![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cnelprrecn | Structured version Visualization version GIF version |
Description: Complex numbers are a subset of the pair of real and complex numbers . (Contributed by David A. Wheeler, 8-Dec-2018.) |
Ref | Expression |
---|---|
cnelprrecn | ⊢ ℂ ∈ {ℝ, ℂ} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnex 11265 | . 2 ⊢ ℂ ∈ V | |
2 | 1 | prid2 4788 | 1 ⊢ ℂ ∈ {ℝ, ℂ} |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2108 {cpr 4650 ℂcc 11182 ℝcr 11183 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-cnex 11240 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-v 3490 df-un 3981 df-sn 4649 df-pr 4651 |
This theorem is referenced by: dvfcn 25963 dvnres 25987 dvexp 26011 dvrecg 26031 dvexp3 26036 dvef 26038 dvsincos 26039 dvlipcn 26053 dv11cn 26060 dvply1 26343 dvtaylp 26430 pserdvlem2 26490 pige3ALT 26580 dvlog 26711 advlogexp 26715 logtayl 26720 dvcxp1 26800 dvcxp2 26801 dvcncxp1 26803 dvatan 26996 efrlim 27030 efrlimOLD 27031 lgamgulmlem2 27091 logdivsum 27595 log2sumbnd 27606 itgexpif 34583 dvtan 37630 dvasin 37664 dvacos 37665 lcmineqlem7 41992 lcmineqlem8 41993 lcmineqlem12 41997 dvrelogpow2b 42025 aks4d1p1p6 42030 lhe4.4ex1a 44298 expgrowthi 44302 expgrowth 44304 binomcxplemdvbinom 44322 binomcxplemnotnn0 44325 dvsinexp 45832 dvsinax 45834 dvasinbx 45841 dvcosax 45847 dvxpaek 45861 itgsincmulx 45895 fourierdlem56 46083 etransclem46 46201 |
Copyright terms: Public domain | W3C validator |