| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cnelprrecn | Structured version Visualization version GIF version | ||
| Description: Complex numbers are a subset of the pair of real and complex numbers . (Contributed by David A. Wheeler, 8-Dec-2018.) |
| Ref | Expression |
|---|---|
| cnelprrecn | ⊢ ℂ ∈ {ℝ, ℂ} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnex 11210 | . 2 ⊢ ℂ ∈ V | |
| 2 | 1 | prid2 4739 | 1 ⊢ ℂ ∈ {ℝ, ℂ} |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2108 {cpr 4603 ℂcc 11127 ℝcr 11128 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-cnex 11185 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-v 3461 df-un 3931 df-sn 4602 df-pr 4604 |
| This theorem is referenced by: dvfcn 25861 dvnres 25885 dvexp 25909 dvrecg 25929 dvexp3 25934 dvef 25936 dvsincos 25937 dvlipcn 25951 dv11cn 25958 dvply1 26243 dvtaylp 26330 pserdvlem2 26390 pige3ALT 26481 dvlog 26612 advlogexp 26616 logtayl 26621 dvcxp1 26701 dvcxp2 26702 dvcncxp1 26704 dvatan 26897 efrlim 26931 efrlimOLD 26932 lgamgulmlem2 26992 logdivsum 27496 log2sumbnd 27507 itgexpif 34638 dvtan 37694 dvasin 37728 dvacos 37729 lcmineqlem7 42048 lcmineqlem8 42049 lcmineqlem12 42053 dvrelogpow2b 42081 aks4d1p1p6 42086 readvrec2 42404 readvrec 42405 lhe4.4ex1a 44353 expgrowthi 44357 expgrowth 44359 binomcxplemdvbinom 44377 binomcxplemnotnn0 44380 dvsinexp 45940 dvsinax 45942 dvasinbx 45949 dvcosax 45955 dvxpaek 45969 itgsincmulx 46003 fourierdlem56 46191 etransclem46 46309 |
| Copyright terms: Public domain | W3C validator |