Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cic1st2nd Structured version   Visualization version   GIF version

Theorem cic1st2nd 49009
Description: Reconstruction of a pair of isomorphic objects in terms of its ordered pair components. (Contributed by Zhi Wang, 27-Oct-2025.)
Assertion
Ref Expression
cic1st2nd (𝑃 ∈ ( ≃𝑐𝐶) → 𝑃 = ⟨(1st𝑃), (2nd𝑃)⟩)

Proof of Theorem cic1st2nd
StepHypRef Expression
1 elfvdm 6877 . . . 4 (𝑃 ∈ ( ≃𝑐𝐶) → 𝐶 ∈ dom ≃𝑐 )
2 cicfn 49004 . . . . 5 𝑐 Fn Cat
32fndmi 6604 . . . 4 dom ≃𝑐 = Cat
41, 3eleqtrdi 2838 . . 3 (𝑃 ∈ ( ≃𝑐𝐶) → 𝐶 ∈ Cat)
5 relcic 49007 . . 3 (𝐶 ∈ Cat → Rel ( ≃𝑐𝐶))
64, 5syl 17 . 2 (𝑃 ∈ ( ≃𝑐𝐶) → Rel ( ≃𝑐𝐶))
7 1st2nd 7997 . 2 ((Rel ( ≃𝑐𝐶) ∧ 𝑃 ∈ ( ≃𝑐𝐶)) → 𝑃 = ⟨(1st𝑃), (2nd𝑃)⟩)
86, 7mpancom 688 1 (𝑃 ∈ ( ≃𝑐𝐶) → 𝑃 = ⟨(1st𝑃), (2nd𝑃)⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  cop 4591  dom cdm 5631  Rel wrel 5636  cfv 6499  1st c1st 7945  2nd c2nd 7946  Catccat 17601  𝑐 ccic 17733
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-ov 7372  df-oprab 7373  df-mpo 7374  df-1st 7947  df-2nd 7948  df-supp 8117  df-inv 17686  df-iso 17687  df-cic 17734
This theorem is referenced by:  cic1st2ndbr  49010  cicpropdlem  49011  oppcciceq  49014
  Copyright terms: Public domain W3C validator