![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cnelprrecn | Structured version Visualization version GIF version |
Description: Complex numbers are a subset of the pair of real and complex numbers . (Contributed by David A. Wheeler, 8-Dec-2018.) |
Ref | Expression |
---|---|
cnelprrecn | ⊢ ℂ ∈ {ℝ, ℂ} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnex 10304 | . 2 ⊢ ℂ ∈ V | |
2 | 1 | prid2 4486 | 1 ⊢ ℂ ∈ {ℝ, ℂ} |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2157 {cpr 4369 ℂcc 10221 ℝcr 10222 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-ext 2776 ax-cnex 10279 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-clab 2785 df-cleq 2791 df-clel 2794 df-nfc 2929 df-v 3386 df-un 3773 df-sn 4368 df-pr 4370 |
This theorem is referenced by: dvfcn 24010 dvnres 24032 dvexp 24054 dvrecg 24074 dvexp3 24079 dvef 24081 dvsincos 24082 dvlipcn 24095 dv11cn 24102 dvply1 24377 dvtaylp 24462 pserdvlem2 24520 pige3 24608 dvlog 24735 advlogexp 24739 logtayl 24744 dvcxp1 24822 dvcxp2 24823 dvcncxp1 24825 dvatan 25011 efrlim 25045 lgamgulmlem2 25105 logdivsum 25571 log2sumbnd 25582 itgexpif 31197 dvtan 33941 dvasin 33977 dvacos 33978 lhe4.4ex1a 39299 expgrowthi 39303 expgrowth 39305 binomcxplemdvbinom 39323 binomcxplemnotnn0 39326 dvsinexp 40858 dvsinax 40860 dvasinbx 40868 dvcosax 40874 dvxpaek 40888 itgsincmulx 40922 fourierdlem56 41111 etransclem46 41229 |
Copyright terms: Public domain | W3C validator |