2318, 22syl 17 . . . . . 6 ((𝑓:𝐵1-1-onto𝐶𝑅 ∈ Abel) → (Base‘(𝑓s 𝑅)) ∈ (Base “ Abel))
2410, 23eqeltrd 2833 . . . . 5 ((𝑓:𝐵1-1-onto𝐶𝑅 ∈ Abel) → 𝐶 ∈ (Base “ Abel))
2524ex 413 . . . 4 (𝑓:𝐵1-1-onto𝐶 → (𝑅 ∈ Abel → 𝐶 ∈ (Base “ Abel)))
2625exlimiv 1933 . . 3 (∃𝑓 𝑓:𝐵1-1-onto𝐶 → (𝑅 ∈ Abel → 𝐶 ∈ (Base “ Abel)))
2726impcom 408 . 2 ((𝑅 ∈ Abel ∧ ∃𝑓 𝑓:𝐵1-1-onto𝐶) → 𝐶 ∈ (Base “ Abel))
283, 27sylan2b 594 1 ((𝑅 ∈ Abel ∧ 𝐶𝐵) → 𝐶 ∈ (Base “ Abel))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wex 1781  wcel 2106  Vcvv 3474  wss 3947   class class class wbr 5147  cima 5678   Fn wfn 6535  ontowfo 6538  1-1-ontowf1o 6539  cfv 6540  (class class class)co 7405  cen 8932  Basecbs 17140  s cimas 17446  Grpcgrp 18815   GrpIso cgim 19125  𝑔 cgic 19126  Abelcabl 19643
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-tp 4632  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-1st 7971  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-er 8699  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-sup 9433  df-inf 9434  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-nn 12209  df-2 12271  df-3 12272  df-4 12273  df-5 12274  df-6 12275  df-7 12276  df-8 12277  df-9 12278  df-n0 12469  df-z 12555  df-dec 12674  df-uz 12819  df-fz 13481  df-struct 17076  df-slot 17111  df-ndx 17123  df-base 17141  df-plusg 17206  df-mulr 17207  df-sca 17209  df-vsca 17210  df-ip 17211  df-tset 17212  df-ple 17213  df-ds 17215  df-0g 17383  df-imas 17450  df-mgm 18557  df-sgrp 18606  df-mnd 18622  df-grp 18818  df-minusg 18819  df-ghm 19084  df-gim 19127  df-gic 19128  df-cmn 19644  df-abl 19645
This theorem is referenced by:  isnumbasgrplem3  41832
  Copyright terms: Public domain W3C validator