MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvrecg Structured version   Visualization version   GIF version

Theorem dvrecg 25904
Description: Derivative of the reciprocal of a function. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
dvrecg.s (𝜑𝑆 ∈ {ℝ, ℂ})
dvrecg.a (𝜑𝐴 ∈ ℂ)
dvrecg.b ((𝜑𝑥𝑋) → 𝐵 ∈ (ℂ ∖ {0}))
dvrecg.c ((𝜑𝑥𝑋) → 𝐶𝑉)
dvrecg.db (𝜑 → (𝑆 D (𝑥𝑋𝐵)) = (𝑥𝑋𝐶))
Assertion
Ref Expression
dvrecg (𝜑 → (𝑆 D (𝑥𝑋 ↦ (𝐴 / 𝐵))) = (𝑥𝑋 ↦ -((𝐴 · 𝐶) / (𝐵↑2))))
Distinct variable groups:   𝑥,𝐴   𝑥,𝑆   𝑥,𝑉   𝑥,𝑋   𝜑,𝑥
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑥)

Proof of Theorem dvrecg
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 dvrecg.s . . 3 (𝜑𝑆 ∈ {ℝ, ℂ})
2 cnelprrecn 11099 . . . 4 ℂ ∈ {ℝ, ℂ}
32a1i 11 . . 3 (𝜑 → ℂ ∈ {ℝ, ℂ})
4 dvrecg.b . . 3 ((𝜑𝑥𝑋) → 𝐵 ∈ (ℂ ∖ {0}))
5 dvrecg.c . . 3 ((𝜑𝑥𝑋) → 𝐶𝑉)
6 dvrecg.a . . . . 5 (𝜑𝐴 ∈ ℂ)
76adantr 480 . . . 4 ((𝜑𝑦 ∈ (ℂ ∖ {0})) → 𝐴 ∈ ℂ)
8 eldifi 4078 . . . . 5 (𝑦 ∈ (ℂ ∖ {0}) → 𝑦 ∈ ℂ)
98adantl 481 . . . 4 ((𝜑𝑦 ∈ (ℂ ∖ {0})) → 𝑦 ∈ ℂ)
10 eldifsni 4739 . . . . 5 (𝑦 ∈ (ℂ ∖ {0}) → 𝑦 ≠ 0)
1110adantl 481 . . . 4 ((𝜑𝑦 ∈ (ℂ ∖ {0})) → 𝑦 ≠ 0)
127, 9, 11divcld 11897 . . 3 ((𝜑𝑦 ∈ (ℂ ∖ {0})) → (𝐴 / 𝑦) ∈ ℂ)
139sqcld 14051 . . . . 5 ((𝜑𝑦 ∈ (ℂ ∖ {0})) → (𝑦↑2) ∈ ℂ)
14 2z 12504 . . . . . . 7 2 ∈ ℤ
1514a1i 11 . . . . . 6 ((𝜑𝑦 ∈ (ℂ ∖ {0})) → 2 ∈ ℤ)
169, 11, 15expne0d 14059 . . . . 5 ((𝜑𝑦 ∈ (ℂ ∖ {0})) → (𝑦↑2) ≠ 0)
177, 13, 16divcld 11897 . . . 4 ((𝜑𝑦 ∈ (ℂ ∖ {0})) → (𝐴 / (𝑦↑2)) ∈ ℂ)
1817negcld 11459 . . 3 ((𝜑𝑦 ∈ (ℂ ∖ {0})) → -(𝐴 / (𝑦↑2)) ∈ ℂ)
19 dvrecg.db . . 3 (𝜑 → (𝑆 D (𝑥𝑋𝐵)) = (𝑥𝑋𝐶))
20 dvrec 25886 . . . 4 (𝐴 ∈ ℂ → (ℂ D (𝑦 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑦))) = (𝑦 ∈ (ℂ ∖ {0}) ↦ -(𝐴 / (𝑦↑2))))
216, 20syl 17 . . 3 (𝜑 → (ℂ D (𝑦 ∈ (ℂ ∖ {0}) ↦ (𝐴 / 𝑦))) = (𝑦 ∈ (ℂ ∖ {0}) ↦ -(𝐴 / (𝑦↑2))))
22 oveq2 7354 . . 3 (𝑦 = 𝐵 → (𝐴 / 𝑦) = (𝐴 / 𝐵))
23 oveq1 7353 . . . . 5 (𝑦 = 𝐵 → (𝑦↑2) = (𝐵↑2))
2423oveq2d 7362 . . . 4 (𝑦 = 𝐵 → (𝐴 / (𝑦↑2)) = (𝐴 / (𝐵↑2)))
2524negeqd 11354 . . 3 (𝑦 = 𝐵 → -(𝐴 / (𝑦↑2)) = -(𝐴 / (𝐵↑2)))
261, 3, 4, 5, 12, 18, 19, 21, 22, 25dvmptco 25903 . 2 (𝜑 → (𝑆 D (𝑥𝑋 ↦ (𝐴 / 𝐵))) = (𝑥𝑋 ↦ (-(𝐴 / (𝐵↑2)) · 𝐶)))
276adantr 480 . . . . . 6 ((𝜑𝑥𝑋) → 𝐴 ∈ ℂ)
28 eldifi 4078 . . . . . . . 8 (𝐵 ∈ (ℂ ∖ {0}) → 𝐵 ∈ ℂ)
294, 28syl 17 . . . . . . 7 ((𝜑𝑥𝑋) → 𝐵 ∈ ℂ)
3029sqcld 14051 . . . . . 6 ((𝜑𝑥𝑋) → (𝐵↑2) ∈ ℂ)
31 eldifsn 4735 . . . . . . . . 9 (𝐵 ∈ (ℂ ∖ {0}) ↔ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0))
324, 31sylib 218 . . . . . . . 8 ((𝜑𝑥𝑋) → (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0))
3332simprd 495 . . . . . . 7 ((𝜑𝑥𝑋) → 𝐵 ≠ 0)
3414a1i 11 . . . . . . 7 ((𝜑𝑥𝑋) → 2 ∈ ℤ)
3529, 33, 34expne0d 14059 . . . . . 6 ((𝜑𝑥𝑋) → (𝐵↑2) ≠ 0)
3627, 30, 35divcld 11897 . . . . 5 ((𝜑𝑥𝑋) → (𝐴 / (𝐵↑2)) ∈ ℂ)
371, 29, 5, 19dvmptcl 25890 . . . . 5 ((𝜑𝑥𝑋) → 𝐶 ∈ ℂ)
3836, 37mulneg1d 11570 . . . 4 ((𝜑𝑥𝑋) → (-(𝐴 / (𝐵↑2)) · 𝐶) = -((𝐴 / (𝐵↑2)) · 𝐶))
3927, 37, 30, 35div23d 11934 . . . . . 6 ((𝜑𝑥𝑋) → ((𝐴 · 𝐶) / (𝐵↑2)) = ((𝐴 / (𝐵↑2)) · 𝐶))
4039eqcomd 2737 . . . . 5 ((𝜑𝑥𝑋) → ((𝐴 / (𝐵↑2)) · 𝐶) = ((𝐴 · 𝐶) / (𝐵↑2)))
4140negeqd 11354 . . . 4 ((𝜑𝑥𝑋) → -((𝐴 / (𝐵↑2)) · 𝐶) = -((𝐴 · 𝐶) / (𝐵↑2)))
4238, 41eqtrd 2766 . . 3 ((𝜑𝑥𝑋) → (-(𝐴 / (𝐵↑2)) · 𝐶) = -((𝐴 · 𝐶) / (𝐵↑2)))
4342mpteq2dva 5182 . 2 (𝜑 → (𝑥𝑋 ↦ (-(𝐴 / (𝐵↑2)) · 𝐶)) = (𝑥𝑋 ↦ -((𝐴 · 𝐶) / (𝐵↑2))))
4426, 43eqtrd 2766 1 (𝜑 → (𝑆 D (𝑥𝑋 ↦ (𝐴 / 𝐵))) = (𝑥𝑋 ↦ -((𝐴 · 𝐶) / (𝐵↑2))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  wne 2928  cdif 3894  {csn 4573  {cpr 4575  cmpt 5170  (class class class)co 7346  cc 11004  cr 11005  0cc0 11006   · cmul 11011  -cneg 11345   / cdiv 11774  2c2 12180  cz 12468  cexp 13968   D cdv 25791
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084  ax-addf 11085
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-iin 4942  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7610  df-om 7797  df-1st 7921  df-2nd 7922  df-supp 8091  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-er 8622  df-map 8752  df-pm 8753  df-ixp 8822  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-fsupp 9246  df-fi 9295  df-sup 9326  df-inf 9327  df-oi 9396  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-7 12193  df-8 12194  df-9 12195  df-n0 12382  df-z 12469  df-dec 12589  df-uz 12733  df-q 12847  df-rp 12891  df-xneg 13011  df-xadd 13012  df-xmul 13013  df-icc 13252  df-fz 13408  df-fzo 13555  df-seq 13909  df-exp 13969  df-hash 14238  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-starv 17176  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-unif 17184  df-hom 17185  df-cco 17186  df-rest 17326  df-topn 17327  df-0g 17345  df-gsum 17346  df-topgen 17347  df-pt 17348  df-prds 17351  df-xrs 17406  df-qtop 17411  df-imas 17412  df-xps 17414  df-mre 17488  df-mrc 17489  df-acs 17491  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-submnd 18692  df-mulg 18981  df-cntz 19229  df-cmn 19694  df-psmet 21283  df-xmet 21284  df-met 21285  df-bl 21286  df-mopn 21287  df-fbas 21288  df-fg 21289  df-cnfld 21292  df-top 22809  df-topon 22826  df-topsp 22848  df-bases 22861  df-cld 22934  df-ntr 22935  df-cls 22936  df-nei 23013  df-lp 23051  df-perf 23052  df-cn 23142  df-cnp 23143  df-t1 23229  df-haus 23230  df-tx 23477  df-hmeo 23670  df-fil 23761  df-fm 23853  df-flim 23854  df-flf 23855  df-xms 24235  df-ms 24236  df-tms 24237  df-cncf 24798  df-limc 25794  df-dv 25795
This theorem is referenced by:  dvmptdiv  25905
  Copyright terms: Public domain W3C validator