MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvrecg Structured version   Visualization version   GIF version

Theorem dvrecg 24824
Description: Derivative of the reciprocal of a function. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
dvrecg.s (𝜑𝑆 ∈ {ℝ, ℂ})
dvrecg.a (𝜑𝐴 ∈ ℂ)
dvrecg.b ((𝜑𝑥𝑋) → 𝐵 ∈ (ℂ ∖ {0}))
dvrecg.c ((𝜑𝑥𝑋) → 𝐶𝑉)
dvrecg.db (𝜑 → (𝑆 D (𝑥𝑋𝐵)) = (𝑥𝑋𝐶))
Assertion
Ref Expression
dvrecg (𝜑 → (𝑆 D (𝑥𝑋 ↦ (𝐴 / 𝐵))) = (𝑥𝑋 ↦ -((𝐴 · 𝐶) / (𝐵↑2))))
Distinct variable groups:   𝑥,𝐴   𝑥,𝑆   𝑥,𝑉   𝑥,𝑋   𝜑,𝑥
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑥)

Proof of Theorem dvrecg
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 dvrecg.s . . 3 (𝜑𝑆 ∈ {ℝ, ℂ})
2 cnelprrecn 10787 . . . 4 ℂ ∈ {ℝ, ℂ}
32a1i 11 . . 3 (𝜑 → ℂ ∈ {ℝ, ℂ})
4 dvrecg.b . . 3 ((𝜑𝑥𝑋) → 𝐵 ∈ (ℂ ∖ {0}))
5 dvrecg.c . . 3 ((𝜑𝑥𝑋) → 𝐶𝑉)
6 dvrecg.a . . . . 5 (𝜑𝐴 ∈ ℂ)
76adantr 484 . . . 4 ((𝜑𝑦 ∈ (ℂ ∖ {0})) → 𝐴 ∈ ℂ)
8 eldifi 4027 . . . . 5 (𝑦 ∈ (ℂ ∖ {0}) → 𝑦 ∈ ℂ)
98adantl 485 . . . 4 ((𝜑𝑦 ∈ (ℂ ∖ {0})) → 𝑦 ∈ ℂ)
10 eldifsni 4689 . . . . 5 (𝑦 ∈ (ℂ ∖ {0}) → 𝑦 ≠ 0)
1110adantl 485 . . . 4 ((𝜑𝑦 ∈ (ℂ ∖ {0})) → 𝑦 ≠ 0)
127, 9, 11divcld 11573 . . 3 ((𝜑𝑦 ∈ (ℂ ∖ {0})) → (𝐴 / 𝑦) ∈ ℂ)
139sqcld 13679 . . . . 5 ((𝜑𝑦 ∈ (ℂ ∖ {0})) → (𝑦↑2) ∈ ℂ)
14 2z 12174 . . . . . . 7 2 ∈ ℤ
1514a1i 11 . . . . . 6 ((𝜑𝑦 ∈ (ℂ ∖ {0})) → 2 ∈ ℤ)
169, 11, 15expne0d 13687 . . . . 5 ((𝜑𝑦 ∈ (ℂ ∖ {0})) → (𝑦↑2) ≠ 0)
177, 13, 16divcld 11573 . . . 4 ((𝜑𝑦 ∈ (ℂ ∖ {0})) → (𝐴 / (𝑦↑2)) ∈ ℂ)
1817negcld 11141 . . 3 ((𝜑𝑦 ∈ (ℂ ∖ {0})) → -(𝐴 / (𝑦↑2)) ∈ ℂ)
19 dvrecg.db . . 3 (𝜑 → (𝑆 D (𝑥𝑋𝐵)) = (𝑥𝑋𝐶))
20 dvrec 24806 . . . 4 (𝐴 ∈ ℂ → (ℂ D (𝑦 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑦))) = (𝑦 ∈ (ℂ ∖ {0}) ↦ -(𝐴 / (𝑦↑2))))
216, 20syl 17 . . 3 (𝜑 → (ℂ D (𝑦 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑦))) = (𝑦 ∈ (ℂ ∖ {0}) ↦ -(𝐴 / (𝑦↑2))))
22 oveq2 7199 . . 3 (𝑦 = 𝐵 → (𝐴 / 𝑦) = (𝐴 / 𝐵))
23 oveq1 7198 . . . . 5 (𝑦 = 𝐵 → (𝑦↑2) = (𝐵↑2))
2423oveq2d 7207 . . . 4 (𝑦 = 𝐵 → (𝐴 / (𝑦↑2)) = (𝐴 / (𝐵↑2)))
2524negeqd 11037 . . 3 (𝑦 = 𝐵 → -(𝐴 / (𝑦↑2)) = -(𝐴 / (𝐵↑2)))
261, 3, 4, 5, 12, 18, 19, 21, 22, 25dvmptco 24823 . 2 (𝜑 → (𝑆 D (𝑥𝑋 ↦ (𝐴 / 𝐵))) = (𝑥𝑋 ↦ (-(𝐴 / (𝐵↑2)) · 𝐶)))
276adantr 484 . . . . . 6 ((𝜑𝑥𝑋) → 𝐴 ∈ ℂ)
28 eldifi 4027 . . . . . . . 8 (𝐵 ∈ (ℂ ∖ {0}) → 𝐵 ∈ ℂ)
294, 28syl 17 . . . . . . 7 ((𝜑𝑥𝑋) → 𝐵 ∈ ℂ)
