MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  equivcau Structured version   Visualization version   GIF version

Theorem equivcau 24464
Description: If the metric 𝐷 is "strongly finer" than 𝐶 (meaning that there is a positive real constant 𝑅 such that 𝐶(𝑥, 𝑦) ≤ 𝑅 · 𝐷(𝑥, 𝑦)), all the 𝐷-Cauchy sequences are also 𝐶-Cauchy. (Using this theorem twice in each direction states that if two metrics are strongly equivalent, then they have the same Cauchy sequences.) (Contributed by Mario Carneiro, 14-Sep-2015.)
Hypotheses
Ref Expression
equivcau.1 (𝜑𝐶 ∈ (Met‘𝑋))
equivcau.2 (𝜑𝐷 ∈ (Met‘𝑋))
equivcau.3 (𝜑𝑅 ∈ ℝ+)
equivcau.4 ((𝜑 ∧ (𝑥𝑋𝑦𝑋)) → (𝑥𝐶𝑦) ≤ (𝑅 · (𝑥𝐷𝑦)))
Assertion
Ref Expression
equivcau (𝜑 → (Cau‘𝐷) ⊆ (Cau‘𝐶))
Distinct variable groups:   𝑥,𝑦,𝐶   𝑥,𝐷,𝑦   𝜑,𝑥,𝑦   𝑥,𝑅,𝑦   𝑥,𝑋,𝑦

Proof of Theorem equivcau
Dummy variables 𝑓 𝑘 𝑟 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 485 . . . . . . 7 (((𝜑𝑓 ∈ (𝑋pm ℂ)) ∧ 𝑟 ∈ ℝ+) → 𝑟 ∈ ℝ+)
2 equivcau.3 . . . . . . . 8 (𝜑𝑅 ∈ ℝ+)
32ad2antrr 723 . . . . . . 7 (((𝜑𝑓 ∈ (𝑋pm ℂ)) ∧ 𝑟 ∈ ℝ+) → 𝑅 ∈ ℝ+)
41, 3rpdivcld 12789 . . . . . 6 (((𝜑𝑓 ∈ (𝑋pm ℂ)) ∧ 𝑟 ∈ ℝ+) → (𝑟 / 𝑅) ∈ ℝ+)
5 oveq2 7283 . . . . . . . . 9 (𝑠 = (𝑟 / 𝑅) → ((𝑓𝑘)(ball‘𝐷)𝑠) = ((𝑓𝑘)(ball‘𝐷)(𝑟 / 𝑅)))
65feq3d 6587 . . . . . . . 8 (𝑠 = (𝑟 / 𝑅) → ((𝑓 ↾ (ℤ𝑘)):(ℤ𝑘)⟶((𝑓𝑘)(ball‘𝐷)𝑠) ↔ (𝑓 ↾ (ℤ𝑘)):(ℤ𝑘)⟶((𝑓𝑘)(ball‘𝐷)(𝑟 / 𝑅))))
76rexbidv 3226 . . . . . . 7 (𝑠 = (𝑟 / 𝑅) → (∃𝑘 ∈ ℤ (𝑓 ↾ (ℤ𝑘)):(ℤ𝑘)⟶((𝑓𝑘)(ball‘𝐷)𝑠) ↔ ∃𝑘 ∈ ℤ (𝑓 ↾ (ℤ𝑘)):(ℤ𝑘)⟶((𝑓𝑘)(ball‘𝐷)(𝑟 / 𝑅))))
