| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cnelprrecn | Structured version Visualization version GIF version | ||
| Description: Complex numbers are a subset of the pair of real and complex numbers . (Contributed by David A. Wheeler, 8-Dec-2018.) |
| Ref | Expression |
|---|---|
| cnelprrecn | ⊢ ℂ ∈ {ℝ, ℂ} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnex 11156 | . 2 ⊢ ℂ ∈ V | |
| 2 | 1 | prid2 4730 | 1 ⊢ ℂ ∈ {ℝ, ℂ} |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 {cpr 4594 ℂcc 11073 ℝcr 11074 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-cnex 11131 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-v 3452 df-un 3922 df-sn 4593 df-pr 4595 |
| This theorem is referenced by: dvfcn 25816 dvnres 25840 dvexp 25864 dvrecg 25884 dvexp3 25889 dvef 25891 dvsincos 25892 dvlipcn 25906 dv11cn 25913 dvply1 26198 dvtaylp 26285 pserdvlem2 26345 pige3ALT 26436 dvlog 26567 advlogexp 26571 logtayl 26576 dvcxp1 26656 dvcxp2 26657 dvcncxp1 26659 dvatan 26852 efrlim 26886 efrlimOLD 26887 lgamgulmlem2 26947 logdivsum 27451 log2sumbnd 27462 itgexpif 34604 dvtan 37671 dvasin 37705 dvacos 37706 lcmineqlem7 42030 lcmineqlem8 42031 lcmineqlem12 42035 dvrelogpow2b 42063 aks4d1p1p6 42068 readvrec2 42356 readvrec 42357 lhe4.4ex1a 44325 expgrowthi 44329 expgrowth 44331 binomcxplemdvbinom 44349 binomcxplemnotnn0 44352 dvsinexp 45916 dvsinax 45918 dvasinbx 45925 dvcosax 45931 dvxpaek 45945 itgsincmulx 45979 fourierdlem56 46167 etransclem46 46285 |
| Copyright terms: Public domain | W3C validator |