Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cic1st2nd Structured version   Visualization version   GIF version

Theorem cic1st2nd 49208
Description: Reconstruction of a pair of isomorphic objects in terms of its ordered pair components. (Contributed by Zhi Wang, 27-Oct-2025.)
Assertion
Ref Expression
cic1st2nd (𝑃 ∈ ( ≃𝑐𝐶) → 𝑃 = ⟨(1st𝑃), (2nd𝑃)⟩)

Proof of Theorem cic1st2nd
StepHypRef Expression
1 elfvdm 6865 . . . 4 (𝑃 ∈ ( ≃𝑐𝐶) → 𝐶 ∈ dom ≃𝑐 )
2 cicfn 49203 . . . . 5 𝑐 Fn Cat
32fndmi 6593 . . . 4 dom ≃𝑐 = Cat
41, 3eleqtrdi 2843 . . 3 (𝑃 ∈ ( ≃𝑐𝐶) → 𝐶 ∈ Cat)
5 relcic 49206 . . 3 (𝐶 ∈ Cat → Rel ( ≃𝑐𝐶))
64, 5syl 17 . 2 (𝑃 ∈ ( ≃𝑐𝐶) → Rel ( ≃𝑐𝐶))
7 1st2nd 7980 . 2 ((Rel ( ≃𝑐𝐶) ∧ 𝑃 ∈ ( ≃𝑐𝐶)) → 𝑃 = ⟨(1st𝑃), (2nd𝑃)⟩)
86, 7mpancom 688 1 (𝑃 ∈ ( ≃𝑐𝐶) → 𝑃 = ⟨(1st𝑃), (2nd𝑃)⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2113  cop 4583  dom cdm 5621  Rel wrel 5626  cfv 6489  1st c1st 7928  2nd c2nd 7929  Catccat 17578  𝑐 ccic 17710
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-ov 7358  df-oprab 7359  df-mpo 7360  df-1st 7930  df-2nd 7931  df-supp 8100  df-inv 17663  df-iso 17664  df-cic 17711
This theorem is referenced by:  cic1st2ndbr  49209  cicpropdlem  49210  oppcciceq  49213
  Copyright terms: Public domain W3C validator