MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvexp Structured version   Visualization version   GIF version

Theorem dvexp 25162
Description: Derivative of a power function. (Contributed by Mario Carneiro, 9-Aug-2014.) (Revised by Mario Carneiro, 10-Feb-2015.)
Assertion
Ref Expression
dvexp (𝑁 ∈ ℕ → (ℂ D (𝑥 ∈ ℂ ↦ (𝑥𝑁))) = (𝑥 ∈ ℂ ↦ (𝑁 · (𝑥↑(𝑁 − 1)))))
Distinct variable group:   𝑥,𝑁

Proof of Theorem dvexp
Dummy variables 𝑘 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7315 . . . . 5 (𝑛 = 1 → (𝑥𝑛) = (𝑥↑1))
21mpteq2dv 5183 . . . 4 (𝑛 = 1 → (𝑥 ∈ ℂ ↦ (𝑥𝑛)) = (𝑥 ∈ ℂ ↦ (𝑥↑1)))
32oveq2d 7323 . . 3 (𝑛 = 1 → (ℂ D (𝑥 ∈ ℂ ↦ (𝑥𝑛))) = (ℂ D (𝑥 ∈ ℂ ↦ (𝑥↑1))))
4 id 22 . . . . 5 (𝑛 = 1 → 𝑛 = 1)
5 oveq1 7314 . . . . . 6 (𝑛 = 1 → (𝑛 − 1) = (1 − 1))
65oveq2d 7323 . . . . 5 (𝑛 = 1 → (𝑥↑(𝑛 − 1)) = (𝑥↑(1 − 1)))
74, 6oveq12d 7325 . . . 4 (𝑛 = 1 → (𝑛 · (𝑥↑(𝑛 − 1))) = (1 · (𝑥↑(1 − 1))))
87mpteq2dv 5183 . . 3 (𝑛 = 1 → (𝑥 ∈ ℂ ↦ (𝑛 · (𝑥↑(𝑛 − 1)))) = (𝑥 ∈ ℂ ↦ (1 · (𝑥↑(1 − 1)))))
93, 8eqeq12d 2752 . 2 (𝑛 = 1 → ((ℂ D (𝑥 ∈ ℂ ↦ (𝑥𝑛))) = (𝑥 ∈ ℂ ↦ (𝑛 · (𝑥↑(𝑛 − 1)))) ↔ (ℂ D (𝑥 ∈ ℂ ↦ (𝑥↑1))) = (𝑥 ∈ ℂ ↦ (1 · (𝑥↑(1 − 1))))))
10 oveq2 7315 . . . . 5 (𝑛 = 𝑘 → (𝑥𝑛) = (𝑥𝑘))
1110mpteq2dv 5183 . . . 4 (𝑛 = 𝑘 → (𝑥 ∈ ℂ ↦ (𝑥𝑛)) = (𝑥 ∈ ℂ ↦ (𝑥𝑘)))
1211oveq2d 7323 . . 3 (𝑛 = 𝑘 → (ℂ D (𝑥 ∈ ℂ ↦ (𝑥𝑛))) = (ℂ D (𝑥 ∈ ℂ ↦ (𝑥𝑘))))
13 id 22 . . . . 5 (𝑛 = 𝑘𝑛 = 𝑘)
14 oveq1 7314 . . . . . 6 (𝑛 = 𝑘 → (𝑛 − 1) = (𝑘 − 1))
1514oveq2d 7323 . . . . 5 (𝑛 = 𝑘 → (𝑥↑(𝑛 − 1)) = (𝑥↑(𝑘 − 1)))
1613, 15oveq12d 7325 . . . 4 (𝑛 = 𝑘 → (𝑛 · (𝑥↑(𝑛 − 1))) = (𝑘 · (𝑥↑(𝑘 − 1))))
1716mpteq2dv 5183 . . 3 (𝑛 = 𝑘 → (𝑥 ∈ ℂ ↦ (𝑛 · (𝑥↑(𝑛 − 1)))) = (𝑥 ∈ ℂ ↦ (𝑘 · (𝑥↑(𝑘 − 1)))))
1812, 17eqeq12d 2752 . 2 (𝑛 = 𝑘 → ((ℂ D (𝑥 ∈ ℂ ↦ (𝑥𝑛))) = (𝑥 ∈ ℂ ↦ (𝑛 · (𝑥↑(𝑛 − 1)))) ↔ (ℂ D (𝑥 ∈ ℂ ↦ (𝑥𝑘))) = (𝑥 ∈ ℂ ↦ (𝑘 · (𝑥↑(𝑘 − 1))))))
19 oveq2 7315 . . . . 5 (𝑛 = (𝑘 + 1) → (𝑥𝑛) = (𝑥↑(𝑘 + 1)))
2019mpteq2dv 5183 . . . 4 (𝑛 = (𝑘 + 1) → (𝑥 ∈ ℂ ↦ (𝑥𝑛)) = (𝑥 ∈ ℂ ↦ (𝑥↑(𝑘 + 1))))
2120oveq2d 7323 . . 3 (𝑛 = (𝑘 + 1) → (ℂ D (𝑥 ∈ ℂ ↦ (𝑥𝑛))) = (ℂ D (𝑥 ∈ ℂ ↦ (𝑥↑(𝑘 + 1)))))
