![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > usgrexmpl12ngrlic | Structured version Visualization version GIF version |
Description: The graphs 𝐻 and 𝐺 are not locally isomorphic (𝐻 contains a triangle, see usgrexmpl1tri 47830, whereas 𝐺 does not, see usgrexmpl2trifr 47842. (Contributed by AV, 24-Aug-2025.) |
Ref | Expression |
---|---|
usgrexmpl2.v | ⊢ 𝑉 = (0...5) |
usgrexmpl2.e | ⊢ 𝐸 = 〈“{0, 1} {1, 2} {2, 3} {3, 4} {4, 5} {0, 3} {0, 5}”〉 |
usgrexmpl2.g | ⊢ 𝐺 = 〈𝑉, 𝐸〉 |
usgrexmpl1.k | ⊢ 𝐾 = 〈“{0, 1} {0, 2} {1, 2} {0, 3} {3, 4} {3, 5} {4, 5}”〉 |
usgrexmpl1.h | ⊢ 𝐻 = 〈𝑉, 𝐾〉 |
Ref | Expression |
---|---|
usgrexmpl12ngrlic | ⊢ ¬ 𝐺 ≃𝑙𝑔𝑟 𝐻 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | usgrexmpl2.v | . . . . 5 ⊢ 𝑉 = (0...5) | |
2 | usgrexmpl2.e | . . . . 5 ⊢ 𝐸 = 〈“{0, 1} {1, 2} {2, 3} {3, 4} {4, 5} {0, 3} {0, 5}”〉 | |
3 | usgrexmpl2.g | . . . . 5 ⊢ 𝐺 = 〈𝑉, 𝐸〉 | |
4 | 1, 2, 3 | usgrexmpl2 47832 | . . . 4 ⊢ 𝐺 ∈ USGraph |
5 | usgruhgr 29213 | . . . 4 ⊢ (𝐺 ∈ USGraph → 𝐺 ∈ UHGraph) | |
6 | grlicsym 47820 | . . . 4 ⊢ (𝐺 ∈ UHGraph → (𝐺 ≃𝑙𝑔𝑟 𝐻 → 𝐻 ≃𝑙𝑔𝑟 𝐺)) | |
7 | 4, 5, 6 | mp2b 10 | . . 3 ⊢ (𝐺 ≃𝑙𝑔𝑟 𝐻 → 𝐻 ≃𝑙𝑔𝑟 𝐺) |
8 | usgrexmpl1.k | . . . 4 ⊢ 𝐾 = 〈“{0, 1} {0, 2} {1, 2} {0, 3} {3, 4} {3, 5} {4, 5}”〉 | |
9 | usgrexmpl1.h | . . . 4 ⊢ 𝐻 = 〈𝑉, 𝐾〉 | |
10 | 1, 8, 9 | usgrexmpl1tri 47830 | . . 3 ⊢ {0, 1, 2} ∈ (GrTriangles‘𝐻) |
11 | brgrlic 47811 | . . . . 5 ⊢ (𝐻 ≃𝑙𝑔𝑟 𝐺 ↔ (𝐻 GraphLocIso 𝐺) ≠ ∅) | |
12 | n0 4376 | . . . . 5 ⊢ ((𝐻 GraphLocIso 𝐺) ≠ ∅ ↔ ∃𝑓 𝑓 ∈ (𝐻 GraphLocIso 𝐺)) | |
13 | 11, 12 | bitri 275 | . . . 4 ⊢ (𝐻 ≃𝑙𝑔𝑟 𝐺 ↔ ∃𝑓 𝑓 ∈ (𝐻 GraphLocIso 𝐺)) |
14 | 1, 2, 3 | usgrexmpl2trifr 47842 | . . . . . 6 ⊢ ¬ ∃𝑡 𝑡 ∈ (GrTriangles‘𝐺) |
15 | 1, 8, 9 | usgrexmpl1 47827 | . . . . . . . . 9 ⊢ 𝐻 ∈ USGraph |
16 | usgruspgr 29207 | . . . . . . . . 9 ⊢ (𝐻 ∈ USGraph → 𝐻 ∈ USPGraph) | |
17 | 15, 16 | mp1i 13 | . . . . . . . 8 ⊢ ((𝑓 ∈ (𝐻 GraphLocIso 𝐺) ∧ {0, 1, 2} ∈ (GrTriangles‘𝐻)) → 𝐻 ∈ USPGraph) |
18 | usgruspgr 29207 | . . . . . . . . 9 ⊢ (𝐺 ∈ USGraph → 𝐺 ∈ USPGraph) | |
19 | 4, 18 | mp1i 13 | . . . . . . . 8 ⊢ ((𝑓 ∈ (𝐻 GraphLocIso 𝐺) ∧ {0, 1, 2} ∈ (GrTriangles‘𝐻)) → 𝐺 ∈ USPGraph) |
20 | simpl 482 | . . . . . . . 8 ⊢ ((𝑓 ∈ (𝐻 GraphLocIso 𝐺) ∧ {0, 1, 2} ∈ (GrTriangles‘𝐻)) → 𝑓 ∈ (𝐻 GraphLocIso 𝐺)) | |
21 | simpr 484 | . . . . . . . 8 ⊢ ((𝑓 ∈ (𝐻 GraphLocIso 𝐺) ∧ {0, 1, 2} ∈ (GrTriangles‘𝐻)) → {0, 1, 2} ∈ (GrTriangles‘𝐻)) | |
22 | 17, 19, 20, 21 | grlimgrtri 47810 | . . . . . . 7 ⊢ ((𝑓 ∈ (𝐻 GraphLocIso 𝐺) ∧ {0, 1, 2} ∈ (GrTriangles‘𝐻)) → ∃𝑡 𝑡 ∈ (GrTriangles‘𝐺)) |
23 | 22 | ex 412 | . . . . . 6 ⊢ (𝑓 ∈ (𝐻 GraphLocIso 𝐺) → ({0, 1, 2} ∈ (GrTriangles‘𝐻) → ∃𝑡 𝑡 ∈ (GrTriangles‘𝐺))) |
24 | pm2.21 123 | . . . . . 6 ⊢ (¬ ∃𝑡 𝑡 ∈ (GrTriangles‘𝐺) → (∃𝑡 𝑡 ∈ (GrTriangles‘𝐺) → ¬ 𝐺 ≃𝑙𝑔𝑟 𝐻)) | |
25 | 14, 23, 24 | mpsylsyld 69 | . . . . 5 ⊢ (𝑓 ∈ (𝐻 GraphLocIso 𝐺) → ({0, 1, 2} ∈ (GrTriangles‘𝐻) → ¬ 𝐺 ≃𝑙𝑔𝑟 𝐻)) |
26 | 25 | exlimiv 1929 | . . . 4 ⊢ (∃𝑓 𝑓 ∈ (𝐻 GraphLocIso 𝐺) → ({0, 1, 2} ∈ (GrTriangles‘𝐻) → ¬ 𝐺 ≃𝑙𝑔𝑟 𝐻)) |
27 | 13, 26 | sylbi 217 | . . 3 ⊢ (𝐻 ≃𝑙𝑔𝑟 𝐺 → ({0, 1, 2} ∈ (GrTriangles‘𝐻) → ¬ 𝐺 ≃𝑙𝑔𝑟 𝐻)) |
28 | 7, 10, 27 | mpisyl 21 | . 2 ⊢ (𝐺 ≃𝑙𝑔𝑟 𝐻 → ¬ 𝐺 ≃𝑙𝑔𝑟 𝐻) |
29 | 28 | pm2.01i 189 | 1 ⊢ ¬ 𝐺 ≃𝑙𝑔𝑟 𝐻 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1537 ∃wex 1777 ∈ wcel 2108 ≠ wne 2946 ∅c0 4352 {cpr 4650 {ctp 4652 〈cop 4654 class class class wbr 5166 ‘cfv 6568 (class class class)co 7443 0cc0 11178 1c1 11179 2c2 12342 3c3 12343 4c4 12344 5c5 12345 ...cfz 13561 〈“cs7 14889 UHGraphcuhgr 29083 USPGraphcuspgr 29175 USGraphcusgr 29176 GrTrianglescgrtri 47778 GraphLocIso cgrlim 47790 ≃𝑙𝑔𝑟 cgrlic 47791 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7764 ax-cnex 11234 ax-resscn 11235 ax-1cn 11236 ax-icn 11237 ax-addcl 11238 ax-addrcl 11239 ax-mulcl 11240 ax-mulrcl 11241 ax-mulcom 11242 ax-addass 11243 ax-mulass 11244 ax-distr 11245 ax-i2m1 11246 ax-1ne0 11247 ax-1rid 11248 ax-rnegex 11249 ax-rrecex 11250 ax-cnre 11251 ax-pre-lttri 11252 ax-pre-lttrn 11253 ax-pre-ltadd 11254 ax-pre-mulgt0 11255 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-tp 4653 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5650 df-we 5652 df-xp 5701 df-rel 5702 df-cnv 5703 df-co 5704 df-dm 5705 df-rn 5706 df-res 5707 df-ima 5708 df-pred 6327 df-ord 6393 df-on 6394 df-lim 6395 df-suc 6396 df-iota 6520 df-fun 6570 df-fn 6571 df-f 6572 df-f1 6573 df-fo 6574 df-f1o 6575 df-fv 6576 df-riota 7399 df-ov 7446 df-oprab 7447 df-mpo 7448 df-om 7898 df-1st 8024 df-2nd 8025 df-frecs 8316 df-wrecs 8347 df-recs 8421 df-rdg 8460 df-1o 8516 df-2o 8517 df-3o 8518 df-oadd 8520 df-er 8757 df-map 8880 df-en 8998 df-dom 8999 df-sdom 9000 df-fin 9001 df-dju 9964 df-card 10002 df-pnf 11320 df-mnf 11321 df-xr 11322 df-ltxr 11323 df-le 11324 df-sub 11516 df-neg 11517 df-nn 12288 df-2 12350 df-3 12351 df-4 12352 df-5 12353 df-6 12354 df-7 12355 df-n0 12548 df-xnn0 12620 df-z 12634 df-uz 12898 df-fz 13562 df-fzo 13706 df-hash 14374 df-word 14557 df-concat 14613 df-s1 14638 df-s2 14891 df-s3 14892 df-s4 14893 df-s5 14894 df-s6 14895 df-s7 14896 df-vtx 29025 df-iedg 29026 df-edg 29075 df-uhgr 29085 df-upgr 29109 df-umgr 29110 df-uspgr 29177 df-usgr 29178 df-nbgr 29360 df-clnbgr 47683 df-isubgr 47723 df-grim 47738 df-gric 47741 df-grtri 47779 df-grlim 47792 df-grlic 47795 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |