Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isnumbasgrplem1 Structured version   Visualization version   GIF version

Theorem isnumbasgrplem1 43074
Description: A set which is equipollent to the base set of a definable Abelian group is the base set of some (relabeled) Abelian group. (Contributed by Stefan O'Rear, 8-Jul-2015.)
Hypothesis
Ref Expression
isnumbasgrplem1.b 𝐵 = (Base‘𝑅)
Assertion
Ref Expression
isnumbasgrplem1 ((𝑅 ∈ Abel ∧ 𝐶𝐵) → 𝐶 ∈ (Base “ Abel))

Proof of Theorem isnumbasgrplem1
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 ensymb 8927 . . 3 (𝐶𝐵𝐵𝐶)
2 bren 8882 . . 3 (𝐵𝐶 ↔ ∃𝑓 𝑓:𝐵1-1-onto𝐶)
31, 2bitri 275 . 2 (𝐶𝐵 ↔ ∃𝑓 𝑓:𝐵1-1-onto𝐶)
4 eqidd 2730 . . . . . . 7 ((𝑓:𝐵1-1-onto𝐶𝑅 ∈ Abel) → (𝑓s 𝑅) = (𝑓s 𝑅))
5 isnumbasgrplem1.b . . . . . . . 8 𝐵 = (Base‘𝑅)
65a1i 11 . . . . . . 7 ((𝑓:𝐵1-1-onto𝐶𝑅 ∈ Abel) → 𝐵 = (Base‘𝑅))
7 f1ofo 6771 . . . . . . . 8 (𝑓:𝐵1-1-onto𝐶𝑓:𝐵onto𝐶)
87adantr 480 . . . . . . 7 ((𝑓:𝐵1-1-onto𝐶𝑅 ∈ Abel) → 𝑓:𝐵onto𝐶)
9 simpr 484 . . . . . . 7 ((𝑓:𝐵1-1-onto𝐶𝑅 ∈ Abel) → 𝑅 ∈ Abel)
104, 6, 8, 9imasbas 17416 . . . . . 6 ((𝑓:𝐵1-1-onto𝐶𝑅 ∈ Abel) → 𝐶 = (Base‘(𝑓s 𝑅)))
11 simpl 482 . . . . . . . . . 10 ((𝑓:𝐵1-1-onto𝐶𝑅 ∈ Abel) → 𝑓:𝐵1-1-onto𝐶)
12 ablgrp 19664 . . . . . . . . . . 11 (𝑅 ∈ Abel → 𝑅 ∈ Grp)
1312adantl 481 . . . . . . . . . 10 ((𝑓:𝐵1-1-onto𝐶𝑅 ∈ Abel) → 𝑅 ∈ Grp)
144, 6, 11, 13imasgim 43073 . . . . . . . . 9 ((𝑓:𝐵1-1-onto𝐶𝑅 ∈ Abel) → 𝑓 ∈ (𝑅 GrpIso (𝑓s 𝑅)))
15 brgici 19150 . . . . . . . . 9 (𝑓 ∈ (𝑅 GrpIso (𝑓s 𝑅)) → 𝑅𝑔 (𝑓s 𝑅))
16 gicabl 43072 . . . . . . . . 9 (𝑅𝑔 (𝑓s 𝑅) → (𝑅 ∈ Abel ↔ (𝑓s 𝑅) ∈ Abel))
1714, 15, 163syl 18 . . . . . . . 8 ((𝑓:𝐵1-1-onto𝐶𝑅 ∈ Abel) → (𝑅 ∈ Abel ↔ (𝑓s 𝑅) ∈ Abel))
189, 17mpbid 232 . . . . . . 7 ((𝑓:𝐵1-1-onto𝐶𝑅 ∈ Abel) → (𝑓s 𝑅) ∈ Abel)
19 basfn 17124 . . . . . . . 8 Base Fn V
20 ssv 3960 . . . . . . . 8 Abel ⊆ V
21 fnfvima 7169 . . . . . . . 8 ((Base Fn V ∧ Abel ⊆ V ∧ (𝑓s 𝑅) ∈ Abel) → (Base‘(𝑓s 𝑅)) ∈ (Base “ Abel))
2219, 20, 21mp3an12 1453 . . . . . . 7 ((𝑓s 𝑅) ∈ Abel → (Base‘(𝑓s 𝑅)) ∈ (Base “ Abel))
2318, 22syl 17 . . . . . 6 ((𝑓:𝐵1-1-onto𝐶𝑅 ∈ Abel) → (Base‘(𝑓s 𝑅)) ∈ (Base “ Abel))
2410, 23eqeltrd 2828 . . . . 5 ((𝑓:𝐵1-1-onto𝐶𝑅 ∈ Abel) → 𝐶 ∈ (Base “ Abel))
2524ex 412 . . . 4 (𝑓:𝐵1-1-onto𝐶 → (𝑅 ∈ Abel → 𝐶 ∈ (Base “ Abel)))
2625exlimiv 1930 . . 3 (∃𝑓 𝑓:𝐵1-1-onto𝐶 → (𝑅 ∈ Abel → 𝐶 ∈ (Base “ Abel)))
2726impcom 407 . 2 ((𝑅 ∈ Abel ∧ ∃𝑓 𝑓:𝐵1-1-onto𝐶) → 𝐶 ∈ (Base “ Abel))
283, 27sylan2b 594 1 ((𝑅 ∈ Abel ∧ 𝐶𝐵) → 𝐶 ∈ (Base “ Abel))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wex 1779  wcel 2109  Vcvv 3436  wss 3903   class class class wbr 5092  cima 5622   Fn wfn 6477  ontowfo 6480  1-1-ontowf1o 6481  cfv 6482  (class class class)co 7349  cen 8869  Basecbs 17120  s cimas 17408  Grpcgrp 18812   GrpIso cgim 19136  𝑔 cgic 19137  Abelcabl 19660
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-er 8625  df-map 8755  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-sup 9332  df-inf 9333  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-nn 12129  df-2 12191  df-3 12192  df-4 12193  df-5 12194  df-6 12195  df-7 12196  df-8 12197  df-9 12198  df-n0 12385  df-z 12472  df-dec 12592  df-uz 12736  df-fz 13411  df-struct 17058  df-slot 17093  df-ndx 17105  df-base 17121  df-plusg 17174  df-mulr 17175  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-0g 17345  df-imas 17412  df-mgm 18514  df-sgrp 18593  df-mnd 18609  df-grp 18815  df-minusg 18816  df-ghm 19092  df-gim 19138  df-gic 19139  df-cmn 19661  df-abl 19662
This theorem is referenced by:  isnumbasgrplem3  43078
  Copyright terms: Public domain W3C validator