| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cnelprrecn | Structured version Visualization version GIF version | ||
| Description: Complex numbers are a subset of the pair of real and complex numbers . (Contributed by David A. Wheeler, 8-Dec-2018.) |
| Ref | Expression |
|---|---|
| cnelprrecn | ⊢ ℂ ∈ {ℝ, ℂ} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnex 11090 | . 2 ⊢ ℂ ∈ V | |
| 2 | 1 | prid2 4715 | 1 ⊢ ℂ ∈ {ℝ, ℂ} |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 {cpr 4579 ℂcc 11007 ℝcr 11008 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-cnex 11065 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3438 df-un 3908 df-sn 4578 df-pr 4580 |
| This theorem is referenced by: dvfcn 25807 dvnres 25831 dvexp 25855 dvrecg 25875 dvexp3 25880 dvef 25882 dvsincos 25883 dvlipcn 25897 dv11cn 25904 dvply1 26189 dvtaylp 26276 pserdvlem2 26336 pige3ALT 26427 dvlog 26558 advlogexp 26562 logtayl 26567 dvcxp1 26647 dvcxp2 26648 dvcncxp1 26650 dvatan 26843 efrlim 26877 efrlimOLD 26878 lgamgulmlem2 26938 logdivsum 27442 log2sumbnd 27453 itgexpif 34574 dvtan 37650 dvasin 37684 dvacos 37685 lcmineqlem7 42008 lcmineqlem8 42009 lcmineqlem12 42013 dvrelogpow2b 42041 aks4d1p1p6 42046 readvrec2 42334 readvrec 42335 lhe4.4ex1a 44302 expgrowthi 44306 expgrowth 44308 binomcxplemdvbinom 44326 binomcxplemnotnn0 44329 dvsinexp 45892 dvsinax 45894 dvasinbx 45901 dvcosax 45907 dvxpaek 45921 itgsincmulx 45955 fourierdlem56 46143 etransclem46 46261 |
| Copyright terms: Public domain | W3C validator |