Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfgrlic3 Structured version   Visualization version   GIF version

Theorem dfgrlic3 47827
Description: Alternate, explicit definition of the "is locally isomorphic to" relation for two graphs. (Contributed by AV, 9-Jun-2025.)
Hypotheses
Ref Expression
dfgrlic2.v 𝑉 = (Vtx‘𝐺)
dfgrlic2.w 𝑊 = (Vtx‘𝐻)
dfgrlic3.i 𝐼 = (iEdg‘𝐺)
dfgrlic3.j 𝐽 = (iEdg‘𝐻)
dfgrlic3.n 𝑁 = (𝐺 ClNeighbVtx 𝑣)
dfgrlic3.m 𝑀 = (𝐻 ClNeighbVtx (𝑓𝑣))
dfgrlic3.k 𝐾 = {𝑥 ∈ dom 𝐼 ∣ (𝐼𝑥) ⊆ 𝑁}
dfgrlic3.l 𝐿 = {𝑥 ∈ dom 𝐽 ∣ (𝐽𝑥) ⊆ 𝑀}
Assertion
Ref Expression
dfgrlic3 ((𝐺𝑋𝐻𝑌) → (𝐺𝑙𝑔𝑟 𝐻 ↔ ∃𝑓(𝑓:𝑉1-1-onto𝑊 ∧ ∀𝑣𝑉𝑗(𝑗:𝑁1-1-onto𝑀 ∧ ∃𝑔(𝑔:𝐾1-1-onto𝐿 ∧ ∀𝑖𝐾 (𝑗 “ (𝐼𝑖)) = (𝐽‘(𝑔𝑖)))))))
Distinct variable groups:   𝑓,𝐺,𝑣   𝑓,𝐻,𝑣   𝑣,𝑉   𝑓,𝑋   𝑓,𝑌   𝑔,𝐺,𝑖,𝑗,𝑓,𝑣   𝑥,𝐺   𝑔,𝐻,𝑖,𝑗   𝑥,𝐻   𝑖,𝐼,𝑥   𝑖,𝐽,𝑥   𝑖,𝐾   𝑔,𝑋,𝑗,𝑣   𝑖,𝐿   𝑔,𝑀,𝑖,𝑗   𝑥,𝑀   𝑔,𝑁,𝑖,𝑗   𝑥,𝑁   𝑖,𝑋   𝑖,𝑌,𝑗,𝑔,𝑣
Allowed substitution hints:   𝐼(𝑣,𝑓,𝑔,𝑗)   𝐽(𝑣,𝑓,𝑔,𝑗)   𝐾(𝑥,𝑣,𝑓,𝑔,𝑗)   𝐿(𝑥,𝑣,𝑓,𝑔,𝑗)   𝑀(𝑣,𝑓)   𝑁(𝑣,𝑓)   𝑉(𝑥,𝑓,𝑔,𝑖,𝑗)   𝑊(𝑥,𝑣,𝑓,𝑔,𝑖,𝑗)   𝑋(𝑥)   𝑌(𝑥)

Proof of Theorem dfgrlic3
StepHypRef Expression
1 brgrlic 47821 . . 3 (𝐺𝑙𝑔𝑟 𝐻 ↔ (𝐺 GraphLocIso 𝐻) ≠ ∅)
2 n0 4376 . . 3 ((𝐺 GraphLocIso 𝐻) ≠ ∅ ↔ ∃𝑓 𝑓 ∈ (𝐺 GraphLocIso 𝐻))
31, 2bitri 275 . 2 (𝐺𝑙𝑔𝑟 𝐻 ↔ ∃𝑓 𝑓 ∈ (𝐺 GraphLocIso 𝐻))
4 dfgrlic2.v . . . . 5 𝑉 = (Vtx‘𝐺)
5 dfgrlic2.w . . . . 5 𝑊 = (Vtx‘𝐻)
6 dfgrlic3.n . . . . 5 𝑁 = (𝐺 ClNeighbVtx 𝑣)
7 dfgrlic3.m . . . . 5 𝑀 = (𝐻 ClNeighbVtx (𝑓𝑣))
8 dfgrlic3.i . . . . 5 𝐼 = (iEdg‘𝐺)
9 dfgrlic3.j . . . . 5 𝐽 = (iEdg‘𝐻)
10 dfgrlic3.k . . . . 5 𝐾 = {𝑥 ∈ dom 𝐼 ∣ (𝐼𝑥) ⊆ 𝑁}
11 dfgrlic3.l . . . . 5 𝐿 = {𝑥 ∈ dom 𝐽 ∣ (𝐽𝑥) ⊆ 𝑀}
124, 5, 6, 7, 8, 9, 10, 11isgrlim2 47807 . . . 4 ((𝐺𝑋𝐻𝑌𝑓 ∈ V) → (𝑓 ∈ (𝐺 GraphLocIso 𝐻) ↔ (𝑓:𝑉1-1-onto𝑊 ∧ ∀𝑣𝑉𝑗(𝑗:𝑁1-1-onto𝑀 ∧ ∃𝑔(𝑔:𝐾1-1-onto𝐿 ∧ ∀𝑖𝐾 (𝑗 “ (𝐼𝑖)) = (𝐽‘(𝑔𝑖)))))))
1312el3v3 3497 . . 3 ((𝐺𝑋𝐻𝑌) → (𝑓 ∈ (𝐺 GraphLocIso 𝐻) ↔ (𝑓:𝑉1-1-onto𝑊 ∧ ∀𝑣𝑉𝑗(𝑗:𝑁1-1-onto𝑀 ∧ ∃𝑔(𝑔:𝐾1-1-onto𝐿 ∧ ∀𝑖𝐾 (𝑗 “ (𝐼𝑖)) = (𝐽‘(𝑔𝑖)))))))
1413exbidv 1920 . 2 ((𝐺𝑋𝐻𝑌) → (∃𝑓 𝑓 ∈ (𝐺 GraphLocIso 𝐻) ↔ ∃𝑓(𝑓:𝑉1-1-onto𝑊 ∧ ∀𝑣𝑉𝑗(𝑗:𝑁1-1-onto𝑀 ∧ ∃𝑔(𝑔:𝐾1-1-onto𝐿 ∧ ∀𝑖𝐾 (𝑗 “ (𝐼𝑖)) = (𝐽‘(𝑔𝑖)))))))
153, 14bitrid 283 1 ((𝐺𝑋𝐻𝑌) → (𝐺𝑙𝑔𝑟 𝐻 ↔ ∃𝑓(𝑓:𝑉1-1-onto𝑊 ∧ ∀𝑣𝑉𝑗(𝑗:𝑁1-1-onto𝑀 ∧ ∃𝑔(𝑔:𝐾1-1-onto𝐿 ∧ ∀𝑖𝐾 (𝑗 “ (𝐼𝑖)) = (𝐽‘(𝑔𝑖)))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wex 1777  wcel 2108  wne 2946  wral 3067  {crab 3443  Vcvv 3488  wss 3976  c0 4352   class class class wbr 5166  dom cdm 5700  cima 5703  1-1-ontowf1o 6572  cfv 6573  (class class class)co 7448  Vtxcvtx 29031  iEdgciedg 29032   ClNeighbVtx cclnbgr 47692   GraphLocIso cgrlim 47800  𝑙𝑔𝑟 cgrlic 47801
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-1st 8030  df-2nd 8031  df-1o 8522  df-map 8886  df-vtx 29033  df-iedg 29034  df-clnbgr 47693  df-isubgr 47733  df-grim 47748  df-gric 47751  df-grlim 47802  df-grlic 47805
This theorem is referenced by:  grilcbri2  47828
  Copyright terms: Public domain W3C validator