MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvexp Structured version   Visualization version   GIF version

Theorem dvexp 25115
Description: Derivative of a power function. (Contributed by Mario Carneiro, 9-Aug-2014.) (Revised by Mario Carneiro, 10-Feb-2015.)
Assertion
Ref Expression
dvexp (𝑁 ∈ ℕ → (ℂ D (𝑥 ∈ ℂ ↦ (𝑥𝑁))) = (𝑥 ∈ ℂ ↦ (𝑁 · (𝑥↑(𝑁 − 1)))))
Distinct variable group:   𝑥,𝑁

Proof of Theorem dvexp
Dummy variables 𝑘 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7285 . . . . 5 (𝑛 = 1 → (𝑥𝑛) = (𝑥↑1))
21mpteq2dv 5178 . . . 4 (𝑛 = 1 → (𝑥 ∈ ℂ ↦ (𝑥𝑛)) = (𝑥 ∈ ℂ ↦ (𝑥↑1)))
32oveq2d 7293 . . 3 (𝑛 = 1 → (ℂ D (𝑥 ∈ ℂ ↦ (𝑥𝑛))) = (ℂ D (𝑥 ∈ ℂ ↦ (𝑥↑1))))
4 id 22 . . . . 5 (𝑛 = 1 → 𝑛 = 1)
5 oveq1 7284 . . . . . 6 (𝑛 = 1 → (𝑛 − 1) = (1 − 1))
65oveq2d 7293 . . . . 5 (𝑛 = 1 → (𝑥↑(𝑛 − 1)) = (𝑥↑(1 − 1)))
74, 6oveq12d 7295 . . . 4 (𝑛 = 1 → (𝑛 · (𝑥↑(𝑛 − 1))) = (1 · (𝑥↑(1 − 1))))
87mpteq2dv 5178 . . 3 (𝑛 = 1 → (𝑥 ∈ ℂ ↦ (𝑛 · (𝑥↑(𝑛 − 1)))) = (𝑥 ∈ ℂ ↦ (1 · (𝑥↑(1 − 1)))))
93, 8eqeq12d 2754 . 2 (𝑛 = 1 → ((ℂ D (𝑥 ∈ ℂ ↦ (𝑥𝑛))) = (𝑥 ∈ ℂ ↦ (𝑛 · (𝑥↑(𝑛 − 1)))) ↔ (ℂ D (𝑥 ∈ ℂ ↦ (𝑥↑1))) = (𝑥 ∈ ℂ ↦ (1 · (𝑥↑(1 − 1))))))
10 oveq2 7285 . . . . 5 (𝑛 = 𝑘 → (𝑥𝑛) = (𝑥𝑘))
1110mpteq2dv 5178 . . . 4 (𝑛 = 𝑘 → (𝑥 ∈ ℂ ↦ (𝑥𝑛)) = (𝑥 ∈ ℂ ↦ (𝑥𝑘)))
1211oveq2d 7293 . . 3 (𝑛 = 𝑘 → (ℂ D (𝑥 ∈ ℂ ↦ (𝑥𝑛))) = (ℂ D (𝑥 ∈ ℂ ↦ (𝑥𝑘))))
13 id 22 . . . . 5 (𝑛 = 𝑘𝑛 = 𝑘)
14 oveq1 7284 . . . . . 6 (𝑛 = 𝑘 → (𝑛 − 1) = (𝑘 − 1))
1514oveq2d 7293 . . . . 5 (𝑛 = 𝑘 → (𝑥↑(𝑛 − 1)) = (𝑥↑(𝑘 − 1)))
1613, 15oveq12d 7295 . . . 4 (𝑛 = 𝑘 → (𝑛 · (𝑥↑(𝑛 − 1))) = (𝑘 · (𝑥↑(𝑘 − 1))))
1716mpteq2dv 5178 . . 3 (𝑛 = 𝑘 → (𝑥 ∈ ℂ ↦ (𝑛 · (𝑥↑(𝑛 − 1)))) = (𝑥 ∈ ℂ ↦ (𝑘 · (𝑥↑(𝑘 − 1)))))
1812, 17eqeq12d 2754 . 2 (𝑛 = 𝑘 → ((ℂ D (𝑥 ∈ ℂ ↦ (𝑥𝑛))) = (𝑥 ∈ ℂ ↦ (𝑛 · (𝑥↑(𝑛 − 1)))) ↔ (ℂ D (𝑥 ∈ ℂ ↦ (𝑥𝑘))) = (𝑥 ∈ ℂ ↦ (𝑘 · (𝑥↑(𝑘 − 1))))))
19 oveq2 7285 . . . . 5 (𝑛 = (𝑘 + 1) → (𝑥𝑛) = (𝑥↑(𝑘 + 1)))
2019mpteq2dv 5178 . . . 4 (𝑛 = (𝑘 + 1) → (𝑥 ∈ ℂ ↦ (𝑥𝑛)) = (𝑥 ∈ ℂ ↦ (𝑥↑(𝑘 + 1))))
2120oveq2d 7293 . . 3 (𝑛 = (𝑘 + 1) → (ℂ D (𝑥 ∈ ℂ ↦ (𝑥𝑛))) = (ℂ D (𝑥 ∈ ℂ ↦ (𝑥↑(𝑘 + 1)))))