3029sqcld 13679 . . . . . 6 ((𝜑𝑥𝑋) → (𝐵↑2) ∈ ℂ)
31 eldifsn 4686 . . . . . . . . 9 (𝐵 ∈ (ℂ ∖ {0}) ↔ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0))
324, 31sylib 221 . . . . . . . 8 ((𝜑𝑥𝑋) → (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0))
3332simprd 499 . . . . . . 7 ((𝜑𝑥𝑋) → 𝐵 ≠ 0)
3414a1i 11 . . . . . . 7 ((𝜑𝑥𝑋) → 2 ∈ ℤ)
3529, 33, 34expne0d 13687 . . . . . 6 ((𝜑𝑥𝑋) → (𝐵↑2) ≠ 0)
3627, 30, 35divcld 11573 . . . . 5 ((𝜑𝑥𝑋) → (𝐴 / (𝐵↑2)) ∈ ℂ)
371, 29, 5, 19dvmptcl 24810 . . . . 5 ((𝜑𝑥𝑋) → 𝐶 ∈ ℂ)
3836, 37mulneg1d 11250 . . . 4 ((𝜑𝑥𝑋) → (-(𝐴 / (𝐵↑2)) · 𝐶) = -((𝐴 / (𝐵↑2)) · 𝐶))
3927, 37, 30, 35div23d 11610 . . . . . 6 ((𝜑𝑥𝑋) → ((𝐴 · 𝐶) / (𝐵↑2)) = ((𝐴 / (𝐵↑2)) · 𝐶))
4039eqcomd 2742 . . . . 5 ((𝜑𝑥𝑋) → ((𝐴 / (𝐵↑2)) · 𝐶) = ((𝐴 · 𝐶) / (𝐵↑2)))
4140negeqd 11037 . . . 4 ((𝜑𝑥𝑋) → -((𝐴 / (𝐵↑2)) · 𝐶) = -((𝐴 · 𝐶) / (𝐵↑2)))
4238, 41eqtrd 2771 . . 3 ((𝜑𝑥𝑋) → (-(𝐴 / (𝐵↑2)) · 𝐶) = -((𝐴 · 𝐶) / (𝐵↑2)))
4342mpteq2dva 5135 . 2 (𝜑 → (𝑥𝑋 ↦ (-(𝐴 / (𝐵↑2)) · 𝐶)) = (𝑥𝑋 ↦ -((𝐴 · 𝐶) / (𝐵↑2))))
4426, 43eqtrd 2771 1 (𝜑 → (𝑆 D (𝑥𝑋 ↦ (𝐴 / 𝐵))) = (𝑥𝑋 ↦ -((𝐴 · 𝐶) / (𝐵↑2))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1543  wcel 2112  wne 2932  cdif 3850  {csn 4527  {cpr 4529  cmpt 5120  (class class class)co 7191  cc 10692  cr 10693  0cc0 10694   · cmul 10699  -cneg 11028   / cdiv 11454  2c2 11850  cz 12141  cexp 13600   D cdv 24714
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-rep 5164  ax-sep 5177  ax-nul 5184  ax-pow 5243  ax-pr 5307  ax-un 7501  ax-cnex 10750  ax-resscn 10751  ax-1cn 10752  ax-icn 10753  ax-addcl 10754  ax-addrcl 10755  ax-mulcl 10756  ax-mulrcl 10757  ax-mulcom 10758  ax-addass 10759  ax-mulass 10760  ax-distr 10761  ax-i2m1 10762  ax-1ne0 10763  ax-1rid 10764  ax-rnegex 10765  ax-rrecex 10766  ax-cnre 10767  ax-pre-lttri 10768  ax-pre-lttrn 10769  ax-pre-ltadd 10770  ax-pre-mulgt0 10771  ax-pre-sup 10772  ax-addf 10773  ax-mulf 10774
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-nel 3037  df-ral 3056  df-rex 3057  df-reu 3058  df-rmo 3059  df-rab 3060  df-v 3400  df-sbc 3684  df-csb 3799  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-pss 3872  df-nul 4224  df-if 4426  df-pw 4501  df-sn 4528  df-pr 4530  df-tp 4532  df-op 4534  df-uni 4806  df-int 4846  df-iun 4892  df-iin 4893  df-br 5040  df-opab 5102  df-mpt 5121  df-tr 5147  