Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isnumbasgrplem1 Structured version   Visualization version   GIF version

Theorem isnumbasgrplem1 41457
Description: A set which is equipollent to the base set of a definable Abelian group is the base set of some (relabeled) Abelian group. (Contributed by Stefan O'Rear, 8-Jul-2015.)
Hypothesis
Ref Expression
isnumbasgrplem1.b 𝐵 = (Base‘𝑅)
Assertion
Ref Expression
isnumbasgrplem1 ((𝑅 ∈ Abel ∧ 𝐶𝐵) → 𝐶 ∈ (Base “ Abel))

Proof of Theorem isnumbasgrplem1
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 ensymb 8949 . . 3 (𝐶𝐵𝐵𝐶)
2 bren 8900 . . 3 (𝐵𝐶 ↔ ∃𝑓 𝑓:𝐵1-1-onto𝐶)
31, 2bitri 275 . 2 (𝐶𝐵 ↔ ∃𝑓 𝑓:𝐵1-1-onto𝐶)
4 eqidd 2738 . . . . . . 7 ((𝑓:𝐵1-1-onto𝐶𝑅 ∈ Abel) → (𝑓s 𝑅) = (𝑓s 𝑅))
5 isnumbasgrplem1.b . . . . . . . 8 𝐵 = (Base‘𝑅)
65a1i 11 . . . . . . 7 ((𝑓:𝐵1-1-onto𝐶𝑅 ∈ Abel) → 𝐵 = (Base‘𝑅))
7 f1ofo 6796 . . . . . . . 8 (𝑓:𝐵1-1-onto𝐶𝑓:𝐵onto𝐶)
87adantr 482 . . . . . . 7 ((𝑓:𝐵1-1-onto𝐶𝑅 ∈ Abel) → 𝑓:𝐵onto𝐶)
9 simpr 486 . . . . . . 7 ((𝑓:𝐵1-1-onto𝐶𝑅 ∈ Abel) → 𝑅 ∈ Abel)
104, 6, 8, 9imasbas 17401 . . . . . 6 ((𝑓:𝐵1-1-onto𝐶𝑅 ∈ Abel) → 𝐶 = (Base‘(𝑓s 𝑅)))
11 simpl 484 . . . . . . . . . 10 ((𝑓:𝐵1-1-onto𝐶𝑅 ∈ Abel) → 𝑓:𝐵1-1-onto𝐶)
12 ablgrp 19574 . . . . . . . . . . 11 (𝑅 ∈ Abel → 𝑅 ∈ Grp)
1312adantl 483 . . . . . . . . . 10 ((𝑓:𝐵1-1-onto𝐶𝑅 ∈ Abel) → 𝑅 ∈ Grp)
144, 6, 11, 13imasgim 41456 . . . . . . . . 9 ((𝑓:𝐵1-1-onto𝐶𝑅 ∈ Abel) → 𝑓 ∈ (𝑅 GrpIso (𝑓s 𝑅)))
15 brgici 19067 . . . . . . . . 9 (𝑓 ∈ (𝑅 GrpIso (𝑓s 𝑅)) → 𝑅𝑔 (𝑓s 𝑅))
16 gicabl 41455 . . . . . . . . 9 (𝑅𝑔 (𝑓s 𝑅) → (𝑅 ∈ Abel ↔ (𝑓s 𝑅) ∈ Abel))
1714, 15, 163syl 18 . . . . . . . 8 ((𝑓:𝐵1-1-onto𝐶𝑅 ∈ Abel) → (𝑅 ∈ Abel ↔ (𝑓s 𝑅) ∈ Abel))
189, 17mpbid 231 . . . . . . 7 ((𝑓:𝐵1-1-onto𝐶𝑅 ∈ Abel) → (𝑓s 𝑅) ∈ Abel)
19 basfn 17094 . . . . . . . 8 Base Fn V
20 ssv 3973 . . . . . . . 8 Abel ⊆ V
21 fnfvima 7188 . . . . . . . 8 ((Base Fn V ∧ Abel ⊆ V ∧ (𝑓s 𝑅) ∈ Abel) → (Base‘(𝑓s 𝑅)) ∈ (Base “ Abel))
2219, 20, 21mp3an12 1452 . . . . . . 7 ((𝑓s 𝑅) ∈ Abel → (Base‘(𝑓s 𝑅)) ∈ (Base “ Abel))
2318, 22syl 17 . . . . . 6 ((𝑓:𝐵1-1-onto𝐶𝑅 ∈ Abel) → (Base‘(𝑓s 𝑅)) ∈ (Base “ Abel))
2410, 23eqeltrd 2838 . . . . 5 ((𝑓:𝐵1-1-onto𝐶𝑅 ∈ Abel) → 𝐶 ∈ (Base “ Abel))
2524ex 414 . . . 4 (𝑓:𝐵1-1-onto𝐶 → (𝑅 ∈ Abel → 𝐶 ∈ (Base “ Abel)))
2625exlimiv 1934 . . 3 (∃𝑓 𝑓:𝐵1-1-onto𝐶 → (𝑅 ∈ Abel → 𝐶 ∈ (Base “ Abel)))
2726impcom 409 . 2 ((𝑅 ∈ Abel ∧ ∃𝑓 𝑓:𝐵1-1-onto𝐶) → 𝐶 ∈ (Base “ Abel))