87rspcv 3557 . . . . . 6 ((𝑟 / 𝑅) ∈ ℝ+ → (∀𝑠 ∈ ℝ+𝑘 ∈ ℤ (𝑓 ↾ (ℤ𝑘)):(ℤ𝑘)⟶((𝑓𝑘)(ball‘𝐷)𝑠) → ∃𝑘 ∈ ℤ (𝑓 ↾ (ℤ𝑘)):(ℤ𝑘)⟶((𝑓𝑘)(ball‘𝐷)(𝑟 / 𝑅))))
94, 8syl 17 . . . . 5 (((𝜑𝑓 ∈ (𝑋pm ℂ)) ∧ 𝑟 ∈ ℝ+) → (∀𝑠 ∈ ℝ+𝑘 ∈ ℤ (𝑓 ↾ (ℤ𝑘)):(ℤ𝑘)⟶((𝑓𝑘)(ball‘𝐷)𝑠) → ∃𝑘 ∈ ℤ (𝑓 ↾ (ℤ𝑘)):(ℤ𝑘)⟶((𝑓𝑘)(ball‘𝐷)(𝑟 / 𝑅))))
10 simprr 770 . . . . . . . 8 ((((𝜑𝑓 ∈ (𝑋pm ℂ)) ∧ 𝑟 ∈ ℝ+) ∧ (𝑘 ∈ ℤ ∧ (𝑓 ↾ (ℤ𝑘)):(ℤ𝑘)⟶((𝑓𝑘)(ball‘𝐷)(𝑟 / 𝑅)))) → (𝑓 ↾ (ℤ𝑘)):(ℤ𝑘)⟶((𝑓𝑘)(ball‘𝐷)(𝑟 / 𝑅)))
11 elpmi 8634 . . . . . . . . . . . 12 (𝑓 ∈ (𝑋pm ℂ) → (𝑓:dom 𝑓𝑋 ∧ dom 𝑓 ⊆ ℂ))
1211simpld 495 . . . . . . . . . . 11 (𝑓 ∈ (𝑋pm ℂ) → 𝑓:dom 𝑓𝑋)
1312ad3antlr 728 . . . . . . . . . 10 ((((𝜑𝑓 ∈ (𝑋pm ℂ)) ∧ 𝑟 ∈ ℝ+) ∧ (𝑘 ∈ ℤ ∧ (𝑓 ↾ (ℤ𝑘)):(ℤ𝑘)⟶((𝑓𝑘)(ball‘𝐷)(𝑟 / 𝑅)))) → 𝑓:dom 𝑓𝑋)
14 resss 5916 . . . . . . . . . . . 12 (𝑓 ↾ (ℤ𝑘)) ⊆ 𝑓
15 dmss 5811 . . . . . . . . . . . 12 ((𝑓 ↾ (ℤ𝑘)) ⊆ 𝑓 → dom (𝑓 ↾ (ℤ𝑘)) ⊆ dom 𝑓)
1614, 15ax-mp 5 . . . . . . . . . . 11 dom (𝑓 ↾ (ℤ𝑘)) ⊆ dom 𝑓
17 uzid 12597 . . . . . . . . . . . . 13 (𝑘 ∈ ℤ → 𝑘 ∈ (ℤ𝑘))
1817ad2antrl 725 . . . . . . . . . . . 12 ((((𝜑𝑓 ∈ (𝑋pm ℂ)) ∧ 𝑟 ∈ ℝ+) ∧ (𝑘 ∈ ℤ ∧ (𝑓 ↾ (ℤ𝑘)):(ℤ𝑘)⟶((𝑓𝑘)(ball‘𝐷)(𝑟 / 𝑅)))) → 𝑘 ∈ (ℤ𝑘))
19 fdm 6609 . . . . . . . . . . . . 13 ((𝑓 ↾ (ℤ𝑘)):(ℤ𝑘)⟶((𝑓𝑘)(ball‘𝐷)(𝑟 / 𝑅)) → dom (𝑓 ↾ (ℤ𝑘)) = (ℤ𝑘))
2019ad2antll 726 . . . . . . . . . . . 12 ((((𝜑𝑓 ∈ (𝑋pm ℂ)) ∧ 𝑟 ∈ ℝ+) ∧ (𝑘 ∈ ℤ ∧ (𝑓 ↾ (ℤ𝑘)):(ℤ𝑘)⟶((𝑓𝑘)(ball‘𝐷)(𝑟 / 𝑅)))) → dom (𝑓 ↾ (ℤ𝑘)) = (ℤ𝑘))
2118, 20eleqtrrd 2842 . . . . . . . . . . 11 ((((𝜑𝑓 ∈ (𝑋pm ℂ)) ∧ 𝑟 ∈ ℝ+) ∧ (𝑘 ∈ ℤ ∧ (𝑓 ↾ (ℤ𝑘)):(ℤ𝑘)⟶((𝑓𝑘)(ball‘𝐷)(𝑟 / 𝑅)))) → 𝑘 ∈ dom (𝑓 ↾ (ℤ𝑘)))