df-id 5440  df-eprel 5445  df-po 5453  df-so 5454  df-fr 5494  df-se 5495  df-we 5496  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-pred 6140  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6316  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-isom 6367  df-riota 7148  df-ov 7194  df-oprab 7195  df-mpo 7196  df-of 7447  df-om 7623  df-1st 7739  df-2nd 7740  df-supp 7882  df-wrecs 8025  df-recs 8086  df-rdg 8124  df-1o 8180  df-2o 8181  df-er 8369  df-map 8488  df-pm 8489  df-ixp 8557  df-en 8605  df-dom 8606  df-sdom 8607  df-fin 8608  df-fsupp 8964  df-fi 9005  df-sup 9036  df-inf 9037  df-oi 9104  df-card 9520  df-pnf 10834  df-mnf 10835  df-xr 10836  df-ltxr 10837  df-le 10838  df-sub 11029  df-neg 11030  df-div 11455  df-nn 11796  df-2 11858  df-3 11859  df-4 11860  df-5 11861  df-6 11862  df-7 11863  df-8 11864  df-9 11865  df-n0 12056  df-z 12142  df-dec 12259  df-uz 12404  df-q 12510  df-rp 12552  df-xneg 12669  df-xadd 12670  df-xmul 12671  df-icc 12907  df-fz 13061  df-fzo 13204  df-seq 13540  df-exp 13601  df-hash 13862  df-cj 14627  df-re 14628  df-im 14629  df-sqrt 14763  df-abs 14764  df-struct 16668  df-ndx 16669  df-slot 16670  df-base 16672  df-sets 16673  df-ress 16674  df-plusg 16762  df-mulr 16763  df-starv 16764  df-sca 16765  df-vsca 16766  df-ip 16767  df-tset 16768  df-ple 16769  df-ds 16771  df-unif 16772  df-hom 16773  df-cco 16774  df-rest 16881  df-topn 16882  df-0g 16900  df-gsum 16901  df-topgen 16902  df-pt 16903  df-prds 16906  df-xrs 16961  df-qtop 16966  df-imas 16967  df-xps 16969  df-mre 17043  df-mrc 17044  df-acs 17046  df-mgm 18068  df-sgrp 18117  df-mnd 18128  df-submnd 18173  df-mulg 18443  df-cntz 18665  df-cmn 19126  df-psmet 20309  df-xmet 20310  df-met 20311  df-bl 20312  df-mopn 20313  df-fbas 20314  df-fg 20315  df-cnfld 20318  df-top 21745  df-topon 21762  df-topsp 21784  df-bases 21797  df-cld 21870  df-ntr 21871  df-cls 21872  df-nei 21949  df-lp 21987  df-perf 21988  df-cn 22078  df-cnp 22079  df-t1 22165  df-haus 22166  df-tx 22413  df-hmeo 22606  df-fil 22697  df-fm 22789  df-flim 22790  df-flf 22791  df-xms 23172  df-ms 23173  df-tms 23174  df-cncf 23729  df-limc 24717  df-dv 24718
This theorem is referenced by:  dvmptdiv  24825
  Copyright terms: Public domain W3C validator