| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dfgrlic3 | Structured version Visualization version GIF version | ||
| Description: Alternate, explicit definition of the "is locally isomorphic to" relation for two graphs. (Contributed by AV, 9-Jun-2025.) |
| Ref | Expression |
|---|---|
| dfgrlic2.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| dfgrlic2.w | ⊢ 𝑊 = (Vtx‘𝐻) |
| dfgrlic3.i | ⊢ 𝐼 = (iEdg‘𝐺) |
| dfgrlic3.j | ⊢ 𝐽 = (iEdg‘𝐻) |
| dfgrlic3.n | ⊢ 𝑁 = (𝐺 ClNeighbVtx 𝑣) |
| dfgrlic3.m | ⊢ 𝑀 = (𝐻 ClNeighbVtx (𝑓‘𝑣)) |
| dfgrlic3.k | ⊢ 𝐾 = {𝑥 ∈ dom 𝐼 ∣ (𝐼‘𝑥) ⊆ 𝑁} |
| dfgrlic3.l | ⊢ 𝐿 = {𝑥 ∈ dom 𝐽 ∣ (𝐽‘𝑥) ⊆ 𝑀} |
| Ref | Expression |
|---|---|
| dfgrlic3 | ⊢ ((𝐺 ∈ 𝑋 ∧ 𝐻 ∈ 𝑌) → (𝐺 ≃𝑙𝑔𝑟 𝐻 ↔ ∃𝑓(𝑓:𝑉–1-1-onto→𝑊 ∧ ∀𝑣 ∈ 𝑉 ∃𝑗(𝑗:𝑁–1-1-onto→𝑀 ∧ ∃𝑔(𝑔:𝐾–1-1-onto→𝐿 ∧ ∀𝑖 ∈ 𝐾 (𝑗 “ (𝐼‘𝑖)) = (𝐽‘(𝑔‘𝑖))))))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brgrlic 47996 | . . 3 ⊢ (𝐺 ≃𝑙𝑔𝑟 𝐻 ↔ (𝐺 GraphLocIso 𝐻) ≠ ∅) | |
| 2 | n0 4316 | . . 3 ⊢ ((𝐺 GraphLocIso 𝐻) ≠ ∅ ↔ ∃𝑓 𝑓 ∈ (𝐺 GraphLocIso 𝐻)) | |
| 3 | 1, 2 | bitri 275 | . 2 ⊢ (𝐺 ≃𝑙𝑔𝑟 𝐻 ↔ ∃𝑓 𝑓 ∈ (𝐺 GraphLocIso 𝐻)) |
| 4 | dfgrlic2.v | . . . . 5 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 5 | dfgrlic2.w | . . . . 5 ⊢ 𝑊 = (Vtx‘𝐻) | |
| 6 | dfgrlic3.n | . . . . 5 ⊢ 𝑁 = (𝐺 ClNeighbVtx 𝑣) | |
| 7 | dfgrlic3.m | . . . . 5 ⊢ 𝑀 = (𝐻 ClNeighbVtx (𝑓‘𝑣)) | |
| 8 | dfgrlic3.i | . . . . 5 ⊢ 𝐼 = (iEdg‘𝐺) | |
| 9 | dfgrlic3.j | . . . . 5 ⊢ 𝐽 = (iEdg‘𝐻) | |
| 10 | dfgrlic3.k | . . . . 5 ⊢ 𝐾 = {𝑥 ∈ dom 𝐼 ∣ (𝐼‘𝑥) ⊆ 𝑁} | |
| 11 | dfgrlic3.l | . . . . 5 ⊢ 𝐿 = {𝑥 ∈ dom 𝐽 ∣ (𝐽‘𝑥) ⊆ 𝑀} | |
| 12 | 4, 5, 6, 7, 8, 9, 10, 11 | isgrlim2 47982 | . . . 4 ⊢ ((𝐺 ∈ 𝑋 ∧ 𝐻 ∈ 𝑌 ∧ 𝑓 ∈ V) → (𝑓 ∈ (𝐺 GraphLocIso 𝐻) ↔ (𝑓:𝑉–1-1-onto→𝑊 ∧ ∀𝑣 ∈ 𝑉 ∃𝑗(𝑗:𝑁–1-1-onto→𝑀 ∧ ∃𝑔(𝑔:𝐾–1-1-onto→𝐿 ∧ ∀𝑖 ∈ 𝐾 (𝑗 “ (𝐼‘𝑖)) = (𝐽‘(𝑔‘𝑖))))))) |
| 13 | 12 | el3v3 3456 | . . 3 ⊢ ((𝐺 ∈ 𝑋 ∧ 𝐻 ∈ 𝑌) → (𝑓 ∈ (𝐺 GraphLocIso 𝐻) ↔ (𝑓:𝑉–1-1-onto→𝑊 ∧ ∀𝑣 ∈ 𝑉 ∃𝑗(𝑗:𝑁–1-1-onto→𝑀 ∧ ∃𝑔(𝑔:𝐾–1-1-onto→𝐿 ∧ ∀𝑖 ∈ 𝐾 (𝑗 “ (𝐼‘𝑖)) = (𝐽‘(𝑔‘𝑖))))))) |
| 14 | 13 | exbidv 1921 | . 2 ⊢ ((𝐺 ∈ 𝑋 ∧ 𝐻 ∈ 𝑌) → (∃𝑓 𝑓 ∈ (𝐺 GraphLocIso 𝐻) ↔ ∃𝑓(𝑓:𝑉–1-1-onto→𝑊 ∧ ∀𝑣 ∈ 𝑉 ∃𝑗(𝑗:𝑁–1-1-onto→𝑀 ∧ ∃𝑔(𝑔:𝐾–1-1-onto→𝐿 ∧ ∀𝑖 ∈ 𝐾 (𝑗 “ (𝐼‘𝑖)) = (𝐽‘(𝑔‘𝑖))))))) |
| 15 | 3, 14 | bitrid 283 | 1 ⊢ ((𝐺 ∈ 𝑋 ∧ 𝐻 ∈ 𝑌) → (𝐺 ≃𝑙𝑔𝑟 𝐻 ↔ ∃𝑓(𝑓:𝑉–1-1-onto→𝑊 ∧ ∀𝑣 ∈ 𝑉 ∃𝑗(𝑗:𝑁–1-1-onto→𝑀 ∧ ∃𝑔(𝑔:𝐾–1-1-onto→𝐿 ∧ ∀𝑖 ∈ 𝐾 (𝑗 “ (𝐼‘𝑖)) = (𝐽‘(𝑔‘𝑖))))))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2109 ≠ wne 2925 ∀wral 3044 {crab 3405 Vcvv 3447 ⊆ wss 3914 ∅c0 4296 class class class wbr 5107 dom cdm 5638 “ cima 5641 –1-1-onto→wf1o 6510 ‘cfv 6511 (class class class)co 7387 Vtxcvtx 28923 iEdgciedg 28924 ClNeighbVtx cclnbgr 47819 GraphLocIso cgrlim 47975 ≃𝑙𝑔𝑟 cgrlic 47976 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-1st 7968 df-2nd 7969 df-1o 8434 df-map 8801 df-vtx 28925 df-iedg 28926 df-clnbgr 47820 df-isubgr 47861 df-grim 47878 df-gric 47881 df-grlim 47977 df-grlic 47980 |
| This theorem is referenced by: grilcbri2 48003 |
| Copyright terms: Public domain | W3C validator |