| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cnelprrecn | Structured version Visualization version GIF version | ||
| Description: Complex numbers are a subset of the pair of real and complex numbers . (Contributed by David A. Wheeler, 8-Dec-2018.) |
| Ref | Expression |
|---|---|
| cnelprrecn | ⊢ ℂ ∈ {ℝ, ℂ} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnex 11125 | . 2 ⊢ ℂ ∈ V | |
| 2 | 1 | prid2 4723 | 1 ⊢ ℂ ∈ {ℝ, ℂ} |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 {cpr 4587 ℂcc 11042 ℝcr 11043 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-cnex 11100 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3446 df-un 3916 df-sn 4586 df-pr 4588 |
| This theorem is referenced by: dvfcn 25785 dvnres 25809 dvexp 25833 dvrecg 25853 dvexp3 25858 dvef 25860 dvsincos 25861 dvlipcn 25875 dv11cn 25882 dvply1 26167 dvtaylp 26254 pserdvlem2 26314 pige3ALT 26405 dvlog 26536 advlogexp 26540 logtayl 26545 dvcxp1 26625 dvcxp2 26626 dvcncxp1 26628 dvatan 26821 efrlim 26855 efrlimOLD 26856 lgamgulmlem2 26916 logdivsum 27420 log2sumbnd 27431 itgexpif 34570 dvtan 37637 dvasin 37671 dvacos 37672 lcmineqlem7 41996 lcmineqlem8 41997 lcmineqlem12 42001 dvrelogpow2b 42029 aks4d1p1p6 42034 readvrec2 42322 readvrec 42323 lhe4.4ex1a 44291 expgrowthi 44295 expgrowth 44297 binomcxplemdvbinom 44315 binomcxplemnotnn0 44318 dvsinexp 45882 dvsinax 45884 dvasinbx 45891 dvcosax 45897 dvxpaek 45911 itgsincmulx 45945 fourierdlem56 46133 etransclem46 46251 |
| Copyright terms: Public domain | W3C validator |