22 id 22 . . . . 5 (𝑛 = (𝑘 + 1) → 𝑛 = (𝑘 + 1))
23 oveq1 7314 . . . . . 6 (𝑛 = (𝑘 + 1) → (𝑛 − 1) = ((𝑘 + 1) − 1))
2423oveq2d 7323 . . . . 5 (𝑛 = (𝑘 + 1) → (𝑥↑(𝑛 − 1)) = (𝑥↑((𝑘 + 1) − 1)))
2522, 24oveq12d 7325 . . . 4 (𝑛 = (𝑘 + 1) → (𝑛 · (𝑥↑(𝑛 − 1))) = ((𝑘 + 1) · (𝑥↑((𝑘 + 1) − 1))))
2625mpteq2dv 5183 . . 3 (𝑛 = (𝑘 + 1) → (𝑥 ∈ ℂ ↦ (𝑛 · (𝑥↑(𝑛 − 1)))) = (𝑥 ∈ ℂ ↦ ((𝑘 + 1) · (𝑥↑((𝑘 + 1) − 1)))))
2721, 26eqeq12d 2752 . 2 (𝑛 = (𝑘 + 1) → ((ℂ D (𝑥 ∈ ℂ ↦ (𝑥𝑛))) = (𝑥 ∈ ℂ ↦ (𝑛 · (𝑥↑(𝑛 − 1)))) ↔ (ℂ D (𝑥 ∈ ℂ ↦ (𝑥↑(𝑘 + 1)))) = (𝑥 ∈ ℂ ↦ ((𝑘 + 1) · (𝑥↑((𝑘 + 1) − 1))))))
28 oveq2 7315 . . . . 5 (𝑛 = 𝑁 → (𝑥𝑛) = (𝑥𝑁))
2928mpteq2dv 5183 . . . 4 (𝑛 = 𝑁 → (𝑥 ∈ ℂ ↦ (𝑥𝑛)) = (𝑥 ∈ ℂ ↦ (𝑥𝑁)))
3029oveq2d 7323 . . 3 (𝑛 = 𝑁 → (ℂ D (𝑥 ∈ ℂ ↦ (𝑥𝑛))) = (ℂ D (𝑥 ∈ ℂ ↦ (𝑥𝑁))))
31 id 22 . . . . 5 (𝑛 = 𝑁𝑛 = 𝑁)
32 oveq1 7314 . . . . . 6 (𝑛 = 𝑁 → (𝑛 − 1) = (𝑁 − 1))
3332oveq2d 7323 . . . . 5 (𝑛 = 𝑁 → (𝑥↑(𝑛 − 1)) = (𝑥↑(𝑁 − 1)))
3431, 33oveq12d 7325 . . . 4 (𝑛 = 𝑁 → (𝑛 · (𝑥↑(𝑛 − 1))) = (𝑁 · (𝑥↑(𝑁 − 1))))
3534mpteq2dv 5183 . . 3 (𝑛 = 𝑁 → (𝑥 ∈ ℂ ↦ (𝑛 · (𝑥↑(𝑛 − 1)))) = (𝑥 ∈ ℂ ↦ (𝑁 · (𝑥↑(𝑁 − 1)))))
3630, 35eqeq12d 2752 . 2 (𝑛 = 𝑁 → ((ℂ D (𝑥 ∈ ℂ ↦ (𝑥𝑛))) = (𝑥 ∈ ℂ ↦ (𝑛 · (𝑥↑(𝑛 − 1)))) ↔ (ℂ D (𝑥 ∈ ℂ ↦ (𝑥𝑁))) = (𝑥 ∈ ℂ ↦ (𝑁 · (𝑥↑(𝑁 − 1))))))
37 exp1 13834 . . . . . 6 (𝑥 ∈ ℂ → (𝑥↑1) = 𝑥)
3837mpteq2ia 5184 . . . . 5 (𝑥 ∈ ℂ ↦ (𝑥↑1)) = (𝑥 ∈ ℂ ↦ 𝑥)
39 mptresid 5970 . . . . 5 ( I ↾ ℂ) = (𝑥 ∈ ℂ ↦ 𝑥)
4038, 39eqtr4i 2767 . . . 4 (𝑥 ∈ ℂ ↦ (𝑥↑1)) = ( I ↾ ℂ)
4140oveq2i 7318 . . 3 (ℂ D (𝑥 ∈ ℂ ↦ (𝑥↑1))) = (ℂ D ( I ↾ ℂ))
42 1m1e0 12091 . . . . . . . . . 10 (1 − 1) = 0
4342oveq2i 7318 . . . . . . . . 9 (𝑥↑(1 − 1)) = (𝑥↑0)
44 exp0 13832 . . . . . . . . 9 (𝑥 ∈ ℂ → (𝑥↑0) = 1)
4543, 44eqtrid 2788 . . . . . . . 8 (𝑥 ∈ ℂ → (𝑥↑(1 − 1)) = 1)
4645oveq2d 7323 . . . . . . 7 (𝑥 ∈ ℂ → (1 · (𝑥↑(1 − 1))) = (1 · 1))
47 1t1e1 12181 . . . . . . 7 (1 · 1) = 1
4846, 47eqtrdi 2792 . . . . . 6 (𝑥 ∈ ℂ → (1 · (𝑥↑(1 − 1))) = 1)
4948mpteq2ia 5184 . . . . 5 (𝑥 ∈ ℂ ↦ (1 · (𝑥↑(1 − 1)))) = (𝑥 ∈ ℂ ↦ 1)
50 fconstmpt 5660 . . . . 5 (ℂ × {1}) = (𝑥 ∈ ℂ ↦ 1)