22 id 22 . . . . 5 (𝑛 = (𝑘 + 1) → 𝑛 = (𝑘 + 1))
23 oveq1 7284 . . . . . 6 (𝑛 = (𝑘 + 1) → (𝑛 − 1) = ((𝑘 + 1) − 1))
2423oveq2d 7293 . . . . 5 (𝑛 = (𝑘 + 1) → (𝑥↑(𝑛 − 1)) = (𝑥↑((𝑘 + 1) − 1)))
2522, 24oveq12d 7295 . . . 4 (𝑛 = (𝑘 + 1) → (𝑛 · (𝑥↑(𝑛 − 1))) = ((𝑘 + 1) · (𝑥↑((𝑘 + 1) − 1))))
2625mpteq2dv 5178 . . 3 (𝑛 = (𝑘 + 1) → (𝑥 ∈ ℂ ↦ (𝑛 · (𝑥↑(𝑛 − 1)))) = (𝑥 ∈ ℂ ↦ ((𝑘 + 1) · (𝑥↑((𝑘 + 1) − 1)))))
2721, 26eqeq12d 2754 . 2 (𝑛 = (𝑘 + 1) → ((ℂ D (𝑥 ∈ ℂ ↦ (𝑥𝑛))) = (𝑥 ∈ ℂ ↦ (𝑛 · (𝑥↑(𝑛 − 1)))) ↔ (ℂ D (𝑥 ∈ ℂ ↦ (𝑥↑(𝑘 + 1)))) = (𝑥 ∈ ℂ ↦ ((𝑘 + 1) · (𝑥↑((𝑘 + 1) − 1))))))
28 oveq2 7285 . . . . 5 (𝑛 = 𝑁 → (𝑥𝑛) = (𝑥𝑁))
2928mpteq2dv 5178 . . . 4 (𝑛 = 𝑁 → (𝑥 ∈ ℂ ↦ (𝑥𝑛)) = (𝑥 ∈ ℂ ↦ (𝑥𝑁)))
3029oveq2d 7293 . . 3 (𝑛 = 𝑁 → (ℂ D (𝑥 ∈ ℂ ↦ (𝑥𝑛))) = (ℂ D (𝑥 ∈ ℂ ↦ (𝑥𝑁))))
31 id 22 . . . . 5 (𝑛 = 𝑁𝑛 = 𝑁)
32 oveq1 7284 . . . . . 6 (𝑛 = 𝑁 → (𝑛 − 1) = (𝑁 − 1))
3332oveq2d 7293 . . . . 5 (𝑛 = 𝑁 → (𝑥↑(𝑛 − 1)) = (𝑥↑(𝑁 − 1)))
3431, 33oveq12d 7295 . . . 4 (𝑛 = 𝑁 → (𝑛 · (𝑥↑(𝑛 − 1))) = (𝑁 · (𝑥↑(𝑁 − 1))))
3534mpteq2dv 5178 . . 3 (𝑛 = 𝑁 → (𝑥 ∈ ℂ ↦ (𝑛 · (𝑥↑(𝑛 − 1)))) = (𝑥 ∈ ℂ ↦ (𝑁 · (𝑥↑(𝑁 − 1)))))
3630, 35eqeq12d 2754 . 2 (𝑛 = 𝑁 → ((ℂ D (𝑥 ∈ ℂ ↦ (𝑥𝑛))) = (𝑥 ∈ ℂ ↦ (𝑛 · (𝑥↑(𝑛 − 1)))) ↔ (ℂ D (𝑥 ∈ ℂ ↦ (𝑥𝑁))) = (𝑥 ∈ ℂ ↦ (𝑁 · (𝑥↑(𝑁 − 1))))))
37 exp1 13786 . . . . . 6 (𝑥 ∈ ℂ → (𝑥↑1) = 𝑥)
3837mpteq2ia 5179 . . . . 5 (𝑥 ∈ ℂ ↦ (𝑥↑1)) = (𝑥 ∈ ℂ ↦ 𝑥)
39 mptresid 5960 . . . . 5 ( I ↾ ℂ) = (𝑥 ∈ ℂ ↦ 𝑥)
4038, 39eqtr4i 2769 . . . 4 (𝑥 ∈ ℂ ↦ (𝑥↑1)) = ( I ↾ ℂ)
4140oveq2i 7288 . . 3 (ℂ D (𝑥 ∈ ℂ ↦ (𝑥↑1))) = (ℂ D ( I ↾ ℂ))
42 1m1e0 12043 . . . . . . . . . 10 (1 − 1) = 0
4342oveq2i 7288 . . . . . . . . 9 (𝑥↑(1 − 1)) = (𝑥↑0)
44 exp0 13784 . . . . . . . . 9 (𝑥 ∈ ℂ → (𝑥↑0) = 1)
4543, 44eqtrid 2790 . . . . . . . 8 (𝑥 ∈ ℂ → (𝑥↑(1 − 1)) = 1)
4645oveq2d 7293 . . . . . . 7 (𝑥 ∈ ℂ → (1 · (𝑥↑(1 − 1))) = (1 · 1))
47 1t1e1 12133 . . . . . . 7 (1 · 1) = 1
4846, 47eqtrdi 2794 . . . . . 6 (𝑥 ∈ ℂ → (1 · (𝑥↑(1 − 1))) = 1)
4948mpteq2ia 5179 . . . . 5 (𝑥 ∈ ℂ ↦ (1 · (𝑥↑(1 − 1)))) = (𝑥 ∈ ℂ ↦ 1)
50 fconstmpt 5651 . . . . 5 (ℂ × {1}) = (𝑥 ∈ ℂ ↦ 1)
