Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cnelprrecn | Structured version Visualization version GIF version |
Description: Complex numbers are a subset of the pair of real and complex numbers . (Contributed by David A. Wheeler, 8-Dec-2018.) |
Ref | Expression |
---|---|
cnelprrecn | ⊢ ℂ ∈ {ℝ, ℂ} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnex 10883 | . 2 ⊢ ℂ ∈ V | |
2 | 1 | prid2 4696 | 1 ⊢ ℂ ∈ {ℝ, ℂ} |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2108 {cpr 4560 ℂcc 10800 ℝcr 10801 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-cnex 10858 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-un 3888 df-sn 4559 df-pr 4561 |
This theorem is referenced by: dvfcn 24977 dvnres 25000 dvexp 25022 dvrecg 25042 dvexp3 25047 dvef 25049 dvsincos 25050 dvlipcn 25063 dv11cn 25070 dvply1 25349 dvtaylp 25434 pserdvlem2 25492 pige3ALT 25581 dvlog 25711 advlogexp 25715 logtayl 25720 dvcxp1 25798 dvcxp2 25799 dvcncxp1 25801 dvatan 25990 efrlim 26024 lgamgulmlem2 26084 logdivsum 26586 log2sumbnd 26597 itgexpif 32486 dvtan 35754 dvasin 35788 dvacos 35789 lcmineqlem7 39971 lcmineqlem8 39972 lcmineqlem12 39976 dvrelogpow2b 40004 aks4d1p1p6 40009 lhe4.4ex1a 41836 expgrowthi 41840 expgrowth 41842 binomcxplemdvbinom 41860 binomcxplemnotnn0 41863 dvsinexp 43342 dvsinax 43344 dvasinbx 43351 dvcosax 43357 dvxpaek 43371 itgsincmulx 43405 fourierdlem56 43593 etransclem46 43711 |
Copyright terms: Public domain | W3C validator |