5149, 50eqtr4i 2767 . . . 4 (𝑥 ∈ ℂ ↦ (1 · (𝑥↑(1 − 1)))) = (ℂ × {1})
52 dvid 25127 . . . 4 (ℂ D ( I ↾ ℂ)) = (ℂ × {1})
5351, 52eqtr4i 2767 . . 3 (𝑥 ∈ ℂ ↦ (1 · (𝑥↑(1 − 1)))) = (ℂ D ( I ↾ ℂ))
5441, 53eqtr4i 2767 . 2 (ℂ D (𝑥 ∈ ℂ ↦ (𝑥↑1))) = (𝑥 ∈ ℂ ↦ (1 · (𝑥↑(1 − 1))))
55 nncn 12027 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → 𝑘 ∈ ℂ)
5655adantr 482 . . . . . . . . . . 11 ((𝑘 ∈ ℕ ∧ 𝑥 ∈ ℂ) → 𝑘 ∈ ℂ)
57 ax-1cn 10975 . . . . . . . . . . 11 1 ∈ ℂ
58 pncan 11273 . . . . . . . . . . 11 ((𝑘 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑘 + 1) − 1) = 𝑘)
5956, 57, 58sylancl 587 . . . . . . . . . 10 ((𝑘 ∈ ℕ ∧ 𝑥 ∈ ℂ) → ((𝑘 + 1) − 1) = 𝑘)
6059oveq2d 7323 . . . . . . . . 9 ((𝑘 ∈ ℕ ∧ 𝑥 ∈ ℂ) → (𝑥↑((𝑘 + 1) − 1)) = (𝑥𝑘))
6160oveq2d 7323 . . . . . . . 8 ((𝑘 ∈ ℕ ∧ 𝑥 ∈ ℂ) → ((𝑘 + 1) · (𝑥↑((𝑘 + 1) − 1))) = ((𝑘 + 1) · (𝑥𝑘)))
6257a1i 11 . . . . . . . . 9 ((𝑘 ∈ ℕ ∧ 𝑥 ∈ ℂ) → 1 ∈ ℂ)
63 id 22 . . . . . . . . . 10 (𝑥 ∈ ℂ → 𝑥 ∈ ℂ)
64 nnnn0 12286 . . . . . . . . . 10 (𝑘 ∈ ℕ → 𝑘 ∈ ℕ0)
65 expcl 13846 . . . . . . . . . 10 ((𝑥 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝑥𝑘) ∈ ℂ)
6663, 64, 65syl2anr 598 . . . . . . . . 9 ((𝑘 ∈ ℕ ∧ 𝑥 ∈ ℂ) → (𝑥𝑘) ∈ ℂ)
6756, 62, 66adddird 11046 . . . . . . . 8 ((𝑘 ∈ ℕ ∧ 𝑥 ∈ ℂ) → ((𝑘 + 1) · (𝑥𝑘)) = ((𝑘 · (𝑥𝑘)) + (1 · (𝑥𝑘))))
6866mulid2d 11039 . . . . . . . . 9 ((𝑘 ∈ ℕ ∧ 𝑥 ∈ ℂ) → (1 · (𝑥𝑘)) = (𝑥𝑘))
6968oveq2d 7323 . . . . . . . 8 ((𝑘 ∈ ℕ ∧ 𝑥 ∈ ℂ) → ((𝑘 · (𝑥𝑘)) + (1 · (𝑥𝑘))) = ((𝑘 · (𝑥𝑘)) + (𝑥𝑘)))
7061, 67, 693eqtrd 2780 . . . . . . 7 ((𝑘 ∈ ℕ ∧ 𝑥 ∈ ℂ) → ((𝑘 + 1) · (𝑥↑((𝑘 + 1) − 1))) = ((𝑘 · (𝑥𝑘)) + (𝑥𝑘)))
7170mpteq2dva 5181 . . . . . 6 (𝑘 ∈ ℕ → (𝑥 ∈ ℂ ↦ ((𝑘 + 1) · (𝑥↑((𝑘 + 1) − 1)))) = (𝑥 ∈ ℂ ↦ ((𝑘 · (𝑥𝑘)) + (𝑥𝑘))))
72 cnex 10998 . . . . . . . 8 ℂ ∈ V
7372a1i 11 . . . . . . 7 (𝑘 ∈ ℕ → ℂ ∈ V)
7456, 66mulcld 11041 . . . . . . 7 ((𝑘 ∈ ℕ ∧ 𝑥 ∈ ℂ) → (𝑘 · (𝑥𝑘)) ∈ ℂ)
75 nnm1nn0 12320 . . . . . . . . . . 11 (𝑘 ∈ ℕ → (𝑘 − 1) ∈ ℕ0)
76 expcl 13846 . . . . . . . . . . 11 ((𝑥 ∈ ℂ ∧ (𝑘 − 1) ∈ ℕ0) → (𝑥↑(𝑘 − 1)) ∈ ℂ)
7763, 75, 76syl2anr 598 . . . . . . . . . 10 ((𝑘 ∈ ℕ ∧ 𝑥 ∈ ℂ) → (𝑥↑(𝑘 − 1)) ∈ ℂ)
7856, 77mulcld 11041 . . . . . . . . 9 ((𝑘 ∈ ℕ ∧ 𝑥 ∈ ℂ) → (𝑘 · (𝑥↑(𝑘 − 1))) ∈ ℂ)
79 simpr 486 . . . . . . . . 9 ((𝑘 ∈ ℕ ∧ 𝑥 ∈ ℂ) → 𝑥 ∈ ℂ)
80 eqidd 2737 . . . . . . . . 9 (𝑘 ∈ ℕ → (𝑥 ∈ ℂ ↦ (𝑘 · (𝑥↑(𝑘 − 1)))) = (𝑥 ∈ ℂ ↦ (𝑘 · (𝑥↑(𝑘 − 1)))))
8139a1i 11 . . . . . . . . 9 (𝑘 ∈ ℕ → ( I ↾ ℂ) = (𝑥 ∈ ℂ ↦ 𝑥))
8273, 78, 79, 80, 81offval2 7585 . . . . . . . 8 (𝑘 ∈ ℕ → ((𝑥 ∈ ℂ ↦ (𝑘 · (𝑥↑(𝑘 − 1)))) ∘f · ( I ↾ ℂ)) = (𝑥 ∈ ℂ ↦ ((𝑘 · (𝑥↑(𝑘 − 1))) · 𝑥)))
8356, 77, 79mulassd 11044 . . . . . . . . . 10 ((𝑘 ∈ ℕ ∧ 𝑥 ∈ ℂ) → ((𝑘 · (𝑥↑(𝑘 − 1))) · 𝑥) = (𝑘 · ((𝑥↑(𝑘 − 1)) · 𝑥)))
84 expm1t 13857 . . . . . . . . . . . 12 ((𝑥 ∈ ℂ ∧ 𝑘 ∈ ℕ) → (𝑥𝑘) = ((𝑥↑(𝑘 − 1)) · 𝑥))
8584ancoms 460 . . . . . . . . . . 11 ((𝑘 ∈ ℕ ∧ 𝑥 ∈ ℂ) → (𝑥𝑘) = ((𝑥↑(𝑘 − 1)) · 𝑥))
8685oveq2d 7323 . . . . . . . . . 10 ((𝑘 ∈ ℕ ∧ 𝑥 ∈ ℂ) → (𝑘 · (𝑥𝑘)) = (𝑘 · ((𝑥↑(𝑘 − 1)) · 𝑥)))
8783, 86eqtr4d 2779 . . . . . . . . 9 ((𝑘 ∈ ℕ ∧ 𝑥 ∈ ℂ) → ((𝑘 · (𝑥↑(𝑘 − 1))) · 𝑥) = (𝑘 · (𝑥𝑘)))
8887mpteq2dva 5181 . . . . . . . 8 (𝑘 ∈ ℕ → (𝑥 ∈ ℂ ↦ ((𝑘 · (𝑥↑(𝑘 − 1))) · 𝑥)) = (𝑥 ∈ ℂ ↦ (𝑘 · (𝑥𝑘))))
8982, 88eqtrd 2776 . . . . . . 7 (𝑘 ∈ ℕ → ((𝑥 ∈ ℂ ↦ (𝑘 · (𝑥↑(𝑘 − 1)))) ∘f · ( I ↾ ℂ)) = (𝑥 ∈ ℂ ↦ (𝑘 · (𝑥𝑘))))
9052, 50eqtri 2764 . . . . . . . . . 10 (ℂ D ( I ↾ ℂ)) = (𝑥 ∈ ℂ ↦ 1)
9190a1i 11 . . . . . . . . 9 (𝑘 ∈ ℕ → (ℂ D ( I ↾ ℂ)) = (𝑥 ∈ ℂ ↦ 1))
92 eqidd 2737 . . . . . . . . 9 (𝑘 ∈ ℕ → (𝑥 ∈ ℂ ↦ (𝑥𝑘)) = (𝑥 ∈ ℂ ↦ (𝑥𝑘)))
9373, 62, 66, 91, 92offval2 7585 . . . . . . . 8 (𝑘 ∈ ℕ → ((ℂ D ( I ↾ ℂ)) ∘f · (𝑥 ∈ ℂ ↦ (𝑥𝑘))) = (𝑥 ∈ ℂ ↦ (1 · (𝑥𝑘))))
9468mpteq2dva 5181 . . . . . . . 8 (𝑘 ∈ ℕ → (𝑥 ∈ ℂ ↦ (1 · (𝑥𝑘))) = (𝑥 ∈ ℂ ↦ (𝑥𝑘)))
9593, 94eqtrd 2776 . . . . . . 7 (𝑘 ∈ ℕ → ((ℂ D ( I ↾ ℂ)) ∘f · (𝑥 ∈ ℂ ↦ (𝑥𝑘))) = (𝑥 ∈ ℂ ↦ (𝑥𝑘)))
9673, 74, 66, 89, 95offval2 7585 . . . . . 6 (𝑘 ∈ ℕ → (((𝑥 ∈ ℂ ↦ (𝑘 · (𝑥↑(𝑘 − 1)))) ∘f · ( I ↾ ℂ)) ∘f + ((ℂ D ( I ↾ ℂ)) ∘f · (𝑥 ∈ ℂ ↦ (𝑥𝑘)))) = (𝑥 ∈ ℂ ↦ ((𝑘 · (𝑥𝑘)) + (𝑥𝑘))))
9771, 96eqtr4d 2779 . . . . 5 (𝑘 ∈ ℕ → (𝑥 ∈ ℂ ↦ ((𝑘 + 1) · (𝑥↑((𝑘 + 1) − 1)))) = (((𝑥 ∈ ℂ ↦ (𝑘 · (𝑥↑(𝑘 − 1)))) ∘f · ( I ↾ ℂ)) ∘f + ((ℂ D ( I ↾ ℂ)) ∘f · (𝑥 ∈ ℂ ↦ (𝑥𝑘)))))
98 oveq1 7314 . . . . . . 7 ((ℂ D (𝑥 ∈ ℂ ↦ (𝑥𝑘))) = (𝑥 ∈ ℂ ↦ (𝑘 · (𝑥↑(𝑘 − 1)))) → ((ℂ D (𝑥 ∈ ℂ ↦ (𝑥𝑘))) ∘f · ( I ↾ ℂ)) = ((𝑥 ∈ ℂ ↦ (𝑘 · (𝑥↑(𝑘 − 1)))) ∘f · ( I ↾ ℂ)))
9998oveq1d 7322 . . . . . 6 ((ℂ D (𝑥 ∈ ℂ ↦ (𝑥𝑘))) = (𝑥 ∈ ℂ ↦ (𝑘 · (𝑥↑(𝑘 − 1)))) → (((ℂ D (𝑥 ∈ ℂ ↦ (𝑥𝑘))) ∘f · ( I ↾ ℂ)) ∘f + ((ℂ D ( I ↾ ℂ)) ∘f · (𝑥 ∈ ℂ ↦ (𝑥𝑘)))) = (((𝑥 ∈ ℂ ↦ (𝑘 · (𝑥↑(𝑘 − 1)))) ∘f · ( I ↾ ℂ)) ∘f + ((ℂ D ( I ↾ ℂ)) ∘f · (𝑥 ∈ ℂ ↦ (𝑥𝑘)))))
10099eqcomd 2742 . . . . 5 ((ℂ D (𝑥 ∈ ℂ ↦ (𝑥𝑘))) = (𝑥 ∈ ℂ ↦ (𝑘 · (𝑥↑(𝑘 − 1)))) → (((𝑥 ∈ ℂ ↦ (𝑘 · (𝑥↑(𝑘 − 1)))) ∘f · ( I ↾ ℂ)) ∘f + ((ℂ D ( I ↾ ℂ)) ∘f · (𝑥 ∈ ℂ ↦ (𝑥𝑘)))) = (((ℂ D (𝑥 ∈ ℂ ↦ (𝑥𝑘))) ∘f · ( I ↾ ℂ)) ∘f + ((ℂ D ( I ↾ ℂ)) ∘f · (𝑥 ∈ ℂ ↦ (𝑥𝑘)))))
10197, 100sylan9eq 2796 . . . 4 ((𝑘 ∈ ℕ ∧ (ℂ D (𝑥 ∈ ℂ ↦ (𝑥𝑘))) = (𝑥 ∈ ℂ ↦ (𝑘 · (𝑥↑(𝑘 − 1))))) → (𝑥 ∈ ℂ ↦ ((𝑘 + 1) · (𝑥↑((𝑘 + 1) − 1)))) = (((ℂ D (𝑥 ∈ ℂ ↦ (𝑥𝑘))) ∘f · ( I ↾ ℂ)) ∘f + ((ℂ D ( I ↾ ℂ)) ∘f · (𝑥 ∈ ℂ ↦ (𝑥𝑘)))))
102 cnelprrecn 11010 . . . . . 6 ℂ ∈ {ℝ, ℂ}
103102a1i 11 . . . . 5 ((𝑘 ∈ ℕ ∧ (ℂ D (𝑥 ∈ ℂ ↦ (𝑥𝑘))) = (𝑥 ∈ ℂ ↦ (𝑘 · (𝑥↑(𝑘 − 1))))) → ℂ ∈ {ℝ, ℂ})
10466fmpttd 7021 . . . . . 6 (𝑘 ∈ ℕ → (𝑥 ∈ ℂ ↦ (𝑥𝑘)):ℂ⟶ℂ)
105104adantr 482 . . . . 5 ((𝑘 ∈ ℕ ∧ (ℂ D (𝑥 ∈ ℂ ↦ (𝑥𝑘))) = (𝑥 ∈ ℂ ↦ (𝑘 · (𝑥↑(𝑘 − 1))))) → (𝑥 ∈ ℂ ↦ (𝑥𝑘)):ℂ⟶ℂ)
106 f1oi 6784 . . . . . 6 ( I ↾ ℂ):ℂ–1-1-onto→ℂ
107 f1of 6746 . . . . . 6 (( I ↾ ℂ):ℂ–1-1-onto→ℂ → ( I ↾ ℂ):ℂ⟶ℂ)
108106, 107mp1i 13 . . . . 5 ((𝑘 ∈ ℕ ∧ (ℂ D (𝑥 ∈ ℂ ↦ (𝑥𝑘))) = (𝑥 ∈ ℂ ↦ (𝑘 · (𝑥↑(𝑘 − 1))))) → ( I ↾ ℂ):ℂ⟶ℂ)
109 simpr 486 . . . . . . 7 ((𝑘 ∈ ℕ ∧ (ℂ D (𝑥 ∈ ℂ ↦ (𝑥𝑘))) = (𝑥 ∈ ℂ ↦ (𝑘 · (𝑥↑(𝑘 − 1))))) → (ℂ D (𝑥 ∈ ℂ ↦ (𝑥𝑘))) = (𝑥 ∈ ℂ ↦ (𝑘 · (𝑥↑(𝑘 − 1)))))
110109dmeqd 5827 . . . . . 6 ((𝑘 ∈ ℕ ∧ (ℂ D (𝑥 ∈ ℂ ↦ (𝑥𝑘))) = (𝑥 ∈ ℂ ↦ (𝑘 · (𝑥↑(𝑘 − 1))))) → dom (ℂ D (𝑥 ∈ ℂ ↦ (𝑥𝑘))) = dom (𝑥 ∈ ℂ ↦ (𝑘 · (𝑥↑(𝑘 − 1)))))
11178fmpttd 7021 . . . . . . . 8 (𝑘 ∈ ℕ → (𝑥 ∈ ℂ ↦ (𝑘 · (𝑥↑(𝑘 − 1)))):ℂ⟶ℂ)
112111adantr 482 . . . . . . 7 ((𝑘 ∈ ℕ ∧ (ℂ D (𝑥 ∈ ℂ ↦ (𝑥𝑘))) = (𝑥 ∈ ℂ ↦ (𝑘 · (𝑥↑(𝑘 − 1))))) → (𝑥 ∈ ℂ ↦ (𝑘 · (𝑥↑(𝑘 − 1)))):ℂ⟶ℂ)
113112fdmd 6641 . . . . . 6 ((𝑘 ∈ ℕ ∧ (ℂ D (𝑥 ∈ ℂ ↦ (𝑥𝑘))) = (𝑥 ∈ ℂ ↦ (𝑘 · (𝑥↑(𝑘 − 1))))) → dom (𝑥 ∈ ℂ ↦ (𝑘 · (𝑥↑(𝑘 − 1)))) = ℂ)
114110, 113eqtrd 2776 . . . . 5 ((𝑘 ∈ ℕ ∧ (ℂ D (𝑥 ∈ ℂ ↦ (𝑥𝑘))) = (𝑥 ∈ ℂ ↦ (𝑘 · (𝑥↑(𝑘 − 1))))) → dom (ℂ D (𝑥 ∈ ℂ ↦ (𝑥𝑘))) = ℂ)
115 1ex 11017 . . . . . . . . 9 1 ∈ V
116115fconst 6690 . . . . . . . 8 (ℂ × {1}):ℂ⟶{1}
11752feq1i 6621 . . . . . . . 8 ((ℂ D ( I ↾ ℂ)):ℂ⟶{1} ↔ (ℂ × {1}):ℂ⟶{1})
118116, 117mpbir 230 . . . . . . 7 (ℂ D ( I ↾ ℂ)):ℂ⟶{1}
119118fdmi 6642 . . . . . 6 dom (ℂ D ( I ↾ ℂ)) = ℂ
120119a1i 11 . . . . 5 ((𝑘 ∈ ℕ ∧ (ℂ D (𝑥 ∈ ℂ ↦ (𝑥𝑘))) = (𝑥 ∈ ℂ ↦ (𝑘 · (𝑥↑(𝑘 − 1))))) → dom (ℂ D ( I ↾ ℂ)) = ℂ)
121103, 105, 108, 114, 120dvmulf 25152 . . . 4 ((𝑘 ∈ ℕ ∧ (ℂ D (𝑥 ∈ ℂ ↦ (𝑥𝑘))) = (𝑥 ∈ ℂ ↦ (𝑘 · (𝑥↑(𝑘 − 1))))) → (ℂ D ((𝑥 ∈ ℂ ↦ (𝑥𝑘)) ∘f · ( I ↾ ℂ))) = (((ℂ D (𝑥 ∈ ℂ ↦ (𝑥𝑘))) ∘f · ( I ↾ ℂ)) ∘f + ((ℂ D ( I ↾ ℂ)) ∘f · (𝑥 ∈ ℂ ↦ (𝑥𝑘)))))
12273, 66, 79, 92, 81offval2 7585 . . . . . . 7 (𝑘 ∈ ℕ → ((𝑥 ∈ ℂ ↦ (𝑥𝑘)) ∘f · ( I ↾ ℂ)) = (𝑥 ∈ ℂ ↦ ((𝑥𝑘) · 𝑥)))
123 expp1 13835 . . . . . . . . 9 ((𝑥 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝑥↑(𝑘 + 1)) = ((𝑥𝑘) · 𝑥))
12463, 64, 123syl2anr 598 . . . . . . . 8 ((𝑘 ∈ ℕ ∧ 𝑥 ∈ ℂ) → (𝑥↑(𝑘 + 1)) = ((𝑥𝑘) · 𝑥))
125124mpteq2dva 5181 . . . . . . 7 (𝑘 ∈ ℕ → (𝑥 ∈ ℂ ↦ (𝑥↑(𝑘 + 1))) = (𝑥 ∈ ℂ ↦ ((𝑥𝑘) · 𝑥)))
126122, 125eqtr4d 2779 . . . . . 6 (𝑘 ∈ ℕ → ((𝑥 ∈ ℂ ↦ (𝑥𝑘)) ∘f · ( I ↾ ℂ)) = (𝑥 ∈ ℂ ↦ (𝑥↑(𝑘 + 1))))
127126oveq2d 7323 . . . . 5 (𝑘 ∈ ℕ → (ℂ D ((𝑥 ∈ ℂ ↦ (𝑥𝑘)) ∘f · ( I ↾ ℂ))) = (ℂ D (𝑥 ∈ ℂ ↦ (𝑥↑(𝑘 + 1)))))
128127adantr 482 . . . 4 ((𝑘 ∈ ℕ ∧ (ℂ D (𝑥 ∈ ℂ ↦ (𝑥𝑘))) = (𝑥 ∈ ℂ ↦ (𝑘 · (𝑥↑(𝑘 − 1))))) → (ℂ D ((𝑥 ∈ ℂ ↦ (𝑥𝑘)) ∘f · ( I ↾ ℂ))) = (ℂ D (𝑥 ∈ ℂ ↦ (𝑥↑(𝑘 + 1)))))
129101, 121, 1283eqtr2rd 2783 . . 3 ((𝑘 ∈ ℕ ∧ (ℂ D (𝑥 ∈ ℂ ↦ (𝑥𝑘))) = (𝑥 ∈ ℂ ↦ (𝑘 · (𝑥↑(𝑘 − 1))))) → (ℂ D (𝑥 ∈ ℂ ↦ (𝑥↑(𝑘 + 1)))) = (𝑥 ∈ ℂ ↦ ((𝑘 + 1) · (𝑥↑((𝑘 + 1) − 1)))))
130129ex 414 . 2 (𝑘 ∈ ℕ → ((ℂ D (𝑥 ∈ ℂ ↦ (𝑥𝑘))) = (𝑥 ∈ ℂ ↦ (𝑘 · (𝑥↑(𝑘 − 1)))) → (ℂ D (𝑥 ∈ ℂ ↦ (𝑥↑(𝑘 + 1)))) = (𝑥 ∈ ℂ ↦ ((𝑘 + 1) · (𝑥↑((𝑘 + 1) − 1))))))
1319, 18, 27, 36, 54, 130nnind 12037 1 (𝑁 ∈ ℕ → (ℂ D (𝑥 ∈ ℂ ↦ (𝑥𝑁))) = (𝑥 ∈ ℂ ↦ (𝑁 · (𝑥↑(𝑁 − 1)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1539  wcel 2104  Vcvv 3437  {csn 4565  {cpr 4567  cmpt 5164   I cid 5499   × cxp 5598  dom cdm 5600  cres 5602  wf 6454  1-1-ontowf1o 6457  (class class class)co 7307  f cof 7563  cc 10915  cr 10916  0cc0 10917  1c1 10918   + caddc 10920   · cmul 10922  cmin 11251  cn 12019  0cn0 12279  cexp 13828   D cdv 25072
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707  ax-rep 5218  ax-sep 5232  ax-nul 5239  ax-pow 5297  ax-pr 5361  ax-un 7620  ax-cnex 10973  ax-resscn 10974  ax-1cn 10975  ax-icn 10976  ax-addcl 10977  ax-addrcl 10978  ax-mulcl 10979  ax-mulrcl 10980  ax-mulcom 10981  ax-addass 10982  ax-mulass 10983  ax-distr 10984  ax-i2m1 10985  ax-1ne0 10986  ax-1rid 10987  ax-rnegex 10988  ax-rrecex 10989  ax-cnre 10990  ax-pre-lttri 10991  ax-pre-lttrn 10992  ax-pre-ltadd 10993  ax-pre-mulgt0 10994  ax-pre-sup 10995  ax-addf 10996  ax-mulf 10997
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3or 1088  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3285  df-reu 3286  df-rab 3287  df-v 3439  df-sbc 3722  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4566  df-pr 4568  df-tp 4570  df-op 4572  df-uni 4845  df-int 4887  df-iun 4933  df-iin 4934  df-br 5082  df-opab 5144  df-mpt 5165  df-tr 5199  df-id 5500  df-eprel 5506  df-po 5514  df-so 5515  df-fr 5555  df-se 5556  df-we 5557  df-xp 5606  df-rel 5607  df-cnv 5608  df-co 5609  df-dm 5610  df-rn 5611  df-res 5612  df-ima 5613  df-pred 6217  df-ord 6284  df-on 6285  df-lim 6286  df-suc 6287  df-iota 6410  df-fun 6460  df-fn 6461  df-f 6462  df-f1 6463  df-fo 6464  df-f1o 6465  df-fv 6466  df-isom 6467  df-riota 7264  df-ov 7310  df-oprab 7311  df-mpo 7312  df-of 7565  df-om 7745  df-1st 7863  df-2nd 7864  df-supp 8009  df-frecs 8128  df-wrecs 8159  df-recs 8233  df-rdg 8272  df-1o 8328  df-2o 8329  df-er 8529  df-map 8648  df-pm 8649  df-ixp 8717  df-en 8765  df-dom 8766  df-sdom 8767  df-fin 8768  df-fsupp 9173  df-fi 9214  df-sup 9245  df-inf 9246  df-oi 9313  df-card 9741  df-pnf 11057  df-mnf 11058  df-xr 11059  df-ltxr 11060  df-le 11061  df-sub 11253  df-neg 11254  df-div 11679  df-nn 12020  df-2 12082  df-3 12083  df-4 12084  df-5 12085  df-6 12086  df-7 12087  df-8 12088  df-9 12089  df-n0 12280  df-z 12366  df-dec 12484  df-uz 12629  df-q 12735  df-rp 12777  df-xneg 12894  df-xadd 12895  df-xmul 12896  df-icc 13132  df-fz 13286  df-fzo 13429  df-seq 13768  df-exp 13829  df-hash 14091  df-cj 14855  df-re 14856  df-im 14857  df-sqrt 14991  df-abs 14992  df-struct 16893  df-sets 16910  df-slot 16928  df-ndx 16940  df-base 16958  df-ress 16987  df-plusg 17020  df-mulr 17021  df-starv 17022  df-sca 17023  df-vsca 17024  df-ip 17025  df-tset 17026  df-ple 17027  df-ds 17029  df-unif 17030  df-hom 17031  df-cco 17032  df-rest 17178  df-topn 17179  df-0g 17197  df-gsum 17198  df-topgen 17199  df-pt 17200  df-prds 17203  df-xrs 17258  df-qtop 17263  df-imas 17264  df-xps 17266  df-mre 17340  df-mrc 17341  df-acs 17343  df-mgm 18371  df-sgrp 18420  df-mnd 18431  df-submnd 18476  df-mulg 18746  df-cntz 18968  df-cmn 19433  df-psmet 20634  df-xmet 20635  df-met 20636  df-bl 20637  df-mopn 20638  df-fbas 20639  df-fg 20640  df-cnfld 20643  df-top 22088  df-topon 22105  df-topsp 22127  df-bases 22141  df-cld 22215  df-ntr 22216  df-cls 22217  df-nei 22294  df-lp 22332  df-perf 22333  df-cn 22423  df-cnp 22424  df-haus 22511  df-tx 22758  df-hmeo 22951  df-fil 23042  df-fm 23134  df-flim 23135  df-flf 23136  df-xms 23518  df-ms 23519  df-tms 23520  df-cncf 24086  df-limc 25075  df-dv 25076
This theorem is referenced by:  dvexp2  25163  dvexp3  25187  itgpowd  25259  taylthlem2  25578  advlogexp  25855  logdivsum  26726  log2sumbnd  26737  dvasin  35905  areacirclem1  35909  lcmineqlem8  40086  lcmineqlem10  40088  lcmineqlem12  40090  dvrelogpow2b  40118  aks4d1p1p6  40123  lhe4.4ex1a  41985  dvsinexp  43501  dvxpaek  43530
  Copyright terms: Public domain W3C validator