| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cnelprrecn | Structured version Visualization version GIF version | ||
| Description: Complex numbers are a subset of the pair of real and complex numbers . (Contributed by David A. Wheeler, 8-Dec-2018.) |
| Ref | Expression |
|---|---|
| cnelprrecn | ⊢ ℂ ∈ {ℝ, ℂ} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnex 11087 | . 2 ⊢ ℂ ∈ V | |
| 2 | 1 | prid2 4713 | 1 ⊢ ℂ ∈ {ℝ, ℂ} |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2111 {cpr 4575 ℂcc 11004 ℝcr 11005 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-cnex 11062 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-un 3902 df-sn 4574 df-pr 4576 |
| This theorem is referenced by: dvfcn 25836 dvnres 25860 dvexp 25884 dvrecg 25904 dvexp3 25909 dvef 25911 dvsincos 25912 dvlipcn 25926 dv11cn 25933 dvply1 26218 dvtaylp 26305 pserdvlem2 26365 pige3ALT 26456 dvlog 26587 advlogexp 26591 logtayl 26596 dvcxp1 26676 dvcxp2 26677 dvcncxp1 26679 dvatan 26872 efrlim 26906 efrlimOLD 26907 lgamgulmlem2 26967 logdivsum 27471 log2sumbnd 27482 itgexpif 34619 dvtan 37718 dvasin 37752 dvacos 37753 lcmineqlem7 42076 lcmineqlem8 42077 lcmineqlem12 42081 dvrelogpow2b 42109 aks4d1p1p6 42114 readvrec2 42402 readvrec 42403 lhe4.4ex1a 44370 expgrowthi 44374 expgrowth 44376 binomcxplemdvbinom 44394 binomcxplemnotnn0 44397 dvsinexp 45957 dvsinax 45959 dvasinbx 45966 dvcosax 45972 dvxpaek 45986 itgsincmulx 46020 fourierdlem56 46208 etransclem46 46326 |
| Copyright terms: Public domain | W3C validator |