Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cic1st2ndbr Structured version   Visualization version   GIF version

Theorem cic1st2ndbr 49080
Description: Rewrite the predicate of isomorphic objects with separated parts. (Contributed by Zhi Wang, 27-Oct-2025.)
Assertion
Ref Expression
cic1st2ndbr (𝑃 ∈ ( ≃𝑐𝐶) → (1st𝑃)( ≃𝑐𝐶)(2nd𝑃))

Proof of Theorem cic1st2ndbr
StepHypRef Expression
1 cic1st2nd 49079 . . 3 (𝑃 ∈ ( ≃𝑐𝐶) → 𝑃 = ⟨(1st𝑃), (2nd𝑃)⟩)
2 id 22 . . 3 (𝑃 ∈ ( ≃𝑐𝐶) → 𝑃 ∈ ( ≃𝑐𝐶))
31, 2eqeltrrd 2832 . 2 (𝑃 ∈ ( ≃𝑐𝐶) → ⟨(1st𝑃), (2nd𝑃)⟩ ∈ ( ≃𝑐𝐶))
4 df-br 5087 . 2 ((1st𝑃)( ≃𝑐𝐶)(2nd𝑃) ↔ ⟨(1st𝑃), (2nd𝑃)⟩ ∈ ( ≃𝑐𝐶))
53, 4sylibr 234 1 (𝑃 ∈ ( ≃𝑐𝐶) → (1st𝑃)( ≃𝑐𝐶)(2nd𝑃))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2111  cop 4577   class class class wbr 5086  cfv 6476  1st c1st 7914  2nd c2nd 7915  𝑐 ccic 17697
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5212  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-id 5506  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-ov 7344  df-oprab 7345  df-mpo 7346  df-1st 7916  df-2nd 7917  df-supp 8086  df-inv 17650  df-iso 17651  df-cic 17698
This theorem is referenced by:  cicpropdlem  49081  oppcciceq  49084
  Copyright terms: Public domain W3C validator