| Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > isnumbasgrplem1 | Structured version Visualization version GIF version | ||
| Description: A set which is equipollent to the base set of a definable Abelian group is the base set of some (relabeled) Abelian group. (Contributed by Stefan O'Rear, 8-Jul-2015.) |
| Ref | Expression |
|---|---|
| isnumbasgrplem1.b | ⊢ 𝐵 = (Base‘𝑅) |
| Ref | Expression |
|---|---|
| isnumbasgrplem1 | ⊢ ((𝑅 ∈ Abel ∧ 𝐶 ≈ 𝐵) → 𝐶 ∈ (Base “ Abel)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ensymb 8976 | . . 3 ⊢ (𝐶 ≈ 𝐵 ↔ 𝐵 ≈ 𝐶) | |
| 2 | bren 8931 | . . 3 ⊢ (𝐵 ≈ 𝐶 ↔ ∃𝑓 𝑓:𝐵–1-1-onto→𝐶) | |
| 3 | 1, 2 | bitri 275 | . 2 ⊢ (𝐶 ≈ 𝐵 ↔ ∃𝑓 𝑓:𝐵–1-1-onto→𝐶) |
| 4 | eqidd 2731 | . . . . . . 7 ⊢ ((𝑓:𝐵–1-1-onto→𝐶 ∧ 𝑅 ∈ Abel) → (𝑓 “s 𝑅) = (𝑓 “s 𝑅)) | |
| 5 | isnumbasgrplem1.b | . . . . . . . 8 ⊢ 𝐵 = (Base‘𝑅) | |
| 6 | 5 | a1i 11 | . . . . . . 7 ⊢ ((𝑓:𝐵–1-1-onto→𝐶 ∧ 𝑅 ∈ Abel) → 𝐵 = (Base‘𝑅)) |
| 7 | f1ofo 6810 | . . . . . . . 8 ⊢ (𝑓:𝐵–1-1-onto→𝐶 → 𝑓:𝐵–onto→𝐶) | |
| 8 | 7 | adantr 480 | . . . . . . 7 ⊢ ((𝑓:𝐵–1-1-onto→𝐶 ∧ 𝑅 ∈ Abel) → 𝑓:𝐵–onto→𝐶) |
| 9 | simpr 484 | . . . . . . 7 ⊢ ((𝑓:𝐵–1-1-onto→𝐶 ∧ 𝑅 ∈ Abel) → 𝑅 ∈ Abel) | |
| 10 | 4, 6, 8, 9 | imasbas 17482 | . . . . . 6 ⊢ ((𝑓:𝐵–1-1-onto→𝐶 ∧ 𝑅 ∈ Abel) → 𝐶 = (Base‘(𝑓 “s 𝑅))) |
| 11 | simpl 482 | . . . . . . . . . 10 ⊢ ((𝑓:𝐵–1-1-onto→𝐶 ∧ 𝑅 ∈ Abel) → 𝑓:𝐵–1-1-onto→𝐶) | |
| 12 | ablgrp 19722 | . . . . . . . . . . 11 ⊢ (𝑅 ∈ Abel → 𝑅 ∈ Grp) | |
| 13 | 12 | adantl 481 | . . . . . . . . . 10 ⊢ ((𝑓:𝐵–1-1-onto→𝐶 ∧ 𝑅 ∈ Abel) → 𝑅 ∈ Grp) |
| 14 | 4, 6, 11, 13 | imasgim 43096 | . . . . . . . . 9 ⊢ ((𝑓:𝐵–1-1-onto→𝐶 ∧ 𝑅 ∈ Abel) → 𝑓 ∈ (𝑅 GrpIso (𝑓 “s 𝑅))) |
| 15 | brgici 19210 | . . . . . . . . 9 ⊢ (𝑓 ∈ (𝑅 GrpIso (𝑓 “s 𝑅)) → 𝑅 ≃𝑔 (𝑓 “s 𝑅)) | |
| 16 | gicabl 43095 | . . . . . . . . 9 ⊢ (𝑅 ≃𝑔 (𝑓 “s 𝑅) → (𝑅 ∈ Abel ↔ (𝑓 “s 𝑅) ∈ Abel)) | |
| 17 | 14, 15, 16 | 3syl 18 | . . . . . . . 8 ⊢ ((𝑓:𝐵–1-1-onto→𝐶 ∧ 𝑅 ∈ Abel) → (𝑅 ∈ Abel ↔ (𝑓 “s 𝑅) ∈ Abel)) |
| 18 | 9, 17 | mpbid 232 | . . . . . . 7 ⊢ ((𝑓:𝐵–1-1-onto→𝐶 ∧ 𝑅 ∈ Abel) → (𝑓 “s 𝑅) ∈ Abel) |
| 19 | basfn 17190 | . . . . . . . 8 ⊢ Base Fn V | |
| 20 | ssv 3974 | . . . . . . . 8 ⊢ Abel ⊆ V | |
| 21 | fnfvima 7210 | . . . . . . . 8 ⊢ ((Base Fn V ∧ Abel ⊆ V ∧ (𝑓 “s 𝑅) ∈ Abel) → (Base‘(𝑓 “s 𝑅)) ∈ (Base “ Abel)) | |
| 22 | 19, 20, 21 | mp3an12 1453 | . . . . . . 7 ⊢ ((𝑓 “s 𝑅) ∈ Abel → (Base‘(𝑓 “s 𝑅)) ∈ (Base “ Abel)) |
| 23 | 18, 22 | syl 17 | . . . . . 6 ⊢ ((𝑓:𝐵–1-1-onto→𝐶 ∧ 𝑅 ∈ Abel) → (Base‘(𝑓 “s 𝑅)) ∈ (Base “ Abel)) |
| 24 | 10, 23 | eqeltrd 2829 | . . . . 5 ⊢ ((𝑓:𝐵–1-1-onto→𝐶 ∧ 𝑅 ∈ Abel) → 𝐶 ∈ (Base “ Abel)) |
| 25 | 24 | ex 412 | . . . 4 ⊢ (𝑓:𝐵–1-1-onto→𝐶 → (𝑅 ∈ Abel → 𝐶 ∈ (Base “ Abel))) |
| 26 | 25 | exlimiv 1930 | . . 3 ⊢ (∃𝑓 𝑓:𝐵–1-1-onto→𝐶 → (𝑅 ∈ Abel → 𝐶 ∈ (Base “ Abel))) |
| 27 | 26 | impcom 407 | . 2 ⊢ ((𝑅 ∈ Abel ∧ ∃𝑓 𝑓:𝐵–1-1-onto→𝐶) → 𝐶 ∈ (Base “ Abel)) |
| 28 | 3, 27 | sylan2b 594 | 1 ⊢ ((𝑅 ∈ Abel ∧ 𝐶 ≈ 𝐵) → 𝐶 ∈ (Base “ Abel)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2109 Vcvv 3450 ⊆ wss 3917 class class class wbr 5110 “ cima 5644 Fn wfn 6509 –onto→wfo 6512 –1-1-onto→wf1o 6513 ‘cfv 6514 (class class class)co 7390 ≈ cen 8918 Basecbs 17186 “s cimas 17474 Grpcgrp 18872 GrpIso cgim 19196 ≃𝑔 cgic 19197 Abelcabl 19718 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-tp 4597 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-er 8674 df-map 8804 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-sup 9400 df-inf 9401 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-nn 12194 df-2 12256 df-3 12257 df-4 12258 df-5 12259 df-6 12260 df-7 12261 df-8 12262 df-9 12263 df-n0 12450 df-z 12537 df-dec 12657 df-uz 12801 df-fz 13476 df-struct 17124 df-slot 17159 df-ndx 17171 df-base 17187 df-plusg 17240 df-mulr 17241 df-sca 17243 df-vsca 17244 df-ip 17245 df-tset 17246 df-ple 17247 df-ds 17249 df-0g 17411 df-imas 17478 df-mgm 18574 df-sgrp 18653 df-mnd 18669 df-grp 18875 df-minusg 18876 df-ghm 19152 df-gim 19198 df-gic 19199 df-cmn 19719 df-abl 19720 |
| This theorem is referenced by: isnumbasgrplem3 43101 |
| Copyright terms: Public domain | W3C validator |