Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cic1st2nd Structured version   Visualization version   GIF version

Theorem cic1st2nd 49024
Description: Reconstruction of a pair of isomorphic objects in terms of its ordered pair components. (Contributed by Zhi Wang, 27-Oct-2025.)
Assertion
Ref Expression
cic1st2nd (𝑃 ∈ ( ≃𝑐𝐶) → 𝑃 = ⟨(1st𝑃), (2nd𝑃)⟩)

Proof of Theorem cic1st2nd
StepHypRef Expression
1 elfvdm 6897 . . . 4 (𝑃 ∈ ( ≃𝑐𝐶) → 𝐶 ∈ dom ≃𝑐 )
2 cicfn 49019 . . . . 5 𝑐 Fn Cat
32fndmi 6624 . . . 4 dom ≃𝑐 = Cat
41, 3eleqtrdi 2839 . . 3 (𝑃 ∈ ( ≃𝑐𝐶) → 𝐶 ∈ Cat)
5 relcic 49022 . . 3 (𝐶 ∈ Cat → Rel ( ≃𝑐𝐶))
64, 5syl 17 . 2 (𝑃 ∈ ( ≃𝑐𝐶) → Rel ( ≃𝑐𝐶))
7 1st2nd 8020 . 2 ((Rel ( ≃𝑐𝐶) ∧ 𝑃 ∈ ( ≃𝑐𝐶)) → 𝑃 = ⟨(1st𝑃), (2nd𝑃)⟩)
86, 7mpancom 688 1 (𝑃 ∈ ( ≃𝑐𝐶) → 𝑃 = ⟨(1st𝑃), (2nd𝑃)⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  cop 4597  dom cdm 5640  Rel wrel 5645  cfv 6513  1st c1st 7968  2nd c2nd 7969  Catccat 17631  𝑐 ccic 17763
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5236  ax-sep 5253  ax-nul 5263  ax-pow 5322  ax-pr 5389  ax-un 7713
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3756  df-csb 3865  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-iun 4959  df-br 5110  df-opab 5172  df-mpt 5191  df-id 5535  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-f1 6518  df-fo 6519  df-f1o 6520  df-fv 6521  df-ov 7392  df-oprab 7393  df-mpo 7394  df-1st 7970  df-2nd 7971  df-supp 8142  df-inv 17716  df-iso 17717  df-cic 17764
This theorem is referenced by:  cic1st2ndbr  49025  cicpropdlem  49026  oppcciceq  49029
  Copyright terms: Public domain W3C validator