![]() |
Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > isnumbasgrplem1 | Structured version Visualization version GIF version |
Description: A set which is equipollent to the base set of a definable Abelian group is the base set of some (relabeled) Abelian group. (Contributed by Stefan O'Rear, 8-Jul-2015.) |
Ref | Expression |
---|---|
isnumbasgrplem1.b | ⊢ 𝐵 = (Base‘𝑅) |
Ref | Expression |
---|---|
isnumbasgrplem1 | ⊢ ((𝑅 ∈ Abel ∧ 𝐶 ≈ 𝐵) → 𝐶 ∈ (Base “ Abel)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ensymb 9021 | . . 3 ⊢ (𝐶 ≈ 𝐵 ↔ 𝐵 ≈ 𝐶) | |
2 | bren 8972 | . . 3 ⊢ (𝐵 ≈ 𝐶 ↔ ∃𝑓 𝑓:𝐵–1-1-onto→𝐶) | |
3 | 1, 2 | bitri 274 | . 2 ⊢ (𝐶 ≈ 𝐵 ↔ ∃𝑓 𝑓:𝐵–1-1-onto→𝐶) |
4 | eqidd 2726 | . . . . . . 7 ⊢ ((𝑓:𝐵–1-1-onto→𝐶 ∧ 𝑅 ∈ Abel) → (𝑓 “s 𝑅) = (𝑓 “s 𝑅)) | |
5 | isnumbasgrplem1.b | . . . . . . . 8 ⊢ 𝐵 = (Base‘𝑅) | |
6 | 5 | a1i 11 | . . . . . . 7 ⊢ ((𝑓:𝐵–1-1-onto→𝐶 ∧ 𝑅 ∈ Abel) → 𝐵 = (Base‘𝑅)) |
7 | f1ofo 6843 | . . . . . . . 8 ⊢ (𝑓:𝐵–1-1-onto→𝐶 → 𝑓:𝐵–onto→𝐶) | |
8 | 7 | adantr 479 | . . . . . . 7 ⊢ ((𝑓:𝐵–1-1-onto→𝐶 ∧ 𝑅 ∈ Abel) → 𝑓:𝐵–onto→𝐶) |
9 | simpr 483 | . . . . . . 7 ⊢ ((𝑓:𝐵–1-1-onto→𝐶 ∧ 𝑅 ∈ Abel) → 𝑅 ∈ Abel) | |
10 | 4, 6, 8, 9 | imasbas 17493 | . . . . . 6 ⊢ ((𝑓:𝐵–1-1-onto→𝐶 ∧ 𝑅 ∈ Abel) → 𝐶 = (Base‘(𝑓 “s 𝑅))) |
11 | simpl 481 | . . . . . . . . . 10 ⊢ ((𝑓:𝐵–1-1-onto→𝐶 ∧ 𝑅 ∈ Abel) → 𝑓:𝐵–1-1-onto→𝐶) | |
12 | ablgrp 19744 | . . . . . . . . . . 11 ⊢ (𝑅 ∈ Abel → 𝑅 ∈ Grp) | |
13 | 12 | adantl 480 | . . . . . . . . . 10 ⊢ ((𝑓:𝐵–1-1-onto→𝐶 ∧ 𝑅 ∈ Abel) → 𝑅 ∈ Grp) |
14 | 4, 6, 11, 13 | imasgim 42589 | . . . . . . . . 9 ⊢ ((𝑓:𝐵–1-1-onto→𝐶 ∧ 𝑅 ∈ Abel) → 𝑓 ∈ (𝑅 GrpIso (𝑓 “s 𝑅))) |
15 | brgici 19229 | . . . . . . . . 9 ⊢ (𝑓 ∈ (𝑅 GrpIso (𝑓 “s 𝑅)) → 𝑅 ≃𝑔 (𝑓 “s 𝑅)) | |
16 | gicabl 42588 | . . . . . . . . 9 ⊢ (𝑅 ≃𝑔 (𝑓 “s 𝑅) → (𝑅 ∈ Abel ↔ (𝑓 “s 𝑅) ∈ Abel)) | |
17 | 14, 15, 16 | 3syl 18 | . . . . . . . 8 ⊢ ((𝑓:𝐵–1-1-onto→𝐶 ∧ 𝑅 ∈ Abel) → (𝑅 ∈ Abel ↔ (𝑓 “s 𝑅) ∈ Abel)) |
18 | 9, 17 | mpbid 231 | . . . . . . 7 ⊢ ((𝑓:𝐵–1-1-onto→𝐶 ∧ 𝑅 ∈ Abel) → (𝑓 “s 𝑅) ∈ Abel) |
19 | basfn 17183 | . . . . . . . 8 ⊢ Base Fn V | |
20 | ssv 4002 | . . . . . . . 8 ⊢ Abel ⊆ V | |
21 | fnfvima 7243 | . . . . . . . 8 ⊢ ((Base Fn V ∧ Abel ⊆ V ∧ (𝑓 “s 𝑅) ∈ Abel) → (Base‘(𝑓 “s 𝑅)) ∈ (Base “ Abel)) | |
22 | 19, 20, 21 | mp3an12 1447 | . . . . . . 7 ⊢ ((𝑓 “s 𝑅) ∈ Abel → (Base‘(𝑓 “s 𝑅)) ∈ (Base “ Abel)) |
23 | 18, 22 | syl 17 | . . . . . 6 ⊢ ((𝑓:𝐵–1-1-onto→𝐶 ∧ 𝑅 ∈ Abel) → (Base‘(𝑓 “s 𝑅)) ∈ (Base “ Abel)) |