5149, 50eqtr4i 2769 . . . 4 (𝑥 ∈ ℂ ↦ (1 · (𝑥↑(1 − 1)))) = (ℂ × {1})
52 dvid 25080 . . . 4 (ℂ D ( I ↾ ℂ)) = (ℂ × {1})
5351, 52eqtr4i 2769 . . 3 (𝑥 ∈ ℂ ↦ (1 · (𝑥↑(1 − 1)))) = (ℂ D ( I ↾ ℂ))
5441, 53eqtr4i 2769 . 2 (ℂ D (𝑥 ∈ ℂ ↦ (𝑥↑1))) = (𝑥 ∈ ℂ ↦ (1 · (𝑥↑(1 − 1))))
55 nncn 11979 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → 𝑘 ∈ ℂ)
5655adantr 481 . . . . . . . . . . 11 ((𝑘 ∈ ℕ ∧ 𝑥 ∈ ℂ) → 𝑘 ∈ ℂ)
57 ax-1cn 10927 . . . . . . . . . . 11 1 ∈ ℂ
58 pncan 11225 . . . . . . . . . . 11 ((𝑘 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑘 + 1) − 1) = 𝑘)
5956, 57, 58sylancl 586 . . . . . . . . . 10 ((𝑘 ∈ ℕ ∧ 𝑥 ∈ ℂ) → ((𝑘 + 1) − 1) = 𝑘)
6059oveq2d 7293 . . . . . . . . 9 ((𝑘 ∈ ℕ ∧ 𝑥 ∈ ℂ) → (𝑥↑((𝑘 + 1) − 1)) = (𝑥𝑘))
6160oveq2d 7293 . . . . . . . 8 ((𝑘 ∈ ℕ ∧ 𝑥 ∈ ℂ) → ((𝑘 + 1) · (𝑥↑((𝑘 + 1) − 1))) = ((𝑘 + 1) · (𝑥𝑘)))
6257a1i 11 . . . . . . . . 9 ((𝑘 ∈ ℕ ∧ 𝑥 ∈ ℂ) → 1 ∈ ℂ)
63 id 22 . . . . . . . . . 10 (𝑥 ∈ ℂ → 𝑥 ∈ ℂ)
64 nnnn0 12238 . . . . . . . . . 10 (𝑘 ∈ ℕ → 𝑘 ∈ ℕ0)
65 expcl 13798 . . . . . . . . . 10 ((𝑥 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝑥𝑘) ∈ ℂ)
6663, 64, 65syl2anr 597 . . . . . . . . 9 ((𝑘 ∈ ℕ ∧ 𝑥 ∈ ℂ) → (𝑥𝑘) ∈ ℂ)
6756, 62, 66adddird 10998 . . . . . . . 8 ((𝑘 ∈ ℕ ∧ 𝑥 ∈ ℂ) → ((𝑘 + 1) · (𝑥𝑘)) = ((𝑘 · (𝑥𝑘)) + (1 · (𝑥𝑘))))
6866mulid2d 10991 . . . . . . . . 9 ((𝑘 ∈ ℕ ∧ 𝑥 ∈ ℂ) → (1 · (𝑥𝑘)) = (𝑥𝑘))
6968oveq2d 7293 . . . . . . . 8 ((𝑘 ∈ ℕ ∧ 𝑥 ∈ ℂ) → ((𝑘 · (𝑥𝑘)) + (1 · (𝑥𝑘))) = ((𝑘 · (𝑥𝑘)) + (𝑥𝑘)))
7061, 67, 693eqtrd 2782 . . . . . . 7 ((𝑘 ∈ ℕ ∧ 𝑥 ∈ ℂ) → ((𝑘 + 1) · (𝑥↑((𝑘 + 1) − 1))) = ((𝑘 · (𝑥𝑘)) + (𝑥𝑘)))
7170mpteq2dva 5176 . . . . . 6 (𝑘 ∈ ℕ → (𝑥 ∈ ℂ ↦ ((𝑘 + 1) · (𝑥↑((𝑘 + 1) − 1)))) = (𝑥 ∈ ℂ ↦ ((𝑘 · (𝑥𝑘)) + (𝑥𝑘))))
72 cnex 10950 . . . . . . . 8 ℂ ∈ V
7372a1i 11 . . . . . . 7 (𝑘 ∈ ℕ → ℂ ∈ V)
7456, 66mulcld 10993 . . . . . . 7 ((𝑘 ∈ ℕ ∧ 𝑥 ∈ ℂ) → (𝑘 · (𝑥𝑘)) ∈ ℂ)
75 nnm1nn0 12272 . . . . . . . . . . 11 (𝑘 ∈ ℕ → (𝑘 − 1) ∈ ℕ0)
76 expcl 13798 . . . . . . . . . . 11 ((𝑥 ∈ ℂ ∧ (𝑘 − 1) ∈ ℕ0) → (𝑥↑(𝑘 − 1)) ∈ ℂ)
