| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cnelprrecn | Structured version Visualization version GIF version | ||
| Description: Complex numbers are a subset of the pair of real and complex numbers . (Contributed by David A. Wheeler, 8-Dec-2018.) |
| Ref | Expression |
|---|---|
| cnelprrecn | ⊢ ℂ ∈ {ℝ, ℂ} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnex 11149 | . 2 ⊢ ℂ ∈ V | |
| 2 | 1 | prid2 4727 | 1 ⊢ ℂ ∈ {ℝ, ℂ} |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 {cpr 4591 ℂcc 11066 ℝcr 11067 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-cnex 11124 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3449 df-un 3919 df-sn 4590 df-pr 4592 |
| This theorem is referenced by: dvfcn 25809 dvnres 25833 dvexp 25857 dvrecg 25877 dvexp3 25882 dvef 25884 dvsincos 25885 dvlipcn 25899 dv11cn 25906 dvply1 26191 dvtaylp 26278 pserdvlem2 26338 pige3ALT 26429 dvlog 26560 advlogexp 26564 logtayl 26569 dvcxp1 26649 dvcxp2 26650 dvcncxp1 26652 dvatan 26845 efrlim 26879 efrlimOLD 26880 lgamgulmlem2 26940 logdivsum 27444 log2sumbnd 27455 itgexpif 34597 dvtan 37664 dvasin 37698 dvacos 37699 lcmineqlem7 42023 lcmineqlem8 42024 lcmineqlem12 42028 dvrelogpow2b 42056 aks4d1p1p6 42061 readvrec2 42349 readvrec 42350 lhe4.4ex1a 44318 expgrowthi 44322 expgrowth 44324 binomcxplemdvbinom 44342 binomcxplemnotnn0 44345 dvsinexp 45909 dvsinax 45911 dvasinbx 45918 dvcosax 45924 dvxpaek 45938 itgsincmulx 45972 fourierdlem56 46160 etransclem46 46278 |
| Copyright terms: Public domain | W3C validator |