Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfgrlic3 Structured version   Visualization version   GIF version

Theorem dfgrlic3 48006
Description: Alternate, explicit definition of the "is locally isomorphic to" relation for two graphs. (Contributed by AV, 9-Jun-2025.)
Hypotheses
Ref Expression
dfgrlic2.v 𝑉 = (Vtx‘𝐺)
dfgrlic2.w 𝑊 = (Vtx‘𝐻)
dfgrlic3.i 𝐼 = (iEdg‘𝐺)
dfgrlic3.j 𝐽 = (iEdg‘𝐻)
dfgrlic3.n 𝑁 = (𝐺 ClNeighbVtx 𝑣)
dfgrlic3.m 𝑀 = (𝐻 ClNeighbVtx (𝑓𝑣))
dfgrlic3.k 𝐾 = {𝑥 ∈ dom 𝐼 ∣ (𝐼𝑥) ⊆ 𝑁}
dfgrlic3.l 𝐿 = {𝑥 ∈ dom 𝐽 ∣ (𝐽𝑥) ⊆ 𝑀}
Assertion
Ref Expression
dfgrlic3 ((𝐺𝑋𝐻𝑌) → (𝐺𝑙𝑔𝑟 𝐻 ↔ ∃𝑓(𝑓:𝑉1-1-onto𝑊 ∧ ∀𝑣𝑉𝑗(𝑗:𝑁1-1-onto𝑀 ∧ ∃𝑔(𝑔:𝐾1-1-onto𝐿 ∧ ∀𝑖𝐾 (𝑗 “ (𝐼𝑖)) = (𝐽‘(𝑔𝑖)))))))
Distinct variable groups:   𝑓,𝐺,𝑣   𝑓,𝐻,𝑣   𝑣,𝑉   𝑓,𝑋   𝑓,𝑌   𝑔,𝐺,𝑖,𝑗,𝑓,𝑣   𝑥,𝐺   𝑔,𝐻,𝑖,𝑗   𝑥,𝐻   𝑖,𝐼,𝑥   𝑖,𝐽,𝑥   𝑖,𝐾   𝑔,𝑋,𝑗,𝑣   𝑖,𝐿   𝑔,𝑀,𝑖,𝑗   𝑥,𝑀   𝑔,𝑁,𝑖,𝑗   𝑥,𝑁   𝑖,𝑋   𝑖,𝑌,𝑗,𝑔,𝑣
Allowed substitution hints:   𝐼(𝑣,𝑓,𝑔,𝑗)   𝐽(𝑣,𝑓,𝑔,𝑗)   𝐾(𝑥,𝑣,𝑓,𝑔,𝑗)   𝐿(𝑥,𝑣,𝑓,𝑔,𝑗)   𝑀(𝑣,𝑓)   𝑁(𝑣,𝑓)   𝑉(𝑥,𝑓,𝑔,𝑖,𝑗)   𝑊(𝑥,𝑣,𝑓,𝑔,𝑖,𝑗)   𝑋(𝑥)   𝑌(𝑥)

Proof of Theorem dfgrlic3
StepHypRef Expression
1 brgrlic 48000 . . 3 (𝐺𝑙𝑔𝑟 𝐻 ↔ (𝐺 GraphLocIso 𝐻) ≠ ∅)
2 n0 4319 . . 3 ((𝐺 GraphLocIso 𝐻) ≠ ∅ ↔ ∃𝑓 𝑓 ∈ (𝐺 GraphLocIso 𝐻))
31, 2bitri 275 . 2 (𝐺𝑙𝑔𝑟 𝐻 ↔ ∃𝑓 𝑓 ∈ (𝐺 GraphLocIso 𝐻))
4 dfgrlic2.v . . . . 5 𝑉 = (Vtx‘𝐺)
5 dfgrlic2.w . . . . 5 𝑊 = (Vtx‘𝐻)
6 dfgrlic3.n . . . . 5 𝑁 = (𝐺 ClNeighbVtx 𝑣)
7 dfgrlic3.m . . . . 5 𝑀 = (𝐻 ClNeighbVtx (𝑓𝑣))
8 dfgrlic3.i . . . . 5 𝐼 = (iEdg‘𝐺)
9 dfgrlic3.j . . . . 5 𝐽 = (iEdg‘𝐻)
10 dfgrlic3.k . . . . 5 𝐾 = {𝑥 ∈ dom 𝐼 ∣ (𝐼𝑥) ⊆ 𝑁}
11 dfgrlic3.l . . . . 5 𝐿 = {𝑥 ∈ dom 𝐽 ∣ (𝐽𝑥) ⊆ 𝑀}
124, 5, 6, 7, 8, 9, 10, 11isgrlim2 47986 . . . 4 ((𝐺𝑋𝐻𝑌𝑓 ∈ V) → (𝑓 ∈ (𝐺 GraphLocIso 𝐻) ↔ (𝑓:𝑉1-1-onto𝑊 ∧ ∀𝑣𝑉𝑗(𝑗:𝑁1-1-onto𝑀 ∧ ∃𝑔(𝑔:𝐾1-1-onto𝐿 ∧ ∀𝑖𝐾 (𝑗 “ (𝐼𝑖)) = (𝐽‘(𝑔𝑖)))))))
1312el3v3 3459 . . 3 ((𝐺𝑋𝐻𝑌) → (𝑓 ∈ (𝐺 GraphLocIso 𝐻) ↔ (𝑓:𝑉1-1-onto𝑊 ∧ ∀𝑣𝑉𝑗(𝑗:𝑁1-1-onto𝑀 ∧ ∃𝑔(𝑔:𝐾1-1-onto𝐿 ∧ ∀𝑖𝐾 (𝑗 “ (𝐼𝑖)) = (𝐽‘(𝑔𝑖)))))))
1413exbidv 1921 . 2 ((𝐺𝑋𝐻𝑌) → (∃𝑓 𝑓 ∈ (𝐺 GraphLocIso 𝐻) ↔ ∃𝑓(𝑓:𝑉1-1-onto𝑊 ∧ ∀𝑣𝑉𝑗(𝑗:𝑁1-1-onto𝑀 ∧ ∃𝑔(𝑔:𝐾1-1-onto𝐿 ∧ ∀𝑖𝐾 (𝑗 “ (𝐼𝑖)) = (𝐽‘(𝑔𝑖)))))))
153, 14bitrid 283 1 ((𝐺𝑋𝐻𝑌) → (𝐺𝑙𝑔𝑟 𝐻 ↔ ∃𝑓(𝑓:𝑉1-1-onto𝑊 ∧ ∀𝑣𝑉𝑗(𝑗:𝑁1-1-onto𝑀 ∧ ∃𝑔(𝑔:𝐾1-1-onto𝐿 ∧ ∀𝑖𝐾 (𝑗 “ (𝐼𝑖)) = (𝐽‘(𝑔𝑖)))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wex 1779  wcel 2109  wne 2926  wral 3045  {crab 3408  Vcvv 3450  wss 3917  c0 4299   class class class wbr 5110  dom cdm 5641  cima 5644  1-1-ontowf1o 6513  cfv 6514  (class class class)co 7390  Vtxcvtx 28930  iEdgciedg 28931   ClNeighbVtx cclnbgr 47823   GraphLocIso cgrlim 47979  𝑙𝑔𝑟 cgrlic 47980
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-1st 7971  df-2nd 7972  df-1o 8437  df-map 8804  df-vtx 28932  df-iedg 28933  df-clnbgr 47824  df-isubgr 47865  df-grim 47882  df-gric 47885  df-grlim 47981  df-grlic 47984
This theorem is referenced by:  grilcbri2  48007
  Copyright terms: Public domain W3C validator