![]() |
Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > isnumbasgrplem1 | Structured version Visualization version GIF version |
Description: A set which is equipollent to the base set of a definable Abelian group is the base set of some (relabeled) Abelian group. (Contributed by Stefan O'Rear, 8-Jul-2015.) |
Ref | Expression |
---|---|
isnumbasgrplem1.b | ⊢ 𝐵 = (Base‘𝑅) |
Ref | Expression |
---|---|
isnumbasgrplem1 | ⊢ ((𝑅 ∈ Abel ∧ 𝐶 ≈ 𝐵) → 𝐶 ∈ (Base “ Abel)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ensymb 8994 | . . 3 ⊢ (𝐶 ≈ 𝐵 ↔ 𝐵 ≈ 𝐶) | |
2 | bren 8945 | . . 3 ⊢ (𝐵 ≈ 𝐶 ↔ ∃𝑓 𝑓:𝐵–1-1-onto→𝐶) | |
3 | 1, 2 | bitri 274 | . 2 ⊢ (𝐶 ≈ 𝐵 ↔ ∃𝑓 𝑓:𝐵–1-1-onto→𝐶) |
4 | eqidd 2733 | . . . . . . 7 ⊢ ((𝑓:𝐵–1-1-onto→𝐶 ∧ 𝑅 ∈ Abel) → (𝑓 “s 𝑅) = (𝑓 “s 𝑅)) | |
5 | isnumbasgrplem1.b | . . . . . . . 8 ⊢ 𝐵 = (Base‘𝑅) | |
6 | 5 | a1i 11 | . . . . . . 7 ⊢ ((𝑓:𝐵–1-1-onto→𝐶 ∧ 𝑅 ∈ Abel) → 𝐵 = (Base‘𝑅)) |
7 | f1ofo 6837 | . . . . . . . 8 ⊢ (𝑓:𝐵–1-1-onto→𝐶 → 𝑓:𝐵–onto→𝐶) | |
8 | 7 | adantr 481 | . . . . . . 7 ⊢ ((𝑓:𝐵–1-1-onto→𝐶 ∧ 𝑅 ∈ Abel) → 𝑓:𝐵–onto→𝐶) |
9 | simpr 485 | . . . . . . 7 ⊢ ((𝑓:𝐵–1-1-onto→𝐶 ∧ 𝑅 ∈ Abel) → 𝑅 ∈ Abel) | |
10 | 4, 6, 8, 9 | imasbas 17454 | . . . . . 6 ⊢ ((𝑓:𝐵–1-1-onto→𝐶 ∧ 𝑅 ∈ Abel) → 𝐶 = (Base‘(𝑓 “s 𝑅))) |
11 | simpl 483 | . . . . . . . . . 10 ⊢ ((𝑓:𝐵–1-1-onto→𝐶 ∧ 𝑅 ∈ Abel) → 𝑓:𝐵–1-1-onto→𝐶) | |
12 | ablgrp 19647 | . . . . . . . . . . 11 ⊢ (𝑅 ∈ Abel → 𝑅 ∈ Grp) | |
13 | 12 | adantl 482 | . . . . . . . . . 10 ⊢ ((𝑓:𝐵–1-1-onto→𝐶 ∧ 𝑅 ∈ Abel) → 𝑅 ∈ Grp) |
14 | 4, 6, 11, 13 | imasgim 41827 | . . . . . . . . 9 ⊢ ((𝑓:𝐵–1-1-onto→𝐶 ∧ 𝑅 ∈ Abel) → 𝑓 ∈ (𝑅 GrpIso (𝑓 “s 𝑅))) |
15 | brgici 19138 | . . . . . . . . 9 ⊢ (𝑓 ∈ (𝑅 GrpIso (𝑓 “s 𝑅)) → 𝑅 ≃𝑔 (𝑓 “s 𝑅)) | |
16 | gicabl 41826 | . . . . . . . . 9 ⊢ (𝑅 ≃𝑔 (𝑓 “s 𝑅) → (𝑅 ∈ Abel ↔ (𝑓 “s 𝑅) ∈ Abel)) | |
17 | 14, 15, 16 | 3syl 18 | . . . . . . . 8 ⊢ ((𝑓:𝐵–1-1-onto→𝐶 ∧ 𝑅 ∈ Abel) → (𝑅 ∈ Abel ↔ (𝑓 “s 𝑅) ∈ Abel)) |
18 | 9, 17 | mpbid 231 | . . . . . . 7 ⊢ ((𝑓:𝐵–1-1-onto→𝐶 ∧ 𝑅 ∈ Abel) → (𝑓 “s 𝑅) ∈ Abel) |
19 | basfn 17144 | . . . . . . . 8 ⊢ Base Fn V | |
20 | ssv 4005 | . . . . . . . 8 ⊢ Abel ⊆ V | |
21 | fnfvima 7231 | . . . . . . . 8 ⊢ ((Base Fn V ∧ Abel ⊆ V ∧ (𝑓 “s 𝑅) ∈ Abel) → (Base‘(𝑓 “s 𝑅)) ∈ (Base “ Abel)) | |
22 | 19, 20, 21 | mp3an12 1451 | . . . . . . 7 ⊢ ((𝑓 “s 𝑅) ∈ Abel → (Base‘(𝑓 “s 𝑅)) ∈ (Base “ Abel)) |
23 | 18, 22 | syl 17 | . . . . . 6 ⊢ ((𝑓:𝐵–1-1-onto→𝐶 ∧ 𝑅 ∈ Abel) → (Base‘(𝑓 “s 𝑅)) ∈ (Base “ Abel)) |
24 | 10, 23 | eqeltrd 2833 | . . . . 5 ⊢ ((𝑓:𝐵–1-1-onto→𝐶 ∧ 𝑅 ∈ Abel) → 𝐶 ∈ (Base “ Abel)) |
25 | 24 | ex 413 | . . . 4 ⊢ (𝑓:𝐵–1-1-onto→𝐶 → (𝑅 ∈ Abel → 𝐶 ∈ (Base “ Abel))) |
26 | 25 | exlimiv 1933 | . . 3 ⊢ (∃𝑓 𝑓:𝐵–1-1-onto→𝐶 → (𝑅 ∈ Abel → 𝐶 ∈ (Base “ Abel))) |
27 | 26 | impcom 408 | . 2 ⊢ ((𝑅 ∈ Abel ∧ ∃𝑓 𝑓:𝐵–1-1-onto→𝐶) → 𝐶 ∈ (Base “ Abel)) |
28 | 3, 27 | sylan2b 594 | 1 ⊢ ((𝑅 ∈ Abel ∧ 𝐶 ≈ 𝐵) → 𝐶 ∈ (Base “ Abel)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1541 ∃wex 1781 ∈ wcel 2106 Vcvv 3474 ⊆ wss 3947 class class class wbr 5147 “ cima 5678 Fn wfn 6535 –onto→wfo 6538 –1-1-onto→wf1o 6539 ‘cfv 6540 (class class class)co 7405 ≈ cen 8932 Basecbs 17140 “s cimas 17446 Grpcgrp 18815 GrpIso cgim 19125 ≃𝑔 cgic 19126 Abelcabl 19643 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-tp 4632 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7852 df-1st 7971 df-2nd 7972 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-1o 8462 df-er 8699 df-en 8936 df-dom 8937 df-sdom 8938 df-fin 8939 df-sup 9433 df-inf 9434 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-nn 12209 df-2 12271 df-3 12272 df-4 12273 df-5 12274 df-6 12275 df-7 12276 df-8 12277 df-9 12278 df-n0 12469 df-z 12555 df-dec 12674 df-uz 12819 df-fz 13481 df-struct 17076 df-slot 17111 df-ndx 17123 df-base 17141 df-plusg 17206 df-mulr 17207 df-sca 17209 df-vsca 17210 df-ip 17211 df-tset 17212 df-ple 17213 df-ds 17215 df-0g 17383 df-imas 17450 df-mgm 18557 df-sgrp 18606 df-mnd 18622 df-grp 18818 df-minusg 18819 df-ghm 19084 df-gim 19127 df-gic 19128 df-cmn 19644 df-abl 19645 |
This theorem is referenced by: isnumbasgrplem3 41832 |
Copyright terms: Public domain | W3C validator |