Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfgrlic3 Structured version   Visualization version   GIF version

Theorem dfgrlic3 48041
Description: Alternate, explicit definition of the "is locally isomorphic to" relation for two graphs. (Contributed by AV, 9-Jun-2025.)
Hypotheses
Ref Expression
dfgrlic2.v 𝑉 = (Vtx‘𝐺)
dfgrlic2.w 𝑊 = (Vtx‘𝐻)
dfgrlic3.i 𝐼 = (iEdg‘𝐺)
dfgrlic3.j 𝐽 = (iEdg‘𝐻)
dfgrlic3.n 𝑁 = (𝐺 ClNeighbVtx 𝑣)
dfgrlic3.m 𝑀 = (𝐻 ClNeighbVtx (𝑓𝑣))
dfgrlic3.k 𝐾 = {𝑥 ∈ dom 𝐼 ∣ (𝐼𝑥) ⊆ 𝑁}
dfgrlic3.l 𝐿 = {𝑥 ∈ dom 𝐽 ∣ (𝐽𝑥) ⊆ 𝑀}
Assertion
Ref Expression
dfgrlic3 ((𝐺𝑋𝐻𝑌) → (𝐺𝑙𝑔𝑟 𝐻 ↔ ∃𝑓(𝑓:𝑉1-1-onto𝑊 ∧ ∀𝑣𝑉𝑗(𝑗:𝑁1-1-onto𝑀 ∧ ∃𝑔(𝑔:𝐾1-1-onto𝐿 ∧ ∀𝑖𝐾 (𝑗 “ (𝐼𝑖)) = (𝐽‘(𝑔𝑖)))))))
Distinct variable groups:   𝑓,𝐺,𝑣   𝑓,𝐻,𝑣   𝑣,𝑉   𝑓,𝑋   𝑓,𝑌   𝑔,𝐺,𝑖,𝑗,𝑓,𝑣   𝑥,𝐺   𝑔,𝐻,𝑖,𝑗   𝑥,𝐻   𝑖,𝐼,𝑥   𝑖,𝐽,𝑥   𝑖,𝐾   𝑔,𝑋,𝑗,𝑣   𝑖,𝐿   𝑔,𝑀,𝑖,𝑗   𝑥,𝑀   𝑔,𝑁,𝑖,𝑗   𝑥,𝑁   𝑖,𝑋   𝑖,𝑌,𝑗,𝑔,𝑣
Allowed substitution hints:   𝐼(𝑣,𝑓,𝑔,𝑗)   𝐽(𝑣,𝑓,𝑔,𝑗)   𝐾(𝑥,𝑣,𝑓,𝑔,𝑗)   𝐿(𝑥,𝑣,𝑓,𝑔,𝑗)   𝑀(𝑣,𝑓)   𝑁(𝑣,𝑓)   𝑉(𝑥,𝑓,𝑔,𝑖,𝑗)   𝑊(𝑥,𝑣,𝑓,𝑔,𝑖,𝑗)   𝑋(𝑥)   𝑌(𝑥)

Proof of Theorem dfgrlic3
StepHypRef Expression
1 brgrlic 48035 . . 3 (𝐺𝑙𝑔𝑟 𝐻 ↔ (𝐺 GraphLocIso 𝐻) ≠ ∅)
2 n0 4298 . . 3 ((𝐺 GraphLocIso 𝐻) ≠ ∅ ↔ ∃𝑓 𝑓 ∈ (𝐺 GraphLocIso 𝐻))
31, 2bitri 275 . 2 (𝐺𝑙𝑔𝑟 𝐻 ↔ ∃𝑓 𝑓 ∈ (𝐺 GraphLocIso 𝐻))
4 dfgrlic2.v . . . . 5 𝑉 = (Vtx‘𝐺)
5 dfgrlic2.w . . . . 5 𝑊 = (Vtx‘𝐻)
6 dfgrlic3.n . . . . 5 𝑁 = (𝐺 ClNeighbVtx 𝑣)
7 dfgrlic3.m . . . . 5 𝑀 = (𝐻 ClNeighbVtx (𝑓𝑣))
8 dfgrlic3.i . . . . 5 𝐼 = (iEdg‘𝐺)
9 dfgrlic3.j . . . . 5 𝐽 = (iEdg‘𝐻)
