Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cic1st2ndbr Structured version   Visualization version   GIF version

Theorem cic1st2ndbr 49033
Description: Rewrite the predicate of isomorphic objects with separated parts. (Contributed by Zhi Wang, 27-Oct-2025.)
Assertion
Ref Expression
cic1st2ndbr (𝑃 ∈ ( ≃𝑐𝐶) → (1st𝑃)( ≃𝑐𝐶)(2nd𝑃))

Proof of Theorem cic1st2ndbr
StepHypRef Expression
1 cic1st2nd 49032 . . 3 (𝑃 ∈ ( ≃𝑐𝐶) → 𝑃 = ⟨(1st𝑃), (2nd𝑃)⟩)
2 id 22 . . 3 (𝑃 ∈ ( ≃𝑐𝐶) → 𝑃 ∈ ( ≃𝑐𝐶))
31, 2eqeltrrd 2829 . 2 (𝑃 ∈ ( ≃𝑐𝐶) → ⟨(1st𝑃), (2nd𝑃)⟩ ∈ ( ≃𝑐𝐶))
4 df-br 5093 . 2 ((1st𝑃)( ≃𝑐𝐶)(2nd𝑃) ↔ ⟨(1st𝑃), (2nd𝑃)⟩ ∈ ( ≃𝑐𝐶))
53, 4sylibr 234 1 (𝑃 ∈ ( ≃𝑐𝐶) → (1st𝑃)( ≃𝑐𝐶)(2nd𝑃))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109  cop 4583   class class class wbr 5092  cfv 6482  1st c1st 7922  2nd c2nd 7923  𝑐 ccic 17702
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-ov 7352  df-oprab 7353  df-mpo 7354  df-1st 7924  df-2nd 7925  df-supp 8094  df-inv 17655  df-iso 17656  df-cic 17703
This theorem is referenced by:  cicpropdlem  49034  oppcciceq  49037
  Copyright terms: Public domain W3C validator