283, 27sylan2b 595 1 ((𝑅 ∈ Abel ∧ 𝐶𝐵) → 𝐶 ∈ (Base “ Abel))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397   = wceq 1542  wex 1782  wcel 2107  Vcvv 3448  wss 3915   class class class wbr 5110  cima 5641   Fn wfn 6496  ontowfo 6499  1-1-ontowf1o 6500  cfv 6501  (class class class)co 7362  cen 8887  Basecbs 17090  s cimas 17393  Grpcgrp 18755   GrpIso cgim 19054  𝑔 cgic 19055  Abelcabl 19570
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2708  ax-rep 5247  ax-sep 5261  ax-nul 5268  ax-pow 5325  ax-pr 5389  ax-un 7677  ax-cnex 11114  ax-resscn 11115  ax-1cn 11116  ax-icn 11117  ax-addcl 11118  ax-addrcl 11119  ax-mulcl 11120  ax-mulrcl 11121  ax-mulcom 11122  ax-addass 11123  ax-mulass 11124  ax-distr 11125  ax-i2m1 11126  ax-1ne0 11127  ax-1rid 11128  ax-rnegex 11129  ax-rrecex 11130  ax-cnre 11131  ax-pre-lttri 11132  ax-pre-lttrn 11133  ax-pre-ltadd 11134  ax-pre-mulgt0 11135
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3066  df-rex 3075  df-rmo 3356  df-reu 3357  df-rab 3411  df-v 3450  df-sbc 3745  df-csb 3861  df-dif 3918  df-un 3920  df-in 3922  df-ss 3932  df-pss 3934  df-nul 4288  df-if 4492  df-pw 4567  df-sn 4592  df-pr 4594  df-tp 4596  df-op 4598  df-uni 4871  df-iun 4961  df-br 5111  df-opab 5173  df-mpt 5194  df-tr 5228  df-id 5536  df-eprel 5542  df-po 5550  df-so 5551  df-fr 5593  df-we 5595  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6258  df-ord 6325  df-on 6326  df-lim 6327  df-suc 6328  df-iota 6453  df-fun 6503  df-fn 6504  df-f 6505  df-f1 6506  df-fo 6507  df-f1o 6508  df-fv 6509  df-riota 7318  df-ov 7365  df-oprab 7366  df-mpo 7367  df-om 7808  df-1st 7926  df-2nd 7927  df-frecs 8217  df-wrecs 8248  df-recs 8322  df-rdg 8361  df-1o 8417  df-er 8655  df-en 8891  df-dom 8892  df-sdom 8893  df-fin 8894  df-sup 9385  df-inf 9386  df-pnf 11198  df-mnf 11199  df-xr 11200  df-ltxr 11201  df-le 11202  df-sub 11394  df-neg 11395  df-nn 12161  df-2 12223  df-3 12224  df-4 12225  df-5 12226  df-6 12227  df-7 12228  df-8 12229  df-9 12230  df-n0 12421  df-z 12507  df-dec 12626  df-uz 12771  df-fz 13432  df-struct 17026  df-slot 17061  df-ndx 17073  df-base 17091  df-plusg 17153  df-mulr 17154  df-sca 17156  df-vsca 17157  df-ip 17158  df-tset 17159  df-ple 17160  df-ds 17162  df-0g 17330  df-imas 17397  df-mgm 18504  df-sgrp 18553  df-mnd 18564  df-grp 18758  df-minusg 18759  df-ghm 19013  df-gim 19056  df-gic 19057  df-cmn 19571  df-abl 19572
This theorem is referenced by:  isnumbasgrplem3  41461
  Copyright terms: Public domain W3C validator