10 dfgrlic3.k . . . . 5 𝐾 = {𝑥 ∈ dom 𝐼 ∣ (𝐼𝑥) ⊆ 𝑁}
11 dfgrlic3.l . . . . 5 𝐿 = {𝑥 ∈ dom 𝐽 ∣ (𝐽𝑥) ⊆ 𝑀}
124, 5, 6, 7, 8, 9, 10, 11isgrlim2 48014 . . . 4 ((𝐺𝑋𝐻𝑌𝑓 ∈ V) → (𝑓 ∈ (𝐺 GraphLocIso 𝐻) ↔ (𝑓:𝑉1-1-onto𝑊 ∧ ∀𝑣𝑉𝑗(𝑗:𝑁1-1-onto𝑀 ∧ ∃𝑔(𝑔:𝐾1-1-onto𝐿 ∧ ∀𝑖𝐾 (𝑗 “ (𝐼𝑖)) = (𝐽‘(𝑔𝑖)))))))
1312el3v3 3445 . . 3 ((𝐺𝑋𝐻𝑌) → (𝑓 ∈ (𝐺 GraphLocIso 𝐻) ↔ (𝑓:𝑉1-1-onto𝑊 ∧ ∀𝑣𝑉𝑗(𝑗:𝑁1-1-onto𝑀 ∧ ∃𝑔(𝑔:𝐾1-1-onto𝐿 ∧ ∀𝑖𝐾 (𝑗 “ (𝐼𝑖)) = (𝐽‘(𝑔𝑖)))))))
1413exbidv 1922 . 2 ((𝐺𝑋𝐻𝑌) → (∃𝑓 𝑓 ∈ (𝐺 GraphLocIso 𝐻) ↔ ∃𝑓(𝑓:𝑉1-1-onto𝑊 ∧ ∀𝑣𝑉𝑗(𝑗:𝑁1-1-onto𝑀 ∧ ∃𝑔(𝑔:𝐾1-1-onto𝐿 ∧ ∀𝑖𝐾 (𝑗 “ (𝐼𝑖)) = (𝐽‘(𝑔𝑖)))))))
153, 14bitrid 283 1 ((𝐺𝑋𝐻𝑌) → (𝐺𝑙𝑔𝑟 𝐻 ↔ ∃𝑓(𝑓:𝑉1-1-onto𝑊 ∧ ∀𝑣𝑉𝑗(𝑗:𝑁1-1-onto𝑀 ∧ ∃𝑔(𝑔:𝐾1-1-onto𝐿 ∧ ∀𝑖𝐾 (𝑗 “ (𝐼𝑖)) = (𝐽‘(𝑔𝑖)))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wex 1780  wcel 2111  wne 2928  wral 3047  {crab 3395  Vcvv 3436  wss 3897  c0 4278   class class class wbr 5086  dom cdm 5611  cima 5614  1-1-ontowf1o 6475  cfv 6476  (class class class)co 7341  Vtxcvtx 28969  iEdgciedg 28970   ClNeighbVtx cclnbgr 47849   GraphLocIso cgrlim 48007  𝑙𝑔𝑟 cgrlic 48008
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-id 5506  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-ov 7344  df-oprab 7345  df-mpo 7346  df-1st 7916  df-2nd 7917  df-1o 8380  df-map 8747  df-vtx 28971  df-iedg 28972  df-clnbgr 47850  df-isubgr 47892  df-grim 47909  df-gric 47912  df-grlim 48009  df-grlic 48012
This theorem is referenced by:  grilcbri2  48042
  Copyright terms: Public domain W3C validator