| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dfgrlic3 | Structured version Visualization version GIF version | ||
| Description: Alternate, explicit definition of the "is locally isomorphic to" relation for two graphs. (Contributed by AV, 9-Jun-2025.) |
| Ref | Expression |
|---|---|
| dfgrlic2.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| dfgrlic2.w | ⊢ 𝑊 = (Vtx‘𝐻) |
| dfgrlic3.i | ⊢ 𝐼 = (iEdg‘𝐺) |
| dfgrlic3.j | ⊢ 𝐽 = (iEdg‘𝐻) |
| dfgrlic3.n | ⊢ 𝑁 = (𝐺 ClNeighbVtx 𝑣) |
| dfgrlic3.m | ⊢ 𝑀 = (𝐻 ClNeighbVtx (𝑓‘𝑣)) |
| dfgrlic3.k | ⊢ 𝐾 = {𝑥 ∈ dom 𝐼 ∣ (𝐼‘𝑥) ⊆ 𝑁} |
| dfgrlic3.l | ⊢ 𝐿 = {𝑥 ∈ dom 𝐽 ∣ (𝐽‘𝑥) ⊆ 𝑀} |
| Ref | Expression |
|---|---|
| dfgrlic3 | ⊢ ((𝐺 ∈ 𝑋 ∧ 𝐻 ∈ 𝑌) → (𝐺 ≃𝑙𝑔𝑟 𝐻 ↔ ∃𝑓(𝑓:𝑉–1-1-onto→𝑊 ∧ ∀𝑣 ∈ 𝑉 ∃𝑗(𝑗:𝑁–1-1-onto→𝑀 ∧ ∃𝑔(𝑔:𝐾–1-1-onto→𝐿 ∧ ∀𝑖 ∈ 𝐾 (𝑗 “ (𝐼‘𝑖)) = (𝐽‘(𝑔‘𝑖))))))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brgrlic 48009 | . . 3 ⊢ (𝐺 ≃𝑙𝑔𝑟 𝐻 ↔ (𝐺 GraphLocIso 𝐻) ≠ ∅) | |
| 2 | n0 4328 | . . 3 ⊢ ((𝐺 GraphLocIso 𝐻) ≠ ∅ ↔ ∃𝑓 𝑓 ∈ (𝐺 GraphLocIso 𝐻)) | |
| 3 | 1, 2 | bitri 275 | . 2 ⊢ (𝐺 ≃𝑙𝑔𝑟 𝐻 ↔ ∃𝑓 𝑓 ∈ (𝐺 GraphLocIso 𝐻)) |
| 4 | dfgrlic2.v | . . . . 5 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 5 | dfgrlic2.w | . . . . 5 ⊢ 𝑊 = (Vtx‘𝐻) | |
| 6 | dfgrlic3.n | . . . . 5 ⊢ 𝑁 = (𝐺 ClNeighbVtx 𝑣) | |
| 7 | dfgrlic3.m | . . . . 5 ⊢ 𝑀 = (𝐻 ClNeighbVtx (𝑓‘𝑣)) | |
| 8 | dfgrlic3.i | . . . . 5 ⊢ 𝐼 = (iEdg‘𝐺) | |
| 9 | dfgrlic3.j | . . . . 5 ⊢ 𝐽 = (iEdg‘𝐻) | |
| 10 | dfgrlic3.k | . . . . 5 ⊢ 𝐾 = {𝑥 ∈ dom 𝐼 ∣ (𝐼‘𝑥) ⊆ 𝑁} | |
| 11 | dfgrlic3.l | . . . . 5 ⊢ 𝐿 = {𝑥 ∈ dom 𝐽 ∣ (𝐽‘𝑥) ⊆ 𝑀} | |
| 12 | 4, 5, 6, 7, 8, 9, 10, 11 | isgrlim2 47995 | . . . 4 ⊢ ((𝐺 ∈ 𝑋 ∧ 𝐻 ∈ 𝑌 ∧ 𝑓 ∈ V) → (𝑓 ∈ (𝐺 GraphLocIso 𝐻) ↔ (𝑓:𝑉–1-1-onto→𝑊 ∧ ∀𝑣 ∈ 𝑉 ∃𝑗(𝑗:𝑁–1-1-onto→𝑀 ∧ ∃𝑔(𝑔:𝐾–1-1-onto→𝐿 ∧ ∀𝑖 ∈ 𝐾 (𝑗 “ (𝐼‘𝑖)) = (𝐽‘(𝑔‘𝑖))))))) |
| 13 | 12 | el3v3 3468 | . . 3 ⊢ ((𝐺 ∈ 𝑋 ∧ 𝐻 ∈ 𝑌) → (𝑓 ∈ (𝐺 GraphLocIso 𝐻) ↔ (𝑓:𝑉–1-1-onto→𝑊 ∧ ∀𝑣 ∈ 𝑉 ∃𝑗(𝑗:𝑁–1-1-onto→𝑀 ∧ ∃𝑔(𝑔:𝐾–1-1-onto→𝐿 ∧ ∀𝑖 ∈ 𝐾 (𝑗 “ (𝐼‘𝑖)) = (𝐽‘(𝑔‘𝑖))))))) |
| 14 | 13 | exbidv 1921 | . 2 ⊢ ((𝐺 ∈ 𝑋 ∧ 𝐻 ∈ 𝑌) → (∃𝑓 𝑓 ∈ (𝐺 GraphLocIso 𝐻) ↔ ∃𝑓(𝑓:𝑉–1-1-onto→𝑊 ∧ ∀𝑣 ∈ 𝑉 ∃𝑗(𝑗:𝑁–1-1-onto→𝑀 ∧ ∃𝑔(𝑔:𝐾–1-1-onto→𝐿 ∧ ∀𝑖 ∈ 𝐾 (𝑗 “ (𝐼‘𝑖)) = (𝐽‘(𝑔‘𝑖))))))) |
| 15 | 3, 14 | bitrid 283 | 1 ⊢ ((𝐺 ∈ 𝑋 ∧ 𝐻 ∈ 𝑌) → (𝐺 ≃𝑙𝑔𝑟 𝐻 ↔ ∃𝑓(𝑓:𝑉–1-1-onto→𝑊 ∧ ∀𝑣 ∈ 𝑉 ∃𝑗(𝑗:𝑁–1-1-onto→𝑀 ∧ ∃𝑔(𝑔:𝐾–1-1-onto→𝐿 ∧ ∀𝑖 ∈ 𝐾 (𝑗 “ (𝐼‘𝑖)) = (𝐽‘(𝑔‘𝑖))))))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2108 ≠ wne 2932 ∀wral 3051 {crab 3415 Vcvv 3459 ⊆ wss 3926 ∅c0 4308 class class class wbr 5119 dom cdm 5654 “ cima 5657 –1-1-onto→wf1o 6530 ‘cfv 6531 (class class class)co 7405 Vtxcvtx 28975 iEdgciedg 28976 ClNeighbVtx cclnbgr 47832 GraphLocIso cgrlim 47988 ≃𝑙𝑔𝑟 cgrlic 47989 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-ov 7408 df-oprab 7409 df-mpo 7410 df-1st 7988 df-2nd 7989 df-1o 8480 df-map 8842 df-vtx 28977 df-iedg 28978 df-clnbgr 47833 df-isubgr 47874 df-grim 47891 df-gric 47894 df-grlim 47990 df-grlic 47993 |
| This theorem is referenced by: grilcbri2 48016 |
| Copyright terms: Public domain | W3C validator |