7763, 75, 76syl2anr 597 . . . . . . . . . 10 ((𝑘 ∈ ℕ ∧ 𝑥 ∈ ℂ) → (𝑥↑(𝑘 − 1)) ∈ ℂ)
7856, 77mulcld 10993 . . . . . . . . 9 ((𝑘 ∈ ℕ ∧ 𝑥 ∈ ℂ) → (𝑘 · (𝑥↑(𝑘 − 1))) ∈ ℂ)
79 simpr 485 . . . . . . . . 9 ((𝑘 ∈ ℕ ∧ 𝑥 ∈ ℂ) → 𝑥 ∈ ℂ)
80 eqidd 2739 . . . . . . . . 9 (𝑘 ∈ ℕ → (𝑥 ∈ ℂ ↦ (𝑘 · (𝑥↑(𝑘 − 1)))) = (𝑥 ∈ ℂ ↦ (𝑘 · (𝑥↑(𝑘 − 1)))))
8139a1i 11 . . . . . . . . 9 (𝑘 ∈ ℕ → ( I ↾ ℂ) = (𝑥 ∈ ℂ ↦ 𝑥))
8273, 78, 79, 80, 81offval2 7553 . . . . . . . 8 (𝑘 ∈ ℕ → ((𝑥 ∈ ℂ ↦ (𝑘 · (𝑥↑(𝑘 − 1)))) ∘f · ( I ↾ ℂ)) = (𝑥 ∈ ℂ ↦ ((𝑘 · (𝑥↑(𝑘 − 1))) · 𝑥)))
8356, 77, 79mulassd 10996 . . . . . . . . . 10 ((𝑘 ∈ ℕ ∧ 𝑥 ∈ ℂ) → ((𝑘 · (𝑥↑(𝑘 − 1))) · 𝑥) = (𝑘 · ((𝑥↑(𝑘 − 1)) · 𝑥)))
84 expm1t 13809 . . . . . . . . . . . 12 ((𝑥 ∈ ℂ ∧ 𝑘 ∈ ℕ) → (𝑥𝑘) = ((𝑥↑(𝑘 − 1)) · 𝑥))
8584ancoms 459 . . . . . . . . . . 11 ((𝑘 ∈ ℕ ∧ 𝑥 ∈ ℂ) → (𝑥𝑘) = ((𝑥↑(𝑘 − 1)) · 𝑥))
8685oveq2d 7293 . . . . . . . . . 10 ((𝑘 ∈ ℕ ∧ 𝑥 ∈ ℂ) → (𝑘 · (𝑥𝑘)) = (𝑘 · ((𝑥↑(𝑘 − 1)) · 𝑥)))
8783, 86eqtr4d 2781 . . . . . . . . 9 ((𝑘 ∈ ℕ ∧ 𝑥 ∈ ℂ) → ((𝑘 · (𝑥↑(𝑘 − 1))) · 𝑥) = (𝑘 · (𝑥𝑘)))
8887mpteq2dva 5176 . . . . . . . 8 (𝑘 ∈ ℕ → (𝑥 ∈ ℂ ↦ ((𝑘 · (𝑥↑(𝑘 − 1))) · 𝑥)) = (𝑥 ∈ ℂ ↦ (𝑘 · (𝑥𝑘))))
8982, 88eqtrd 2778 . . . . . . 7 (𝑘 ∈ ℕ → ((𝑥 ∈ ℂ ↦ (𝑘 · (𝑥↑(𝑘 − 1)))) ∘f · ( I ↾ ℂ)) = (𝑥 ∈ ℂ ↦ (𝑘 · (𝑥𝑘))))
9052, 50eqtri 2766 . . . . . . . . . 10 (ℂ D ( I ↾ ℂ)) = (𝑥 ∈ ℂ ↦ 1)
9190a1i 11 . . . . . . . . 9 (𝑘 ∈ ℕ → (ℂ D ( I ↾ ℂ)) = (𝑥 ∈ ℂ ↦ 1))
92 eqidd 2739 . . . . . . . . 9 (𝑘 ∈ ℕ → (𝑥 ∈ ℂ ↦ (𝑥𝑘)) = (𝑥 ∈ ℂ ↦ (𝑥𝑘)))
9373, 62, 66, 91, 92offval2 7553 . . . . . . . 8 (𝑘 ∈ ℕ → ((ℂ D ( I ↾ ℂ)) ∘f · (𝑥 ∈ ℂ ↦ (𝑥𝑘))) = (𝑥 ∈ ℂ ↦ (1 · (𝑥𝑘))))
9468mpteq2dva 5176 . . . . . . . 8 (𝑘 ∈ ℕ → (𝑥 ∈ ℂ ↦ (1 · (𝑥𝑘))) = (𝑥 ∈ ℂ ↦ (𝑥𝑘)))
9593, 94eqtrd 2778 . . . . . . 7 (𝑘 ∈ ℕ → ((ℂ D ( I ↾ ℂ)) ∘f · (𝑥 ∈ ℂ ↦ (𝑥𝑘))) = (𝑥 ∈ ℂ ↦ (𝑥𝑘)))
9673, 74, 66, 89, 95offval2 7553 . . . . . 6 (𝑘 ∈ ℕ → (((𝑥 ∈ ℂ ↦ (𝑘 · (𝑥↑(𝑘 − 1)))) ∘f · ( I ↾ ℂ)) ∘f + ((ℂ D ( I ↾ ℂ)) ∘f · (𝑥 ∈ ℂ ↦ (𝑥𝑘)))) = (𝑥 ∈ ℂ ↦ ((𝑘 · (𝑥𝑘)) + (𝑥𝑘))))
9771, 96eqtr4d 2781 . . . . 5 (𝑘 ∈ ℕ → (𝑥 ∈ ℂ ↦ ((𝑘 + 1) · (𝑥↑((𝑘 + 1) − 1)))) = (((𝑥 ∈ ℂ ↦ (𝑘 · (𝑥↑(𝑘 − 1)))) ∘f · ( I ↾ ℂ)) ∘f + ((ℂ D ( I ↾ ℂ)) ∘f · (𝑥 ∈ ℂ ↦ (𝑥𝑘)))))
98 oveq1 7284 . . . . . . 7 ((ℂ D (𝑥 ∈ ℂ ↦ (𝑥𝑘))) = (𝑥 ∈ ℂ ↦ (𝑘 · (𝑥↑(𝑘 − 1)))) → ((ℂ D (𝑥 ∈ ℂ ↦ (𝑥𝑘))) ∘f · ( I ↾ ℂ)) = ((𝑥 ∈ ℂ ↦ (𝑘 · (𝑥↑(𝑘 − 1)))) ∘f · ( I ↾ ℂ)))
9998oveq1d 7292 . . . . . 6 ((ℂ D (𝑥 ∈ ℂ ↦ (𝑥𝑘))) = (𝑥 ∈ ℂ ↦ (𝑘 · (𝑥↑(𝑘 − 1)))) → (((ℂ D (𝑥 ∈ ℂ ↦ (𝑥𝑘))) ∘f · ( I ↾ ℂ)) ∘f + ((ℂ D ( I ↾ ℂ)) ∘f · (𝑥 ∈ ℂ ↦ (𝑥𝑘)))) = (((𝑥 ∈ ℂ ↦ (𝑘 · (𝑥↑(𝑘 − 1)))) ∘f · ( I ↾ ℂ)) ∘f + ((ℂ D ( I ↾ ℂ)) ∘f · (𝑥 ∈ ℂ ↦ (𝑥𝑘)))))
10099eqcomd 2744 . . . . 5 ((ℂ D (𝑥 ∈ ℂ ↦ (𝑥𝑘))) = (𝑥 ∈ ℂ ↦ (𝑘 · (𝑥↑(𝑘 − 1)))) → (((𝑥 ∈ ℂ ↦ (𝑘 · (𝑥↑(𝑘 − 1)))) ∘f · ( I ↾ ℂ)) ∘f + ((ℂ D ( I ↾ ℂ)) ∘f · (𝑥 ∈ ℂ ↦ (𝑥𝑘)))) = (((ℂ D (𝑥 ∈ ℂ ↦ (𝑥𝑘))) ∘f · ( I ↾ ℂ)) ∘f + ((ℂ D ( I ↾ ℂ)) ∘f · (𝑥 ∈ ℂ ↦ (𝑥𝑘)))))
10197, 100sylan9eq 2798 . . . 4 ((𝑘 ∈ ℕ ∧ (ℂ D (𝑥 ∈ ℂ ↦ (𝑥𝑘))) = (𝑥 ∈ ℂ ↦ (𝑘 · (𝑥↑(𝑘 − 1))))) → (𝑥 ∈ ℂ ↦ ((𝑘 + 1) · (𝑥↑((𝑘 + 1) − 1)))) = (((ℂ D (𝑥 ∈ ℂ ↦ (𝑥𝑘))) ∘f · ( I ↾ ℂ)) ∘f + ((ℂ D ( I ↾ ℂ)) ∘f · (𝑥 ∈ ℂ ↦ (𝑥𝑘)))))
102 cnelprrecn 10962 . . . . . 6 ℂ ∈ {ℝ, ℂ}
103102a1i 11 . . . . 5 ((𝑘 ∈ ℕ ∧ (ℂ D (𝑥 ∈ ℂ ↦ (𝑥𝑘))) = (𝑥 ∈ ℂ ↦ (𝑘 · (𝑥↑(𝑘 − 1))))) → ℂ ∈ {ℝ, ℂ})
10466fmpttd 6991 . . . . . 6 (𝑘 ∈ ℕ → (𝑥 ∈ ℂ ↦ (𝑥𝑘)):ℂ⟶ℂ)
105104adantr 481 . . . . 5 ((𝑘 ∈ ℕ ∧ (ℂ D (𝑥 ∈ ℂ ↦ (𝑥𝑘))) = (𝑥 ∈ ℂ ↦ (𝑘 · (𝑥↑(𝑘 − 1))))) → (𝑥 ∈ ℂ ↦ (𝑥𝑘)):ℂ⟶ℂ)
106 f1oi 6756 . . . . . 6 ( I ↾ ℂ):ℂ–1-1-onto→ℂ
107 f1of 6718 . . . . . 6 (( I ↾ ℂ):ℂ–1-1-onto→ℂ → ( I ↾ ℂ):ℂ⟶ℂ)
108106, 107mp1i 13 . . . . 5 ((𝑘 ∈ ℕ ∧ (ℂ D (𝑥 ∈ ℂ ↦ (𝑥𝑘))) = (𝑥 ∈ ℂ ↦ (𝑘 · (𝑥↑(𝑘 − 1))))) → ( I ↾ ℂ):ℂ⟶ℂ)
109 simpr 485 . . . . . . 7 ((𝑘 ∈ ℕ ∧ (ℂ D (𝑥 ∈ ℂ ↦ (𝑥𝑘))) = (𝑥 ∈ ℂ ↦ (𝑘 · (𝑥↑(𝑘 − 1))))) → (ℂ D (𝑥 ∈ ℂ ↦ (𝑥𝑘))) = (𝑥 ∈ ℂ ↦ (𝑘 · (𝑥↑(𝑘 − 1)))))
110109dmeqd 5816 . . . . . 6 ((𝑘 ∈ ℕ ∧ (ℂ D (𝑥 ∈ ℂ ↦ (𝑥𝑘))) = (𝑥 ∈ ℂ ↦ (𝑘 · (𝑥↑(𝑘 − 1))))) → dom (ℂ D (𝑥 ∈ ℂ ↦ (𝑥𝑘))) = dom (𝑥 ∈ ℂ ↦ (𝑘 · (𝑥↑(𝑘 − 1)))))
11178fmpttd 6991 . . . . . . . 8 (𝑘 ∈ ℕ → (𝑥 ∈ ℂ ↦ (𝑘 · (𝑥↑(𝑘 − 1)))):ℂ⟶ℂ)
112111adantr 481 . . . . . . 7 ((𝑘 ∈ ℕ ∧ (ℂ D (𝑥 ∈ ℂ ↦ (𝑥𝑘))) = (𝑥 ∈ ℂ ↦ (𝑘 · (𝑥↑(𝑘 − 1))))) → (𝑥 ∈ ℂ ↦ (𝑘 · (𝑥↑(𝑘 − 1)))):ℂ⟶ℂ)
113112fdmd 6613 . . . . . 6 ((𝑘 ∈ ℕ ∧ (ℂ D (𝑥 ∈ ℂ ↦ (𝑥𝑘))) = (𝑥 ∈ ℂ ↦ (𝑘 · (𝑥↑(𝑘 − 1))))) → dom (𝑥 ∈ ℂ ↦ (𝑘 · (𝑥↑(𝑘 − 1)))) = ℂ)
114110, 113eqtrd 2778 . . . . 5 ((𝑘 ∈ ℕ ∧ (ℂ D (𝑥 ∈ ℂ ↦ (𝑥𝑘))) = (𝑥 ∈ ℂ ↦ (𝑘 · (𝑥↑(𝑘 − 1))))) → dom (ℂ D (𝑥 ∈ ℂ ↦ (𝑥𝑘))) = ℂ)
115 1ex 10969 . . . . . . . . 9 1 ∈ V
116115fconst 6662 . . . . . . . 8 (ℂ × {1}):ℂ⟶{1}
11752feq1i 6593 . . . . . . . 8 ((ℂ D ( I ↾ ℂ)):ℂ⟶{1} ↔ (ℂ × {1}):ℂ⟶{1})
118116, 117mpbir 230 . . . . . . 7 (ℂ D ( I ↾ ℂ)):ℂ⟶{1}
119118fdmi 6614 . . . . . 6 dom (ℂ D ( I ↾ ℂ)) = ℂ
120119a1i 11 . . . . 5 ((𝑘 ∈ ℕ ∧ (ℂ D (𝑥 ∈ ℂ ↦ (𝑥𝑘))) = (𝑥 ∈ ℂ ↦ (𝑘 · (𝑥↑(𝑘 − 1))))) → dom (ℂ D ( I ↾ ℂ)) = ℂ)
121103, 105, 108, 114, 120dvmulf 25105 . . . 4 ((𝑘 ∈ ℕ ∧ (ℂ D (𝑥 ∈ ℂ ↦ (𝑥𝑘))) = (𝑥 ∈ ℂ ↦ (𝑘 · (𝑥↑(𝑘 − 1))))) → (ℂ D ((𝑥 ∈ ℂ ↦ (𝑥𝑘)) ∘f · ( I ↾ ℂ))) = (((ℂ D (𝑥 ∈ ℂ ↦ (𝑥𝑘))) ∘f · ( I ↾ ℂ)) ∘f + ((ℂ D ( I ↾ ℂ)) ∘f · (𝑥 ∈ ℂ ↦ (𝑥𝑘)))))
12273, 66, 79, 92, 81offval2 7553 . . . . . . 7 (𝑘 ∈ ℕ → ((𝑥 ∈ ℂ ↦ (𝑥𝑘)) ∘f · ( I ↾ ℂ)) = (𝑥 ∈ ℂ ↦ ((𝑥𝑘) · 𝑥)))
123 expp1 13787 . . . . . . . . 9 ((𝑥 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝑥↑(𝑘 + 1)) = ((𝑥𝑘) · 𝑥))
12463, 64, 123syl2anr 597 . . . . . . . 8 ((𝑘 ∈ ℕ ∧ 𝑥 ∈ ℂ) → (𝑥↑(𝑘 + 1)) = ((𝑥𝑘) · 𝑥))
125124mpteq2dva 5176 . . . . . . 7 (𝑘 ∈ ℕ → (𝑥 ∈ ℂ ↦ (𝑥↑(𝑘 + 1))) = (𝑥 ∈ ℂ ↦ ((𝑥𝑘) · 𝑥)))
126122, 125eqtr4d 2781 . . . . . 6 (𝑘 ∈ ℕ → ((𝑥 ∈ ℂ ↦ (𝑥𝑘)) ∘f · ( I ↾ ℂ)) = (𝑥 ∈ ℂ ↦ (𝑥↑(𝑘 + 1))))
127126oveq2d 7293 . . . . 5 (𝑘 ∈ ℕ → (ℂ D ((𝑥 ∈ ℂ ↦ (𝑥𝑘)) ∘f · ( I ↾ ℂ))) = (ℂ D (𝑥 ∈ ℂ ↦ (𝑥↑(𝑘 + 1)))))
128127adantr 481 . . . 4 ((𝑘 ∈ ℕ ∧ (ℂ D (𝑥 ∈ ℂ ↦ (𝑥𝑘))) = (𝑥 ∈ ℂ ↦ (𝑘 · (𝑥↑(𝑘 − 1))))) → (ℂ D ((𝑥 ∈ ℂ ↦ (𝑥𝑘)) ∘f · ( I ↾ ℂ))) = (ℂ D (𝑥 ∈ ℂ ↦ (𝑥↑(𝑘 + 1)))))
129101, 121, 1283eqtr2rd 2785 . . 3 ((𝑘 ∈ ℕ ∧ (ℂ D (𝑥 ∈ ℂ ↦ (𝑥𝑘))) = (𝑥 ∈ ℂ ↦ (𝑘 · (𝑥↑(𝑘 − 1))))) → (ℂ D (𝑥 ∈ ℂ ↦ (𝑥↑(𝑘 + 1)))) = (𝑥 ∈ ℂ ↦ ((𝑘 + 1) · (𝑥↑((𝑘 + 1) − 1)))))
130129ex 413 . 2 (𝑘 ∈ ℕ → ((ℂ D (𝑥 ∈ ℂ ↦ (𝑥𝑘))) = (𝑥 ∈ ℂ ↦ (𝑘 · (𝑥↑(𝑘 − 1)))) → (ℂ D (𝑥 ∈ ℂ ↦ (𝑥↑(𝑘 + 1)))) = (𝑥 ∈ ℂ ↦ ((𝑘 + 1) · (𝑥↑((𝑘 + 1) − 1))))))
1319, 18, 27, 36, 54, 130nnind 11989 1 (𝑁 ∈ ℕ → (ℂ D (𝑥 ∈ ℂ ↦ (𝑥𝑁))) = (𝑥 ∈ ℂ ↦ (𝑁 · (𝑥↑(𝑁 − 1)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  Vcvv 3431  {csn 4563  {cpr 4565  cmpt 5159   I cid 5490   × cxp 5589  dom cdm 5591  cres 5593  wf 6431  1-1-ontowf1o 6434  (class class class)co 7277  f cof 7531  cc 10867  cr 10868  0cc0 10869  1c1 10870   + caddc 10872   · cmul 10874  cmin 11203  cn 11971  0cn0 12231  cexp 13780   D cdv 25025
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5211  ax-sep 5225  ax-nul 5232  ax-pow 5290  ax-pr 5354  ax-un 7588  ax-cnex 10925  ax-resscn 10926  ax-1cn 10927  ax-icn 10928  ax-addcl 10929  ax-addrcl 10930  ax-mulcl 10931  ax-mulrcl 10932  ax-mulcom 10933  ax-addass 10934  ax-mulass 10935  ax-distr 10936  ax-i2m1 10937  ax-1ne0 10938  ax-1rid 10939  ax-rnegex 10940  ax-rrecex 10941  ax-cnre 10942  ax-pre-lttri 10943  ax-pre-lttrn 10944  ax-pre-ltadd 10945  ax-pre-mulgt0 10946  ax-pre-sup 10947  ax-addf 10948  ax-mulf 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3433  df-sbc 3718  df-csb 3834  df-dif 3891  df-un 3893  df-in 3895  df-ss 3905  df-pss 3907  df-nul 4259  df-if 4462  df-pw 4537  df-sn 4564  df-pr 4566  df-tp 4568  df-op 4570  df-uni 4842  df-int 4882  df-iun 4928  df-iin 4929  df-br 5077  df-opab 5139  df-mpt 5160  df-tr 5194  df-id 5491  df-eprel 5497  df-po 5505  df-so 5506  df-fr 5546  df-se 5547  df-we 5548  df-xp 5597  df-rel 5598  df-cnv 5599  df-co 5600  df-dm 5601  df-rn 5602  df-res 5603  df-ima 5604  df-pred 6204  df-ord 6271  df-on 6272  df-lim 6273  df-suc 6274  df-iota 6393  df-fun 6437  df-fn 6438  df-f 6439  df-f1 6440  df-fo 6441  df-f1o 6442  df-fv 6443  df-isom 6444  df-riota 7234  df-ov 7280  df-oprab 7281  df-mpo 7282  df-of 7533  df-om 7713  df-1st 7831  df-2nd 7832  df-supp 7976  df-frecs 8095  df-wrecs 8126  df-recs 8200  df-rdg 8239  df-1o 8295  df-2o 8296  df-er 8496  df-map 8615  df-pm 8616  df-ixp 8684  df-en 8732  df-dom 8733  df-sdom 8734  df-fin 8735  df-fsupp 9127  df-fi 9168  df-sup 9199  df-inf 9200  df-oi 9267  df-card 9695  df-pnf 11009  df-mnf 11010  df-xr 11011  df-ltxr 11012  df-le 11013  df-sub 11205  df-neg 11206  df-div 11631  df-nn 11972  df-2 12034  df-3 12035  df-4 12036  df-5 12037  df-6 12038  df-7 12039  df-8 12040  df-9 12041  df-n0 12232  df-z 12318  df-dec 12436  df-uz 12581  df-q 12687  df-rp 12729  df-xneg 12846  df-xadd 12847  df-xmul 12848  df-icc 13084  df-fz 13238  df-fzo 13381  df-seq 13720  df-exp 13781  df-hash 14043  df-cj 14808  df-re 14809  df-im 14810  df-sqrt 14944  df-abs 14945  df-struct 16846  df-sets 16863  df-slot 16881  df-ndx 16893  df-base 16911  df-ress 16940  df-plusg 16973  df-mulr 16974  df-starv 16975  df-sca 16976  df-vsca 16977  df-ip 16978  df-tset 16979  df-ple 16980  df-ds 16982  df-unif 16983  df-hom 16984  df-cco 16985  df-rest 17131  df-topn 17132  df-0g 17150  df-gsum 17151  df-topgen 17152  df-pt 17153  df-prds 17156  df-xrs 17211  df-qtop 17216  df-imas 17217  df-xps 17219  df-mre 17293  df-mrc 17294  df-acs 17296  df-mgm 18324  df-sgrp 18373  df-mnd 18384  df-submnd 18429  df-mulg 18699  df-cntz 18921  df-cmn 19386  df-psmet 20587  df-xmet 20588  df-met 20589  df-bl 20590  df-mopn 20591  df-fbas 20592  df-fg 20593  df-cnfld 20596  df-top 22041  df-topon 22058  df-topsp 22080  df-bases 22094  df-cld 22168  df-ntr 22169  df-cls 22170  df-nei 22247  df-lp 22285  df-perf 22286  df-cn 22376  df-cnp 22377  df-haus 22464  df-tx 22711  df-hmeo 22904  df-fil 22995  df-fm 23087  df-flim 23088  df-flf 23089  df-xms 23471  df-ms 23472  df-tms 23473  df-cncf 24039  df-limc 25028  df-dv 25029
This theorem is referenced by:  dvexp2  25116  dvexp3  25140  itgpowd  25212  taylthlem2  25531  advlogexp  25808  logdivsum  26679  log2sumbnd  26690  dvasin  35858  areacirclem1  35862  lcmineqlem8  40041  lcmineqlem10  40043  lcmineqlem12  40045  dvrelogpow2b  40073  aks4d1p1p6  40078  lhe4.4ex1a  41917  dvsinexp  43422  dvxpaek  43451
  Copyright terms: Public domain W3C validator