24 | 10, 23 | eqeltrd 2825 | . . . . 5 ⊢ ((𝑓:𝐵–1-1-onto→𝐶 ∧ 𝑅 ∈ Abel) → 𝐶 ∈ (Base “ Abel)) |
25 | 24 | ex 411 | . . . 4 ⊢ (𝑓:𝐵–1-1-onto→𝐶 → (𝑅 ∈ Abel → 𝐶 ∈ (Base “ Abel))) |
26 | 25 | exlimiv 1925 | . . 3 ⊢ (∃𝑓 𝑓:𝐵–1-1-onto→𝐶 → (𝑅 ∈ Abel → 𝐶 ∈ (Base “ Abel))) |
27 | 26 | impcom 406 | . 2 ⊢ ((𝑅 ∈ Abel ∧ ∃𝑓 𝑓:𝐵–1-1-onto→𝐶) → 𝐶 ∈ (Base “ Abel)) |
28 | 3, 27 | sylan2b 592 | 1 ⊢ ((𝑅 ∈ Abel ∧ 𝐶 ≈ 𝐵) → 𝐶 ∈ (Base “ Abel)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 = wceq 1533 ∃wex 1773 ∈ wcel 2098 Vcvv 3463 ⊆ wss 3945 class class class wbr 5148 “ cima 5680 Fn wfn 6542 –onto→wfo 6545 –1-1-onto→wf1o 6546 ‘cfv 6547 (class class class)co 7417 ≈ cen 8959 Basecbs 17179 “s cimas 17485 Grpcgrp 18894 GrpIso cgim 19215 ≃𝑔 cgic 19216 Abelcabl 19740 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5364 ax-pr 5428 ax-un 7739 ax-cnex 11194 ax-resscn 11195 ax-1cn 11196 ax-icn 11197 ax-addcl 11198 ax-addrcl 11199 ax-mulcl 11200 ax-mulrcl 11201 ax-mulcom 11202 ax-addass 11203 ax-mulass 11204 ax-distr 11205 ax-i2m1 11206 ax-1ne0 11207 ax-1rid 11208 ax-rnegex 11209 ax-rrecex 11210 ax-cnre 11211 ax-pre-lttri 11212 ax-pre-lttrn 11213 ax-pre-ltadd 11214 ax-pre-mulgt0 11215 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3775 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-pss 3965 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-tp 4634 df-op 4636 df-uni 4909 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6305 df-ord 6372 df-on 6373 df-lim 6374 df-suc 6375 df-iota 6499 df-fun 6549 df-fn 6550 df-f 6551 df-f1 6552 df-fo 6553 df-f1o 6554 df-fv 6555 df-riota 7373 df-ov 7420 df-oprab 7421 df-mpo 7422 df-om 7870 df-1st 7992 df-2nd 7993 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-er 8723 df-en 8963 df-dom 8964 df-sdom 8965 df-fin 8966 df-sup 9465 df-inf 9466 df-pnf 11280 df-mnf 11281 df-xr 11282 df-ltxr 11283 df-le 11284 df-sub 11476 df-neg 11477 df-nn 12243 df-2 12305 df-3 12306 df-4 12307 df-5 12308 df-6 12309 df-7 12310 df-8 12311 df-9 12312 df-n0 12503 df-z 12589 df-dec 12708 df-uz 12853 df-fz 13517 df-struct 17115 df-slot 17150 df-ndx 17162 df-base 17180 df-plusg 17245 df-mulr 17246 df-sca 17248 df-vsca 17249 df-ip 17250 df-tset 17251 df-ple 17252 df-ds 17254 df-0g 17422 df-imas 17489 df-mgm 18599 df-sgrp 18678 df-mnd 18694 df-grp 18897 df-minusg 18898 df-ghm 19172 df-gim 19217 df-gic 19218 df-cmn 19741 df-abl 19742 |
This theorem is referenced by: isnumbasgrplem3 42594 |
Copyright terms: Public domain | W3C validator |