Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > isnumbasgrplem1 | Structured version Visualization version GIF version |
Description: A set which is equipollent to the base set of a definable Abelian group is the base set of some (relabeled) Abelian group. (Contributed by Stefan O'Rear, 8-Jul-2015.) |
Ref | Expression |
---|---|
isnumbasgrplem1.b | ⊢ 𝐵 = (Base‘𝑅) |
Ref | Expression |
---|---|
isnumbasgrplem1 | ⊢ ((𝑅 ∈ Abel ∧ 𝐶 ≈ 𝐵) → 𝐶 ∈ (Base “ Abel)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ensymb 8743 | . . 3 ⊢ (𝐶 ≈ 𝐵 ↔ 𝐵 ≈ 𝐶) | |
2 | bren 8701 | . . 3 ⊢ (𝐵 ≈ 𝐶 ↔ ∃𝑓 𝑓:𝐵–1-1-onto→𝐶) | |
3 | 1, 2 | bitri 274 | . 2 ⊢ (𝐶 ≈ 𝐵 ↔ ∃𝑓 𝑓:𝐵–1-1-onto→𝐶) |
4 | eqidd 2739 | . . . . . . 7 ⊢ ((𝑓:𝐵–1-1-onto→𝐶 ∧ 𝑅 ∈ Abel) → (𝑓 “s 𝑅) = (𝑓 “s 𝑅)) | |
5 | isnumbasgrplem1.b | . . . . . . . 8 ⊢ 𝐵 = (Base‘𝑅) | |
6 | 5 | a1i 11 | . . . . . . 7 ⊢ ((𝑓:𝐵–1-1-onto→𝐶 ∧ 𝑅 ∈ Abel) → 𝐵 = (Base‘𝑅)) |
7 | f1ofo 6707 | . . . . . . . 8 ⊢ (𝑓:𝐵–1-1-onto→𝐶 → 𝑓:𝐵–onto→𝐶) | |
8 | 7 | adantr 480 | . . . . . . 7 ⊢ ((𝑓:𝐵–1-1-onto→𝐶 ∧ 𝑅 ∈ Abel) → 𝑓:𝐵–onto→𝐶) |
9 | simpr 484 | . . . . . . 7 ⊢ ((𝑓:𝐵–1-1-onto→𝐶 ∧ 𝑅 ∈ Abel) → 𝑅 ∈ Abel) | |
10 | 4, 6, 8, 9 | imasbas 17140 | . . . . . 6 ⊢ ((𝑓:𝐵–1-1-onto→𝐶 ∧ 𝑅 ∈ Abel) → 𝐶 = (Base‘(𝑓 “s 𝑅))) |
11 | simpl 482 | . . . . . . . . . 10 ⊢ ((𝑓:𝐵–1-1-onto→𝐶 ∧ 𝑅 ∈ Abel) → 𝑓:𝐵–1-1-onto→𝐶) | |
12 | ablgrp 19306 | . . . . . . . . . . 11 ⊢ (𝑅 ∈ Abel → 𝑅 ∈ Grp) | |
13 | 12 | adantl 481 | . . . . . . . . . 10 ⊢ ((𝑓:𝐵–1-1-onto→𝐶 ∧ 𝑅 ∈ Abel) → 𝑅 ∈ Grp) |
14 | 4, 6, 11, 13 | imasgim 40841 | . . . . . . . . 9 ⊢ ((𝑓:𝐵–1-1-onto→𝐶 ∧ 𝑅 ∈ Abel) → 𝑓 ∈ (𝑅 GrpIso (𝑓 “s 𝑅))) |
15 | brgici 18801 | . . . . . . . . 9 ⊢ (𝑓 ∈ (𝑅 GrpIso (𝑓 “s 𝑅)) → 𝑅 ≃𝑔 (𝑓 “s 𝑅)) | |
16 | gicabl 40840 | . . . . . . . . 9 ⊢ (𝑅 ≃𝑔 (𝑓 “s 𝑅) → (𝑅 ∈ Abel ↔ (𝑓 “s 𝑅) ∈ Abel)) | |
17 | 14, 15, 16 | 3syl 18 | . . . . . . . 8 ⊢ ((𝑓:𝐵–1-1-onto→𝐶 ∧ 𝑅 ∈ Abel) → (𝑅 ∈ Abel ↔ (𝑓 “s 𝑅) ∈ Abel)) |
18 | 9, 17 | mpbid 231 | . . . . . . 7 ⊢ ((𝑓:𝐵–1-1-onto→𝐶 ∧ 𝑅 ∈ Abel) → (𝑓 “s 𝑅) ∈ Abel) |
19 | basfn 16844 | . . . . . . . 8 ⊢ Base Fn V | |
20 | ssv 3941 | . . . . . . . 8 ⊢ Abel ⊆ V | |
21 | fnfvima 7091 | . . . . . . . 8 ⊢ ((Base Fn V ∧ Abel ⊆ V ∧ (𝑓 “s 𝑅) ∈ Abel) → (Base‘(𝑓 “s 𝑅)) ∈ (Base “ Abel)) | |
22 | 19, 20, 21 | mp3an12 1449 | . . . . . . 7 ⊢ ((𝑓 “s 𝑅) ∈ Abel → (Base‘(𝑓 “s 𝑅)) ∈ (Base “ Abel)) |
23 | 18, 22 | syl 17 | . . . . . 6 ⊢ ((𝑓:𝐵–1-1-onto→𝐶 ∧ 𝑅 ∈ Abel) → (Base‘(𝑓 “s 𝑅)) ∈ (Base “ Abel)) |
24 | 10, 23 | eqeltrd 2839 | . . . . 5 ⊢ ((𝑓:𝐵–1-1-onto→𝐶 ∧ 𝑅 ∈ Abel) → 𝐶 ∈ (Base “ Abel)) |
25 | 24 | ex 412 | . . . 4 ⊢ (𝑓:𝐵–1-1-onto→𝐶 → (𝑅 ∈ Abel → 𝐶 ∈ (Base “ Abel))) |
26 | 25 | exlimiv 1934 | . . 3 ⊢ (∃𝑓 𝑓:𝐵–1-1-onto→𝐶 → (𝑅 ∈ Abel → 𝐶 ∈ (Base “ Abel))) |
27 | 26 | impcom 407 | . 2 ⊢ ((𝑅 ∈ Abel ∧ ∃𝑓 𝑓:𝐵–1-1-onto→𝐶) → 𝐶 ∈ (Base “ Abel)) |
28 | 3, 27 | sylan2b 593 | 1 ⊢ ((𝑅 ∈ Abel ∧ 𝐶 ≈ 𝐵) → 𝐶 ∈ (Base “ Abel)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∃wex 1783 ∈ wcel 2108 Vcvv 3422 ⊆ wss 3883 class class class wbr 5070 “ cima 5583 Fn wfn 6413 –onto→wfo 6416 –1-1-onto→wf1o 6417 ‘cfv 6418 (class class class)co 7255 ≈ cen 8688 Basecbs 16840 “s cimas 17132 Grpcgrp 18492 GrpIso cgim 18788 ≃𝑔 cgic 18789 Abelcabl 19302 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-sup 9131 df-inf 9132 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-9 11973 df-n0 12164 df-z 12250 df-dec 12367 df-uz 12512 df-fz 13169 df-struct 16776 df-slot 16811 df-ndx 16823 df-base 16841 df-plusg 16901 df-mulr 16902 df-sca 16904 df-vsca 16905 df-ip 16906 df-tset 16907 df-ple 16908 df-ds 16910 df-0g 17069 df-imas 17136 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-grp 18495 df-minusg 18496 df-ghm 18747 df-gim 18790 df-gic 18791 df-cmn 19303 df-abl 19304 |
This theorem is referenced by: isnumbasgrplem3 40846 |
Copyright terms: Public domain | W3C validator |