2216, 21sselid 3919 . . . . . . . . . 10 ((((𝜑𝑓 ∈ (𝑋pm ℂ)) ∧ 𝑟 ∈ ℝ+) ∧ (𝑘 ∈ ℤ ∧ (𝑓 ↾ (ℤ𝑘)):(ℤ𝑘)⟶((𝑓𝑘)(ball‘𝐷)(𝑟 / 𝑅)))) → 𝑘 ∈ dom 𝑓)
2313, 22ffvelrnd 6962 . . . . . . . . 9 ((((𝜑𝑓 ∈ (𝑋pm ℂ)) ∧ 𝑟 ∈ ℝ+) ∧ (𝑘 ∈ ℤ ∧ (𝑓 ↾ (ℤ𝑘)):(ℤ𝑘)⟶((𝑓𝑘)(ball‘𝐷)(𝑟 / 𝑅)))) → (𝑓𝑘) ∈ 𝑋)
24 eqid 2738 . . . . . . . . . . . . 13 (MetOpen‘𝐶) = (MetOpen‘𝐶)
25 eqid 2738 . . . . . . . . . . . . 13 (MetOpen‘𝐷) = (MetOpen‘𝐷)
26 equivcau.1 . . . . . . . . . . . . 13 (𝜑𝐶 ∈ (Met‘𝑋))
27 equivcau.2 . . . . . . . . . . . . 13 (𝜑𝐷 ∈ (Met‘𝑋))
28 equivcau.4 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥𝑋𝑦𝑋)) → (𝑥𝐶𝑦) ≤ (𝑅 · (𝑥𝐷𝑦)))
2924, 25, 26, 27, 2, 28metss2lem 23667 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥𝑋𝑟 ∈ ℝ+)) → (𝑥(ball‘𝐷)(𝑟 / 𝑅)) ⊆ (𝑥(ball‘𝐶)𝑟))
3029expr 457 . . . . . . . . . . 11 ((𝜑𝑥𝑋) → (𝑟 ∈ ℝ+ → (𝑥(ball‘𝐷)(𝑟 / 𝑅)) ⊆ (𝑥(ball‘𝐶)𝑟)))
3130ralrimiva 3103 . . . . . . . . . 10 (𝜑 → ∀𝑥𝑋 (𝑟 ∈ ℝ+ → (𝑥(ball‘𝐷)(𝑟 / 𝑅)) ⊆ (𝑥(ball‘𝐶)𝑟)))
3231ad3antrrr 727 . . . . . . . . 9 ((((𝜑𝑓 ∈ (𝑋pm ℂ)) ∧ 𝑟 ∈ ℝ+) ∧ (𝑘 ∈ ℤ ∧ (𝑓 ↾ (ℤ𝑘)):(ℤ𝑘)⟶((𝑓𝑘)(ball‘𝐷)(𝑟 / 𝑅)))) → ∀𝑥𝑋 (𝑟 ∈ ℝ+ → (𝑥(ball‘𝐷)(𝑟 / 𝑅)) ⊆ (𝑥(ball‘𝐶)𝑟)))
33 simplr 766 . . . . . . . . 9 ((((𝜑𝑓 ∈ (𝑋pm ℂ)) ∧ 𝑟 ∈ ℝ+) ∧ (𝑘 ∈ ℤ ∧ (𝑓 ↾ (ℤ𝑘)):(ℤ𝑘)⟶((𝑓𝑘)(ball‘𝐷)(𝑟 / 𝑅)))) → 𝑟 ∈ ℝ+)
34 oveq1 7282 . . . . . . . . . . . 12 (𝑥 = (𝑓𝑘) → (𝑥(ball‘𝐷)(𝑟 / 𝑅)) = ((𝑓𝑘)(ball‘𝐷)(𝑟 / 𝑅)))
35 oveq1 7282 . . . . . . . . . . . 12 (𝑥 = (𝑓𝑘) → (𝑥(ball‘𝐶)𝑟) = ((𝑓𝑘)(ball‘𝐶)𝑟))
3634, 35sseq12d 3954 . . . . . . . . . . 11 (𝑥 = (𝑓𝑘) → ((𝑥(ball‘𝐷)(𝑟 / 𝑅)) ⊆ (𝑥(ball‘𝐶)𝑟) ↔ ((𝑓𝑘)(ball‘𝐷)(𝑟 / 𝑅)) ⊆ ((𝑓𝑘)(ball‘𝐶)𝑟)))
3736imbi2d 341 . . . . . . . . . 10 (𝑥 = (𝑓𝑘) → ((𝑟 ∈ ℝ+ → (𝑥(ball‘𝐷)(𝑟 / 𝑅)) ⊆ (𝑥(ball‘𝐶)𝑟)) ↔ (𝑟 ∈ ℝ+ → ((𝑓𝑘)(ball‘𝐷)(𝑟 / 𝑅)) ⊆ ((𝑓𝑘)(ball‘𝐶)𝑟))))
3837rspcv 3557 . . . . . . . . 9 ((𝑓𝑘) ∈ 𝑋 → (∀𝑥𝑋 (𝑟 ∈ ℝ+ → (𝑥(ball‘𝐷)(𝑟 / 𝑅)) ⊆ (𝑥(ball‘𝐶)𝑟)) → (𝑟 ∈ ℝ+ → ((𝑓𝑘)(ball‘𝐷)(𝑟 / 𝑅)) ⊆ ((𝑓𝑘)(ball‘𝐶)𝑟))))
3923, 32, 33, 38syl3c 66 . . . . . . . 8 ((((𝜑𝑓 ∈ (𝑋pm ℂ)) ∧ 𝑟 ∈ ℝ+) ∧ (𝑘 ∈ ℤ ∧ (𝑓 ↾ (ℤ𝑘)):(ℤ𝑘)⟶((𝑓𝑘)(ball‘𝐷)(𝑟 / 𝑅)))) → ((𝑓𝑘)(ball‘𝐷)(𝑟 / 𝑅)) ⊆ ((𝑓𝑘)(ball‘𝐶)𝑟))
4010, 39fssd 6618 . . . . . . 7 ((((𝜑𝑓 ∈ (𝑋pm ℂ)) ∧ 𝑟 ∈ ℝ+) ∧ (𝑘 ∈ ℤ ∧ (𝑓 ↾ (ℤ𝑘)):(ℤ𝑘)⟶((𝑓𝑘)(ball‘𝐷)(𝑟 / 𝑅)))) → (𝑓 ↾ (ℤ𝑘)):(ℤ𝑘)⟶((𝑓𝑘)(ball‘𝐶)𝑟))
4140expr 457 . . . . . 6 ((((𝜑𝑓 ∈ (𝑋pm ℂ)) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ ℤ) → ((𝑓 ↾ (ℤ𝑘)):(ℤ𝑘)⟶((𝑓𝑘)(ball‘𝐷)(𝑟 / 𝑅)) → (𝑓 ↾ (ℤ𝑘)):(ℤ𝑘)⟶((𝑓𝑘)(ball‘𝐶)𝑟)))
4241reximdva 3203 . . . . 5 (((𝜑𝑓 ∈ (𝑋pm ℂ)) ∧ 𝑟 ∈ ℝ+) → (∃𝑘 ∈ ℤ (𝑓 ↾ (ℤ𝑘)):(ℤ𝑘)⟶((𝑓𝑘)(ball‘𝐷)(𝑟 / 𝑅)) → ∃𝑘 ∈ ℤ (𝑓 ↾ (ℤ𝑘)):(ℤ𝑘)⟶((𝑓𝑘)(ball‘𝐶)𝑟)))
439, 42syld 47 . . . 4 (((𝜑𝑓 ∈ (𝑋pm ℂ)) ∧ 𝑟 ∈ ℝ+) → (∀𝑠 ∈ ℝ+𝑘 ∈ ℤ (𝑓 ↾ (ℤ𝑘)):(ℤ𝑘)⟶((𝑓𝑘)(ball‘𝐷)𝑠) → ∃𝑘 ∈ ℤ (𝑓 ↾ (ℤ𝑘)):(ℤ𝑘)⟶((𝑓𝑘)(ball‘𝐶)𝑟)))
4443ralrimdva 3106 . . 3 ((𝜑𝑓 ∈ (𝑋pm ℂ)) → (∀𝑠 ∈ ℝ+𝑘 ∈ ℤ (𝑓 ↾ (ℤ𝑘)):(ℤ𝑘)⟶((𝑓𝑘)(ball‘𝐷)𝑠) → ∀𝑟 ∈ ℝ+𝑘 ∈ ℤ (𝑓 ↾ (ℤ𝑘)):(ℤ𝑘)⟶((𝑓𝑘)(ball‘𝐶)𝑟)))
4544ss2rabdv 4009 . 2 (𝜑 → {𝑓 ∈ (𝑋pm ℂ) ∣ ∀𝑠 ∈ ℝ+𝑘 ∈ ℤ (𝑓 ↾ (ℤ𝑘)):(ℤ𝑘)⟶((𝑓𝑘)(ball‘𝐷)𝑠)} ⊆ {𝑓 ∈ (𝑋pm ℂ) ∣ ∀𝑟 ∈ ℝ+𝑘 ∈ ℤ (𝑓 ↾ (ℤ𝑘)):(ℤ𝑘)⟶((𝑓𝑘)(ball‘𝐶)𝑟)})
46 metxmet 23487 . . 3 (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋))
47 caufval 24439 . . 3 (𝐷 ∈ (∞Met‘𝑋) → (Cau‘𝐷) = {𝑓 ∈ (𝑋pm ℂ) ∣ ∀𝑠 ∈ ℝ+𝑘 ∈ ℤ (𝑓 ↾ (ℤ𝑘)):(ℤ𝑘)⟶((𝑓𝑘)(ball‘𝐷)𝑠)})
4827, 46, 473syl 18 . 2 (𝜑 → (Cau‘𝐷) = {𝑓 ∈ (𝑋pm ℂ) ∣ ∀𝑠 ∈ ℝ+𝑘 ∈ ℤ (𝑓 ↾ (ℤ𝑘)):(ℤ𝑘)⟶((𝑓𝑘)(ball‘𝐷)𝑠)})
49 metxmet 23487 . . 3 (𝐶 ∈ (Met‘𝑋) → 𝐶 ∈ (∞Met‘𝑋))
50 caufval 24439 . . 3 (𝐶 ∈ (∞Met‘𝑋) → (Cau‘𝐶) = {𝑓 ∈ (𝑋pm ℂ) ∣ ∀𝑟 ∈ ℝ+𝑘 ∈ ℤ (𝑓 ↾ (ℤ𝑘)):(ℤ𝑘)⟶((𝑓𝑘)(ball‘𝐶)𝑟)})
5126, 49, 503syl 18 . 2 (𝜑 → (Cau‘𝐶) = {𝑓 ∈ (𝑋pm ℂ) ∣ ∀𝑟 ∈ ℝ+𝑘 ∈ ℤ (𝑓 ↾ (ℤ𝑘)):(ℤ𝑘)⟶((𝑓𝑘)(ball‘𝐶)𝑟)})
5245, 48, 513sstr4d 3968 1 (𝜑 → (Cau‘𝐷) ⊆ (Cau‘𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  wral 3064  wrex 3065  {crab 3068  wss 3887   class class class wbr 5074  dom cdm 5589  cres 5591  wf 6429  cfv 6433  (class class class)co 7275  pm cpm 8616  cc 10869   · cmul 10876  cle 11010   / cdiv 11632  cz 12319  cuz 12582  +crp 12730  ∞Metcxmet 20582  Metcmet 20583  ballcbl 20584  MetOpencmopn 20587  Cauccau 24417
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-po 5503  df-so 5504  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-1st 7831  df-2nd 7832  df-er 8498  df-map 8617  df-pm 8618  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-z 12320  df-uz 12583  df-rp 12731  df-xadd 12849  df-psmet 20589  df-xmet 20590  df-met 20591  df-bl 20592  df-cau 24420
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator