| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > usgrexmpl12ngrlic | Structured version Visualization version GIF version | ||
| Description: The graphs 𝐻 and 𝐺 are not locally isomorphic (𝐻 contains a triangle, see usgrexmpl1tri 48029, whereas 𝐺 does not, see usgrexmpl2trifr 48041. (Contributed by AV, 24-Aug-2025.) |
| Ref | Expression |
|---|---|
| usgrexmpl2.v | ⊢ 𝑉 = (0...5) |
| usgrexmpl2.e | ⊢ 𝐸 = 〈“{0, 1} {1, 2} {2, 3} {3, 4} {4, 5} {0, 3} {0, 5}”〉 |
| usgrexmpl2.g | ⊢ 𝐺 = 〈𝑉, 𝐸〉 |
| usgrexmpl1.k | ⊢ 𝐾 = 〈“{0, 1} {0, 2} {1, 2} {0, 3} {3, 4} {3, 5} {4, 5}”〉 |
| usgrexmpl1.h | ⊢ 𝐻 = 〈𝑉, 𝐾〉 |
| Ref | Expression |
|---|---|
| usgrexmpl12ngrlic | ⊢ ¬ 𝐺 ≃𝑙𝑔𝑟 𝐻 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | usgrexmpl2.v | . . . . 5 ⊢ 𝑉 = (0...5) | |
| 2 | usgrexmpl2.e | . . . . 5 ⊢ 𝐸 = 〈“{0, 1} {1, 2} {2, 3} {3, 4} {4, 5} {0, 3} {0, 5}”〉 | |
| 3 | usgrexmpl2.g | . . . . 5 ⊢ 𝐺 = 〈𝑉, 𝐸〉 | |
| 4 | 1, 2, 3 | usgrexmpl2 48031 | . . . 4 ⊢ 𝐺 ∈ USGraph |
| 5 | usgruhgr 29150 | . . . 4 ⊢ (𝐺 ∈ USGraph → 𝐺 ∈ UHGraph) | |
| 6 | grlicsym 48017 | . . . 4 ⊢ (𝐺 ∈ UHGraph → (𝐺 ≃𝑙𝑔𝑟 𝐻 → 𝐻 ≃𝑙𝑔𝑟 𝐺)) | |
| 7 | 4, 5, 6 | mp2b 10 | . . 3 ⊢ (𝐺 ≃𝑙𝑔𝑟 𝐻 → 𝐻 ≃𝑙𝑔𝑟 𝐺) |
| 8 | usgrexmpl1.k | . . . 4 ⊢ 𝐾 = 〈“{0, 1} {0, 2} {1, 2} {0, 3} {3, 4} {3, 5} {4, 5}”〉 | |
| 9 | usgrexmpl1.h | . . . 4 ⊢ 𝐻 = 〈𝑉, 𝐾〉 | |
| 10 | 1, 8, 9 | usgrexmpl1tri 48029 | . . 3 ⊢ {0, 1, 2} ∈ (GrTriangles‘𝐻) |
| 11 | brgrlic 48008 | . . . . 5 ⊢ (𝐻 ≃𝑙𝑔𝑟 𝐺 ↔ (𝐻 GraphLocIso 𝐺) ≠ ∅) | |
| 12 | n0 4306 | . . . . 5 ⊢ ((𝐻 GraphLocIso 𝐺) ≠ ∅ ↔ ∃𝑓 𝑓 ∈ (𝐻 GraphLocIso 𝐺)) | |
| 13 | 11, 12 | bitri 275 | . . . 4 ⊢ (𝐻 ≃𝑙𝑔𝑟 𝐺 ↔ ∃𝑓 𝑓 ∈ (𝐻 GraphLocIso 𝐺)) |
| 14 | 1, 2, 3 | usgrexmpl2trifr 48041 | . . . . . 6 ⊢ ¬ ∃𝑡 𝑡 ∈ (GrTriangles‘𝐺) |
| 15 | 1, 8, 9 | usgrexmpl1 48026 | . . . . . . . . 9 ⊢ 𝐻 ∈ USGraph |
| 16 | usgruspgr 29144 | . . . . . . . . 9 ⊢ (𝐻 ∈ USGraph → 𝐻 ∈ USPGraph) | |
| 17 | 15, 16 | mp1i 13 | . . . . . . . 8 ⊢ ((𝑓 ∈ (𝐻 GraphLocIso 𝐺) ∧ {0, 1, 2} ∈ (GrTriangles‘𝐻)) → 𝐻 ∈ USPGraph) |
| 18 | usgruspgr 29144 | . . . . . . . . 9 ⊢ (𝐺 ∈ USGraph → 𝐺 ∈ USPGraph) | |
| 19 | 4, 18 | mp1i 13 | . . . . . . . 8 ⊢ ((𝑓 ∈ (𝐻 GraphLocIso 𝐺) ∧ {0, 1, 2} ∈ (GrTriangles‘𝐻)) → 𝐺 ∈ USPGraph) |
| 20 | simpl 482 | . . . . . . . 8 ⊢ ((𝑓 ∈ (𝐻 GraphLocIso 𝐺) ∧ {0, 1, 2} ∈ (GrTriangles‘𝐻)) → 𝑓 ∈ (𝐻 GraphLocIso 𝐺)) | |
| 21 | simpr 484 | . . . . . . . 8 ⊢ ((𝑓 ∈ (𝐻 GraphLocIso 𝐺) ∧ {0, 1, 2} ∈ (GrTriangles‘𝐻)) → {0, 1, 2} ∈ (GrTriangles‘𝐻)) | |
| 22 | 17, 19, 20, 21 | grlimgrtri 48007 | . . . . . . 7 ⊢ ((𝑓 ∈ (𝐻 GraphLocIso 𝐺) ∧ {0, 1, 2} ∈ (GrTriangles‘𝐻)) → ∃𝑡 𝑡 ∈ (GrTriangles‘𝐺)) |
| 23 | 22 | ex 412 | . . . . . 6 ⊢ (𝑓 ∈ (𝐻 GraphLocIso 𝐺) → ({0, 1, 2} ∈ (GrTriangles‘𝐻) → ∃𝑡 𝑡 ∈ (GrTriangles‘𝐺))) |
| 24 | pm2.21 123 | . . . . . 6 ⊢ (¬ ∃𝑡 𝑡 ∈ (GrTriangles‘𝐺) → (∃𝑡 𝑡 ∈ (GrTriangles‘𝐺) → ¬ 𝐺 ≃𝑙𝑔𝑟 𝐻)) | |
| 25 | 14, 23, 24 | mpsylsyld 69 | . . . . 5 ⊢ (𝑓 ∈ (𝐻 GraphLocIso 𝐺) → ({0, 1, 2} ∈ (GrTriangles‘𝐻) → ¬ 𝐺 ≃𝑙𝑔𝑟 𝐻)) |
| 26 | 25 | exlimiv 1930 | . . . 4 ⊢ (∃𝑓 𝑓 ∈ (𝐻 GraphLocIso 𝐺) → ({0, 1, 2} ∈ (GrTriangles‘𝐻) → ¬ 𝐺 ≃𝑙𝑔𝑟 𝐻)) |
| 27 | 13, 26 | sylbi 217 | . . 3 ⊢ (𝐻 ≃𝑙𝑔𝑟 𝐺 → ({0, 1, 2} ∈ (GrTriangles‘𝐻) → ¬ 𝐺 ≃𝑙𝑔𝑟 𝐻)) |
| 28 | 7, 10, 27 | mpisyl 21 | . 2 ⊢ (𝐺 ≃𝑙𝑔𝑟 𝐻 → ¬ 𝐺 ≃𝑙𝑔𝑟 𝐻) |
| 29 | 28 | pm2.01i 189 | 1 ⊢ ¬ 𝐺 ≃𝑙𝑔𝑟 𝐻 |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2109 ≠ wne 2925 ∅c0 4286 {cpr 4581 {ctp 4583 〈cop 4585 class class class wbr 5095 ‘cfv 6486 (class class class)co 7353 0cc0 11028 1c1 11029 2c2 12202 3c3 12203 4c4 12204 5c5 12205 ...cfz 13429 〈“cs7 14772 UHGraphcuhgr 29020 USPGraphcuspgr 29112 USGraphcusgr 29113 GrTrianglescgrtri 47941 GraphLocIso cgrlim 47980 ≃𝑙𝑔𝑟 cgrlic 47981 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-tp 4584 df-op 4586 df-uni 4862 df-int 4900 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-1st 7931 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-2o 8396 df-3o 8397 df-oadd 8399 df-er 8632 df-map 8762 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-dju 9816 df-card 9854 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11368 df-neg 11369 df-nn 12148 df-2 12210 df-3 12211 df-4 12212 df-5 12213 df-6 12214 df-7 12215 df-n0 12404 df-xnn0 12477 df-z 12491 df-uz 12755 df-fz 13430 df-fzo 13577 df-hash 14257 df-word 14440 df-concat 14497 df-s1 14522 df-s2 14774 df-s3 14775 df-s4 14776 df-s5 14777 df-s6 14778 df-s7 14779 df-vtx 28962 df-iedg 28963 df-edg 29012 df-uhgr 29022 df-upgr 29046 df-umgr 29047 df-uspgr 29114 df-usgr 29115 df-nbgr 29297 df-clnbgr 47823 df-isubgr 47865 df-grim 47882 df-gric 47885 df-grtri 47942 df-grlim 47982 df-grlic 47985 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |