| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > usgrexmpl12ngrlic | Structured version Visualization version GIF version | ||
| Description: The graphs 𝐻 and 𝐺 are not locally isomorphic (𝐻 contains a triangle, see usgrexmpl1tri 48056, whereas 𝐺 does not, see usgrexmpl2trifr 48068. (Contributed by AV, 24-Aug-2025.) |
| Ref | Expression |
|---|---|
| usgrexmpl2.v | ⊢ 𝑉 = (0...5) |
| usgrexmpl2.e | ⊢ 𝐸 = 〈“{0, 1} {1, 2} {2, 3} {3, 4} {4, 5} {0, 3} {0, 5}”〉 |
| usgrexmpl2.g | ⊢ 𝐺 = 〈𝑉, 𝐸〉 |
| usgrexmpl1.k | ⊢ 𝐾 = 〈“{0, 1} {0, 2} {1, 2} {0, 3} {3, 4} {3, 5} {4, 5}”〉 |
| usgrexmpl1.h | ⊢ 𝐻 = 〈𝑉, 𝐾〉 |
| Ref | Expression |
|---|---|
| usgrexmpl12ngrlic | ⊢ ¬ 𝐺 ≃𝑙𝑔𝑟 𝐻 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | usgrexmpl2.v | . . . . 5 ⊢ 𝑉 = (0...5) | |
| 2 | usgrexmpl2.e | . . . . 5 ⊢ 𝐸 = 〈“{0, 1} {1, 2} {2, 3} {3, 4} {4, 5} {0, 3} {0, 5}”〉 | |
| 3 | usgrexmpl2.g | . . . . 5 ⊢ 𝐺 = 〈𝑉, 𝐸〉 | |
| 4 | 1, 2, 3 | usgrexmpl2 48058 | . . . 4 ⊢ 𝐺 ∈ USGraph |
| 5 | usgruhgr 29159 | . . . 4 ⊢ (𝐺 ∈ USGraph → 𝐺 ∈ UHGraph) | |
| 6 | grlicsym 48044 | . . . 4 ⊢ (𝐺 ∈ UHGraph → (𝐺 ≃𝑙𝑔𝑟 𝐻 → 𝐻 ≃𝑙𝑔𝑟 𝐺)) | |
| 7 | 4, 5, 6 | mp2b 10 | . . 3 ⊢ (𝐺 ≃𝑙𝑔𝑟 𝐻 → 𝐻 ≃𝑙𝑔𝑟 𝐺) |
| 8 | usgrexmpl1.k | . . . 4 ⊢ 𝐾 = 〈“{0, 1} {0, 2} {1, 2} {0, 3} {3, 4} {3, 5} {4, 5}”〉 | |
| 9 | usgrexmpl1.h | . . . 4 ⊢ 𝐻 = 〈𝑉, 𝐾〉 | |
| 10 | 1, 8, 9 | usgrexmpl1tri 48056 | . . 3 ⊢ {0, 1, 2} ∈ (GrTriangles‘𝐻) |
| 11 | brgrlic 48035 | . . . . 5 ⊢ (𝐻 ≃𝑙𝑔𝑟 𝐺 ↔ (𝐻 GraphLocIso 𝐺) ≠ ∅) | |
| 12 | n0 4298 | . . . . 5 ⊢ ((𝐻 GraphLocIso 𝐺) ≠ ∅ ↔ ∃𝑓 𝑓 ∈ (𝐻 GraphLocIso 𝐺)) | |
| 13 | 11, 12 | bitri 275 | . . . 4 ⊢ (𝐻 ≃𝑙𝑔𝑟 𝐺 ↔ ∃𝑓 𝑓 ∈ (𝐻 GraphLocIso 𝐺)) |
| 14 | 1, 2, 3 | usgrexmpl2trifr 48068 | . . . . . 6 ⊢ ¬ ∃𝑡 𝑡 ∈ (GrTriangles‘𝐺) |
| 15 | 1, 8, 9 | usgrexmpl1 48053 | . . . . . . . . 9 ⊢ 𝐻 ∈ USGraph |
| 16 | usgruspgr 29153 | . . . . . . . . 9 ⊢ (𝐻 ∈ USGraph → 𝐻 ∈ USPGraph) | |
| 17 | 15, 16 | mp1i 13 | . . . . . . . 8 ⊢ ((𝑓 ∈ (𝐻 GraphLocIso 𝐺) ∧ {0, 1, 2} ∈ (GrTriangles‘𝐻)) → 𝐻 ∈ USPGraph) |
| 18 | usgruspgr 29153 | . . . . . . . . 9 ⊢ (𝐺 ∈ USGraph → 𝐺 ∈ USPGraph) | |
| 19 | 4, 18 | mp1i 13 | . . . . . . . 8 ⊢ ((𝑓 ∈ (𝐻 GraphLocIso 𝐺) ∧ {0, 1, 2} ∈ (GrTriangles‘𝐻)) → 𝐺 ∈ USPGraph) |
| 20 | simpl 482 | . . . . . . . 8 ⊢ ((𝑓 ∈ (𝐻 GraphLocIso 𝐺) ∧ {0, 1, 2} ∈ (GrTriangles‘𝐻)) → 𝑓 ∈ (𝐻 GraphLocIso 𝐺)) | |
| 21 | simpr 484 | . . . . . . . 8 ⊢ ((𝑓 ∈ (𝐻 GraphLocIso 𝐺) ∧ {0, 1, 2} ∈ (GrTriangles‘𝐻)) → {0, 1, 2} ∈ (GrTriangles‘𝐻)) | |
| 22 | 17, 19, 20, 21 | grlimgrtri 48034 | . . . . . . 7 ⊢ ((𝑓 ∈ (𝐻 GraphLocIso 𝐺) ∧ {0, 1, 2} ∈ (GrTriangles‘𝐻)) → ∃𝑡 𝑡 ∈ (GrTriangles‘𝐺)) |
| 23 | 22 | ex 412 | . . . . . 6 ⊢ (𝑓 ∈ (𝐻 GraphLocIso 𝐺) → ({0, 1, 2} ∈ (GrTriangles‘𝐻) → ∃𝑡 𝑡 ∈ (GrTriangles‘𝐺))) |
| 24 | pm2.21 123 | . . . . . 6 ⊢ (¬ ∃𝑡 𝑡 ∈ (GrTriangles‘𝐺) → (∃𝑡 𝑡 ∈ (GrTriangles‘𝐺) → ¬ 𝐺 ≃𝑙𝑔𝑟 𝐻)) | |
| 25 | 14, 23, 24 | mpsylsyld 69 | . . . . 5 ⊢ (𝑓 ∈ (𝐻 GraphLocIso 𝐺) → ({0, 1, 2} ∈ (GrTriangles‘𝐻) → ¬ 𝐺 ≃𝑙𝑔𝑟 𝐻)) |
| 26 | 25 | exlimiv 1931 | . . . 4 ⊢ (∃𝑓 𝑓 ∈ (𝐻 GraphLocIso 𝐺) → ({0, 1, 2} ∈ (GrTriangles‘𝐻) → ¬ 𝐺 ≃𝑙𝑔𝑟 𝐻)) |
| 27 | 13, 26 | sylbi 217 | . . 3 ⊢ (𝐻 ≃𝑙𝑔𝑟 𝐺 → ({0, 1, 2} ∈ (GrTriangles‘𝐻) → ¬ 𝐺 ≃𝑙𝑔𝑟 𝐻)) |
| 28 | 7, 10, 27 | mpisyl 21 | . 2 ⊢ (𝐺 ≃𝑙𝑔𝑟 𝐻 → ¬ 𝐺 ≃𝑙𝑔𝑟 𝐻) |
| 29 | 28 | pm2.01i 189 | 1 ⊢ ¬ 𝐺 ≃𝑙𝑔𝑟 𝐻 |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1541 ∃wex 1780 ∈ wcel 2111 ≠ wne 2928 ∅c0 4278 {cpr 4573 {ctp 4575 〈cop 4577 class class class wbr 5086 ‘cfv 6476 (class class class)co 7341 0cc0 11001 1c1 11002 2c2 12175 3c3 12176 4c4 12177 5c5 12178 ...cfz 13402 〈“cs7 14748 UHGraphcuhgr 29029 USPGraphcuspgr 29121 USGraphcusgr 29122 GrTrianglescgrtri 47968 GraphLocIso cgrlim 48007 ≃𝑙𝑔𝑟 cgrlic 48008 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5212 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-cnex 11057 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 ax-pre-mulgt0 11078 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-tp 4576 df-op 4578 df-uni 4855 df-int 4893 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-1st 7916 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-1o 8380 df-2o 8381 df-3o 8382 df-oadd 8384 df-er 8617 df-map 8747 df-en 8865 df-dom 8866 df-sdom 8867 df-fin 8868 df-dju 9789 df-card 9827 df-pnf 11143 df-mnf 11144 df-xr 11145 df-ltxr 11146 df-le 11147 df-sub 11341 df-neg 11342 df-nn 12121 df-2 12183 df-3 12184 df-4 12185 df-5 12186 df-6 12187 df-7 12188 df-n0 12377 df-xnn0 12450 df-z 12464 df-uz 12728 df-fz 13403 df-fzo 13550 df-hash 14233 df-word 14416 df-concat 14473 df-s1 14499 df-s2 14750 df-s3 14751 df-s4 14752 df-s5 14753 df-s6 14754 df-s7 14755 df-vtx 28971 df-iedg 28972 df-edg 29021 df-uhgr 29031 df-upgr 29055 df-umgr 29056 df-uspgr 29123 df-usgr 29124 df-nbgr 29306 df-clnbgr 47850 df-isubgr 47892 df-grim 47909 df-gric 47912 df-grtri 47969 df-grlim 48009 df-grlic 48012 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |