MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  equivcau Structured version   Visualization version   GIF version

Theorem equivcau 25334
Description: If the metric 𝐷 is "strongly finer" than 𝐶 (meaning that there is a positive real constant 𝑅 such that 𝐶(𝑥, 𝑦) ≤ 𝑅 · 𝐷(𝑥, 𝑦)), all the 𝐷-Cauchy sequences are also 𝐶-Cauchy. (Using this theorem twice in each direction states that if two metrics are strongly equivalent, then they have the same Cauchy sequences.) (Contributed by Mario Carneiro, 14-Sep-2015.)
Hypotheses
Ref Expression
equivcau.1 (𝜑𝐶 ∈ (Met‘𝑋))
equivcau.2 (𝜑𝐷 ∈ (Met‘𝑋))
equivcau.3 (𝜑𝑅 ∈ ℝ+)
equivcau.4 ((𝜑 ∧ (𝑥𝑋𝑦𝑋)) → (𝑥𝐶𝑦) ≤ (𝑅 · (𝑥𝐷𝑦)))
Assertion
Ref Expression
equivcau (𝜑 → (Cau‘𝐷) ⊆ (Cau‘𝐶))
Distinct variable groups:   𝑥,𝑦,𝐶   𝑥,𝐷,𝑦   𝜑,𝑥,𝑦   𝑥,𝑅,𝑦   𝑥,𝑋,𝑦

Proof of Theorem equivcau
Dummy variables 𝑓 𝑘 𝑟 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 484 . . . . . . 7 (((𝜑𝑓 ∈ (𝑋pm ℂ)) ∧ 𝑟 ∈ ℝ+) → 𝑟 ∈ ℝ+)
2 equivcau.3 . . . . . . . 8 (𝜑𝑅 ∈ ℝ+)
32ad2antrr 726 . . . . . . 7 (((𝜑𝑓 ∈ (𝑋pm ℂ)) ∧ 𝑟 ∈ ℝ+) → 𝑅 ∈ ℝ+)
41, 3rpdivcld 13094 . . . . . 6 (((𝜑𝑓 ∈ (𝑋pm ℂ)) ∧ 𝑟 ∈ ℝ+) → (𝑟 / 𝑅) ∈ ℝ+)
5 oveq2 7439 . . . . . . . . 9 (𝑠 = (𝑟 / 𝑅) → ((𝑓𝑘)(ball‘𝐷)𝑠) = ((𝑓𝑘)(ball‘𝐷)(𝑟 / 𝑅)))
65feq3d 6723 . . . . . . . 8 (𝑠 = (𝑟 / 𝑅) → ((𝑓 ↾ (ℤ𝑘)):(ℤ𝑘)⟶((𝑓𝑘)(ball‘𝐷)𝑠) ↔ (𝑓 ↾ (ℤ𝑘)):(ℤ𝑘)⟶((𝑓𝑘)(ball‘𝐷)(𝑟 / 𝑅))))
76rexbidv 3179 . . . . . . 7 (𝑠 = (𝑟 / 𝑅) → (∃𝑘 ∈ ℤ (𝑓 ↾ (ℤ𝑘)):(ℤ𝑘)⟶((𝑓𝑘)(ball‘𝐷)𝑠) ↔ ∃𝑘 ∈ ℤ (𝑓 ↾ (ℤ𝑘)):(ℤ𝑘)⟶((𝑓𝑘)(ball‘𝐷)(𝑟 / 𝑅))))
87rspcv 3618 . . . . . 6 ((𝑟 / 𝑅) ∈ ℝ+ → (∀𝑠 ∈ ℝ+𝑘 ∈ ℤ (𝑓 ↾ (ℤ𝑘)):(ℤ𝑘)⟶((𝑓𝑘)(ball‘𝐷)𝑠) → ∃𝑘 ∈ ℤ (𝑓 ↾ (ℤ𝑘)):(ℤ𝑘)⟶((𝑓𝑘)(ball‘𝐷)(𝑟 / 𝑅))))
94, 8syl 17 . . . . 5 (((𝜑𝑓 ∈ (𝑋pm ℂ)) ∧ 𝑟 ∈ ℝ+) → (∀𝑠 ∈ ℝ+𝑘 ∈ ℤ (𝑓 ↾ (ℤ𝑘)):(ℤ𝑘)⟶((𝑓𝑘)(ball‘𝐷)𝑠) → ∃𝑘 ∈ ℤ (𝑓 ↾ (ℤ𝑘)):(ℤ𝑘)⟶((𝑓𝑘)(ball‘𝐷)(𝑟 / 𝑅))))
10 simprr 773 . . . . . . . 8 ((((𝜑𝑓 ∈ (𝑋pm ℂ)) ∧ 𝑟 ∈ ℝ+) ∧ (𝑘 ∈ ℤ ∧ (𝑓 ↾ (ℤ𝑘)):(ℤ𝑘)⟶((𝑓𝑘)(ball‘𝐷)(𝑟 / 𝑅)))) → (𝑓 ↾ (ℤ𝑘)):(ℤ𝑘)⟶((𝑓𝑘)(ball‘𝐷)(𝑟 / 𝑅)))
11 elpmi 8886 . . . . . . . . . . . 12 (𝑓 ∈ (𝑋pm ℂ) → (𝑓:dom 𝑓𝑋 ∧ dom 𝑓 ⊆ ℂ))
1211simpld 494 . . . . . . . . . . 11 (𝑓 ∈ (𝑋pm ℂ) → 𝑓:dom 𝑓𝑋)
1312ad3antlr 731 . . . . . . . . . 10 ((((𝜑𝑓 ∈ (𝑋pm ℂ)) ∧ 𝑟 ∈ ℝ+) ∧ (𝑘 ∈ ℤ ∧ (𝑓 ↾ (ℤ𝑘)):(ℤ𝑘)⟶((𝑓𝑘)(ball‘𝐷)(𝑟 / 𝑅)))) → 𝑓:dom 𝑓𝑋)
14 resss 6019 . . . . . . . . . . . 12 (𝑓 ↾ (ℤ𝑘)) ⊆ 𝑓
15 dmss 5913 . . . . . . . . . . . 12 ((𝑓 ↾ (ℤ𝑘)) ⊆ 𝑓 → dom (𝑓 ↾ (ℤ𝑘)) ⊆ dom 𝑓)
1614, 15ax-mp 5 . . . . . . . . . . 11 dom (𝑓 ↾ (ℤ𝑘)) ⊆ dom 𝑓
17 uzid 12893 . . . . . . . . . . . . 13 (𝑘 ∈ ℤ → 𝑘 ∈ (ℤ𝑘))
1817ad2antrl 728 . . . . . . . . . . . 12 ((((𝜑𝑓 ∈ (𝑋pm ℂ)) ∧ 𝑟 ∈ ℝ+) ∧ (𝑘 ∈ ℤ ∧ (𝑓 ↾ (ℤ𝑘)):(ℤ𝑘)⟶((𝑓𝑘)(ball‘𝐷)(𝑟 / 𝑅)))) → 𝑘 ∈ (ℤ𝑘))
19 fdm 6745 . . . . . . . . . . . . 13 ((𝑓 ↾ (ℤ𝑘)):(ℤ𝑘)⟶((𝑓𝑘)(ball‘𝐷)(𝑟 / 𝑅)) → dom (𝑓 ↾ (ℤ𝑘)) = (ℤ𝑘))
2019ad2antll 729 . . . . . . . . . . . 12 ((((𝜑𝑓 ∈ (𝑋pm ℂ)) ∧ 𝑟 ∈ ℝ+) ∧ (𝑘 ∈ ℤ ∧ (𝑓 ↾ (ℤ𝑘)):(ℤ𝑘)⟶((𝑓𝑘)(ball‘𝐷)(𝑟 / 𝑅)))) → dom (𝑓 ↾ (ℤ𝑘)) = (ℤ𝑘))
2118, 20eleqtrrd 2844 . . . . . . . . . . 11 ((((𝜑𝑓 ∈ (𝑋pm ℂ)) ∧ 𝑟 ∈ ℝ+) ∧ (𝑘 ∈ ℤ ∧ (𝑓 ↾ (ℤ𝑘)):(ℤ𝑘)⟶((𝑓𝑘)(ball‘𝐷)(𝑟 / 𝑅)))) → 𝑘 ∈ dom (𝑓 ↾ (ℤ𝑘)))
2216, 21sselid 3981 . . . . . . . . . 10 ((((𝜑𝑓 ∈ (𝑋pm ℂ)) ∧ 𝑟 ∈ ℝ+) ∧ (𝑘 ∈ ℤ ∧ (𝑓 ↾ (ℤ𝑘)):(ℤ𝑘)⟶((𝑓𝑘)(ball‘𝐷)(𝑟 / 𝑅)))) → 𝑘 ∈ dom 𝑓)
2313, 22ffvelcdmd 7105 . . . . . . . . 9 ((((𝜑𝑓 ∈ (𝑋pm ℂ)) ∧ 𝑟 ∈ ℝ+) ∧ (𝑘 ∈ ℤ ∧ (𝑓 ↾ (ℤ𝑘)):(ℤ𝑘)⟶((𝑓𝑘)(ball‘𝐷)(𝑟 / 𝑅)))) → (𝑓𝑘) ∈ 𝑋)
24 eqid 2737 . . . . . . . . . . . . 13 (MetOpen‘𝐶) = (MetOpen‘𝐶)
25 eqid 2737 . . . . . . . . . . . . 13 (MetOpen‘𝐷) = (MetOpen‘𝐷)
26 equivcau.1 . . . . . . . . . . . . 13 (𝜑𝐶 ∈ (Met‘𝑋))
27 equivcau.2 . . . . . . . . . . . . 13 (𝜑𝐷 ∈ (Met‘𝑋))
28 equivcau.4 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥𝑋𝑦𝑋)) → (𝑥𝐶𝑦) ≤ (𝑅 · (𝑥𝐷𝑦)))
2924, 25, 26, 27, 2, 28metss2lem 24524 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥𝑋𝑟 ∈ ℝ+)) → (𝑥(ball‘𝐷)(𝑟 / 𝑅)) ⊆ (𝑥(ball‘𝐶)𝑟))
3029expr 456 . . . . . . . . . . 11 ((𝜑𝑥𝑋) → (𝑟 ∈ ℝ+ → (𝑥(ball‘𝐷)(𝑟 / 𝑅)) ⊆ (𝑥(ball‘𝐶)𝑟)))
3130ralrimiva 3146 . . . . . . . . . 10 (𝜑 → ∀𝑥𝑋 (𝑟 ∈ ℝ+ → (𝑥(ball‘𝐷)(𝑟 / 𝑅)) ⊆ (𝑥(ball‘𝐶)𝑟)))
3231ad3antrrr 730 . . . . . . . . 9 ((((𝜑𝑓 ∈ (𝑋pm ℂ)) ∧ 𝑟 ∈ ℝ+) ∧ (𝑘 ∈ ℤ ∧ (𝑓 ↾ (ℤ𝑘)):(ℤ𝑘)⟶((𝑓𝑘)(ball‘𝐷)(𝑟 / 𝑅)))) → ∀𝑥𝑋 (𝑟 ∈ ℝ+ → (𝑥(ball‘𝐷)(𝑟 / 𝑅)) ⊆ (𝑥(ball‘𝐶)𝑟)))
33 simplr 769 . . . . . . . . 9 ((((𝜑𝑓 ∈ (𝑋pm ℂ)) ∧ 𝑟 ∈ ℝ+) ∧ (𝑘 ∈ ℤ ∧ (𝑓 ↾ (ℤ𝑘)):(ℤ𝑘)⟶((𝑓𝑘)(ball‘𝐷)(𝑟 / 𝑅)))) → 𝑟 ∈ ℝ+)
34 oveq1 7438 . . . . . . . . . . . 12 (𝑥 = (𝑓𝑘) → (𝑥(ball‘𝐷)(𝑟 / 𝑅)) = ((𝑓𝑘)(ball‘𝐷)(𝑟 / 𝑅)))
35 oveq1 7438 . . . . . . . . . . . 12 (𝑥 = (𝑓𝑘) → (𝑥(ball‘𝐶)𝑟) = ((𝑓𝑘)(ball‘𝐶)𝑟))
3634, 35sseq12d 4017 . . . . . . . . . . 11 (𝑥 = (𝑓𝑘) → ((𝑥(ball‘𝐷)(𝑟 / 𝑅)) ⊆ (𝑥(ball‘𝐶)𝑟) ↔ ((𝑓𝑘)(ball‘𝐷)(𝑟 / 𝑅)) ⊆ ((𝑓𝑘)(ball‘𝐶)𝑟)))
3736imbi2d 340 . . . . . . . . . 10 (𝑥 = (𝑓𝑘) → ((𝑟 ∈ ℝ+ → (𝑥(ball‘𝐷)(𝑟 / 𝑅)) ⊆ (𝑥(ball‘𝐶)𝑟)) ↔ (𝑟 ∈ ℝ+ → ((𝑓𝑘)(ball‘𝐷)(𝑟 / 𝑅)) ⊆ ((𝑓𝑘)(ball‘𝐶)𝑟))))
3837rspcv 3618 . . . . . . . . 9 ((𝑓𝑘) ∈ 𝑋 → (∀𝑥𝑋 (𝑟 ∈ ℝ+ → (𝑥(ball‘𝐷)(𝑟 / 𝑅)) ⊆ (𝑥(ball‘𝐶)𝑟)) → (𝑟 ∈ ℝ+ → ((𝑓𝑘)(ball‘𝐷)(𝑟 / 𝑅)) ⊆ ((𝑓𝑘)(ball‘𝐶)𝑟))))
3923, 32, 33, 38syl3c 66 . . . . . . . 8 ((((𝜑𝑓 ∈ (𝑋pm ℂ)) ∧ 𝑟 ∈ ℝ+) ∧ (𝑘 ∈ ℤ ∧ (𝑓 ↾ (ℤ𝑘)):(ℤ𝑘)⟶((𝑓𝑘)(ball‘𝐷)(𝑟 / 𝑅)))) → ((𝑓𝑘)(ball‘𝐷)(𝑟 / 𝑅)) ⊆ ((𝑓𝑘)(ball‘𝐶)𝑟))
4010, 39fssd 6753 . . . . . . 7 ((((𝜑𝑓 ∈ (𝑋pm ℂ)) ∧ 𝑟 ∈ ℝ+) ∧ (𝑘 ∈ ℤ ∧ (𝑓 ↾ (ℤ𝑘)):(ℤ𝑘)⟶((𝑓𝑘)(ball‘𝐷)(𝑟 / 𝑅)))) → (𝑓 ↾ (ℤ𝑘)):(ℤ𝑘)⟶((𝑓𝑘)(ball‘𝐶)𝑟))
4140expr 456 . . . . . 6 ((((𝜑𝑓 ∈ (𝑋pm ℂ)) ∧ 𝑟 ∈ ℝ+) ∧ 𝑘 ∈ ℤ) → ((𝑓 ↾ (ℤ𝑘)):(ℤ𝑘)⟶((𝑓𝑘)(ball‘𝐷)(𝑟 / 𝑅)) → (𝑓 ↾ (ℤ𝑘)):(ℤ𝑘)⟶((𝑓𝑘)(ball‘𝐶)𝑟)))
4241reximdva 3168 . . . . 5 (((𝜑𝑓 ∈ (𝑋pm ℂ)) ∧ 𝑟 ∈ ℝ+) → (∃𝑘 ∈ ℤ (𝑓 ↾ (ℤ𝑘)):(ℤ𝑘)⟶((𝑓𝑘)(ball‘𝐷)(𝑟 / 𝑅)) → ∃𝑘 ∈ ℤ (𝑓 ↾ (ℤ𝑘)):(ℤ𝑘)⟶((𝑓𝑘)(ball‘𝐶)𝑟)))
439, 42syld 47 . . . 4 (((𝜑𝑓 ∈ (𝑋pm ℂ)) ∧ 𝑟 ∈ ℝ+) → (∀𝑠 ∈ ℝ+𝑘 ∈ ℤ (𝑓 ↾ (ℤ𝑘)):(ℤ𝑘)⟶((𝑓𝑘)(ball‘𝐷)𝑠) → ∃𝑘 ∈ ℤ (𝑓 ↾ (ℤ𝑘)):(ℤ𝑘)⟶((𝑓𝑘)(ball‘𝐶)𝑟)))
4443ralrimdva 3154 . . 3 ((𝜑𝑓 ∈ (𝑋pm ℂ)) → (∀𝑠 ∈ ℝ+𝑘 ∈ ℤ (𝑓 ↾ (ℤ𝑘)):(ℤ𝑘)⟶((𝑓𝑘)(ball‘𝐷)𝑠) → ∀𝑟 ∈ ℝ+𝑘 ∈ ℤ (𝑓 ↾ (ℤ𝑘)):(ℤ𝑘)⟶((𝑓𝑘)(ball‘𝐶)𝑟)))
4544ss2rabdv 4076 . 2 (𝜑 → {𝑓 ∈ (𝑋pm ℂ) ∣ ∀𝑠 ∈ ℝ+𝑘 ∈ ℤ (𝑓 ↾ (ℤ𝑘)):(ℤ𝑘)⟶((𝑓𝑘)(ball‘𝐷)𝑠)} ⊆ {𝑓 ∈ (𝑋pm ℂ) ∣ ∀𝑟 ∈ ℝ+𝑘 ∈ ℤ (𝑓 ↾ (ℤ𝑘)):(ℤ𝑘)⟶((𝑓𝑘)(ball‘𝐶)𝑟)})
46 metxmet 24344 . . 3 (𝐷 ∈ (Met‘𝑋) → 𝐷 ∈ (∞Met‘𝑋))
47 caufval 25309 . . 3 (𝐷 ∈ (∞Met‘𝑋) → (Cau‘𝐷) = {𝑓 ∈ (𝑋pm ℂ) ∣ ∀𝑠 ∈ ℝ+𝑘 ∈ ℤ (𝑓 ↾ (ℤ𝑘)):(ℤ𝑘)⟶((𝑓𝑘)(ball‘𝐷)𝑠)})
4827, 46, 473syl 18 . 2 (𝜑 → (Cau‘𝐷) = {𝑓 ∈ (𝑋pm ℂ) ∣ ∀𝑠 ∈ ℝ+𝑘 ∈ ℤ (𝑓 ↾ (ℤ𝑘)):(ℤ𝑘)⟶((𝑓𝑘)(ball‘𝐷)𝑠)})
49 metxmet 24344 . . 3 (𝐶 ∈ (Met‘𝑋) → 𝐶 ∈ (∞Met‘𝑋))
50 caufval 25309 . . 3 (𝐶 ∈ (∞Met‘𝑋) → (Cau‘𝐶) = {𝑓 ∈ (𝑋pm ℂ) ∣ ∀𝑟 ∈ ℝ+𝑘 ∈ ℤ (𝑓 ↾ (ℤ𝑘)):(ℤ𝑘)⟶((𝑓𝑘)(ball‘𝐶)𝑟)})
5126, 49, 503syl 18 . 2 (𝜑 → (Cau‘𝐶) = {𝑓 ∈ (𝑋pm ℂ) ∣ ∀𝑟 ∈ ℝ+𝑘 ∈ ℤ (𝑓 ↾ (ℤ𝑘)):(ℤ𝑘)⟶((𝑓𝑘)(ball‘𝐶)𝑟)})
5245, 48, 513sstr4d 4039 1 (𝜑 → (Cau‘𝐷) ⊆ (Cau‘𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  wral 3061  wrex 3070  {crab 3436  wss 3951   class class class wbr 5143  dom cdm 5685  cres 5687  wf 6557  cfv 6561  (class class class)co 7431  pm cpm 8867  cc 11153   · cmul 11160  cle 11296   / cdiv 11920  cz 12613  cuz 12878  +crp 13034  ∞Metcxmet 21349  Metcmet 21350  ballcbl 21351  MetOpencmopn 21354  Cauccau 25287
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-po 5592  df-so 5593  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-1st 8014  df-2nd 8015  df-er 8745  df-map 8868  df-pm 8869  df-en 8986  df-dom 8987  df-sdom 8988  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-z 12614  df-uz 12879  df-rp 13035  df-xadd 13155  df-psmet 21356  df-xmet 21357  df-met 21358  df-bl 21359  df-cau 25290
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator