MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvexp Structured version   Visualization version   GIF version

Theorem dvexp 25098
Description: Derivative of a power function. (Contributed by Mario Carneiro, 9-Aug-2014.) (Revised by Mario Carneiro, 10-Feb-2015.)
Assertion
Ref Expression
dvexp (𝑁 ∈ ℕ → (ℂ D (𝑥 ∈ ℂ ↦ (𝑥𝑁))) = (𝑥 ∈ ℂ ↦ (𝑁 · (𝑥↑(𝑁 − 1)))))
Distinct variable group:   𝑥,𝑁

Proof of Theorem dvexp
Dummy variables 𝑘 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7276 . . . . 5 (𝑛 = 1 → (𝑥𝑛) = (𝑥↑1))
21mpteq2dv 5180 . . . 4 (𝑛 = 1 → (𝑥 ∈ ℂ ↦ (𝑥𝑛)) = (𝑥 ∈ ℂ ↦ (𝑥↑1)))
32oveq2d 7284 . . 3 (𝑛 = 1 → (ℂ D (𝑥 ∈ ℂ ↦ (𝑥𝑛))) = (ℂ D (𝑥 ∈ ℂ ↦ (𝑥↑1))))
4 id 22 . . . . 5 (𝑛 = 1 → 𝑛 = 1)
5 oveq1 7275 . . . . . 6 (𝑛 = 1 → (𝑛 − 1) = (1 − 1))
65oveq2d 7284 . . . . 5 (𝑛 = 1 → (𝑥↑(𝑛 − 1)) = (𝑥↑(1 − 1)))
74, 6oveq12d 7286 . . . 4 (𝑛 = 1 → (𝑛 · (𝑥↑(𝑛 − 1))) = (1 · (𝑥↑(1 − 1))))
87mpteq2dv 5180 . . 3 (𝑛 = 1 → (𝑥 ∈ ℂ ↦ (𝑛 · (𝑥↑(𝑛 − 1)))) = (𝑥 ∈ ℂ ↦ (1 · (𝑥↑(1 − 1)))))
93, 8eqeq12d 2755 . 2 (𝑛 = 1 → ((ℂ D (𝑥 ∈ ℂ ↦ (𝑥𝑛))) = (𝑥 ∈ ℂ ↦ (𝑛 · (𝑥↑(𝑛 − 1)))) ↔ (ℂ D (𝑥 ∈ ℂ ↦ (𝑥↑1))) = (𝑥 ∈ ℂ ↦ (1 · (𝑥↑(1 − 1))))))
10 oveq2 7276 . . . . 5 (𝑛 = 𝑘 → (𝑥𝑛) = (𝑥𝑘))
1110mpteq2dv 5180 . . . 4 (𝑛 = 𝑘 → (𝑥 ∈ ℂ ↦ (𝑥𝑛)) = (𝑥 ∈ ℂ ↦ (𝑥𝑘)))
1211oveq2d 7284 . . 3 (𝑛 = 𝑘 → (ℂ D (𝑥 ∈ ℂ ↦ (𝑥𝑛))) = (ℂ D (𝑥 ∈ ℂ ↦ (𝑥𝑘))))
13 id 22 . . . . 5 (𝑛 = 𝑘𝑛 = 𝑘)
14 oveq1 7275 . . . . . 6 (𝑛 = 𝑘 → (𝑛 − 1) = (𝑘 − 1))
1514oveq2d 7284 . . . . 5 (𝑛 = 𝑘 → (𝑥↑(𝑛 − 1)) = (𝑥↑(𝑘 − 1)))
1613, 15oveq12d 7286 . . . 4 (𝑛 = 𝑘 → (𝑛 · (𝑥↑(𝑛 − 1))) = (𝑘 · (𝑥↑(𝑘 − 1))))
1716mpteq2dv 5180 . . 3 (𝑛 = 𝑘 → (𝑥 ∈ ℂ ↦ (𝑛 · (𝑥↑(𝑛 − 1)))) = (𝑥 ∈ ℂ ↦ (𝑘 · (𝑥↑(𝑘 − 1)))))
1812, 17eqeq12d 2755 . 2 (𝑛 = 𝑘 → ((ℂ D (𝑥 ∈ ℂ ↦ (𝑥𝑛))) = (𝑥 ∈ ℂ ↦ (𝑛 · (𝑥↑(𝑛 − 1)))) ↔ (ℂ D (𝑥 ∈ ℂ ↦ (𝑥𝑘))) = (𝑥 ∈ ℂ ↦ (𝑘 · (𝑥↑(𝑘 − 1))))))
19 oveq2 7276 . . . . 5 (𝑛 = (𝑘 + 1) → (𝑥𝑛) = (𝑥↑(𝑘 + 1)))
2019mpteq2dv 5180 . . . 4 (𝑛 = (𝑘 + 1) → (𝑥 ∈ ℂ ↦ (𝑥𝑛)) = (𝑥 ∈ ℂ ↦ (𝑥↑(𝑘 + 1))))
2120oveq2d 7284 . . 3 (𝑛 = (𝑘 + 1) → (ℂ D (𝑥 ∈ ℂ ↦ (𝑥𝑛))) = (ℂ D (𝑥 ∈ ℂ ↦ (𝑥↑(𝑘 + 1)))))
22 id 22 . . . . 5 (𝑛 = (𝑘 + 1) → 𝑛 = (𝑘 + 1))
23 oveq1 7275 . . . . . 6 (𝑛 = (𝑘 + 1) → (𝑛 − 1) = ((𝑘 + 1) − 1))
2423oveq2d 7284 . . . . 5 (𝑛 = (𝑘 + 1) → (𝑥↑(𝑛 − 1)) = (𝑥↑((𝑘 + 1) − 1)))
2522, 24oveq12d 7286 . . . 4 (𝑛 = (𝑘 + 1) → (𝑛 · (𝑥↑(𝑛 − 1))) = ((𝑘 + 1) · (𝑥↑((𝑘 + 1) − 1))))
2625mpteq2dv 5180 . . 3 (𝑛 = (𝑘 + 1) → (𝑥 ∈ ℂ ↦ (𝑛 · (𝑥↑(𝑛 − 1)))) = (𝑥 ∈ ℂ ↦ ((𝑘 + 1) · (𝑥↑((𝑘 + 1) − 1)))))
2721, 26eqeq12d 2755 . 2 (𝑛 = (𝑘 + 1) → ((ℂ D (𝑥 ∈ ℂ ↦ (𝑥𝑛))) = (𝑥 ∈ ℂ ↦ (𝑛 · (𝑥↑(𝑛 − 1)))) ↔ (ℂ D (𝑥 ∈ ℂ ↦ (𝑥↑(𝑘 + 1)))) = (𝑥 ∈ ℂ ↦ ((𝑘 + 1) · (𝑥↑((𝑘 + 1) − 1))))))
28 oveq2 7276 . . . . 5 (𝑛 = 𝑁 → (𝑥𝑛) = (𝑥𝑁))
2928mpteq2dv 5180 . . . 4 (𝑛 = 𝑁 → (𝑥 ∈ ℂ ↦ (𝑥𝑛)) = (𝑥 ∈ ℂ ↦ (𝑥𝑁)))
3029oveq2d 7284 . . 3 (𝑛 = 𝑁 → (ℂ D (𝑥 ∈ ℂ ↦ (𝑥𝑛))) = (ℂ D (𝑥 ∈ ℂ ↦ (𝑥𝑁))))
31 id 22 . . . . 5 (𝑛 = 𝑁𝑛 = 𝑁)
32 oveq1 7275 . . . . . 6 (𝑛 = 𝑁 → (𝑛 − 1) = (𝑁 − 1))
3332oveq2d 7284 . . . . 5 (𝑛 = 𝑁 → (𝑥↑(𝑛 − 1)) = (𝑥↑(𝑁 − 1)))
3431, 33oveq12d 7286 . . . 4 (𝑛 = 𝑁 → (𝑛 · (𝑥↑(𝑛 − 1))) = (𝑁 · (𝑥↑(𝑁 − 1))))
3534mpteq2dv 5180 . . 3 (𝑛 = 𝑁 → (𝑥 ∈ ℂ ↦ (𝑛 · (𝑥↑(𝑛 − 1)))) = (𝑥 ∈ ℂ ↦ (𝑁 · (𝑥↑(𝑁 − 1)))))
3630, 35eqeq12d 2755 . 2 (𝑛 = 𝑁 → ((ℂ D (𝑥 ∈ ℂ ↦ (𝑥𝑛))) = (𝑥 ∈ ℂ ↦ (𝑛 · (𝑥↑(𝑛 − 1)))) ↔ (ℂ D (𝑥 ∈ ℂ ↦ (𝑥𝑁))) = (𝑥 ∈ ℂ ↦ (𝑁 · (𝑥↑(𝑁 − 1))))))
37 exp1 13769 . . . . . 6 (𝑥 ∈ ℂ → (𝑥↑1) = 𝑥)
3837mpteq2ia 5181 . . . . 5 (𝑥 ∈ ℂ ↦ (𝑥↑1)) = (𝑥 ∈ ℂ ↦ 𝑥)
39 mptresid 5955 . . . . 5 ( I ↾ ℂ) = (𝑥 ∈ ℂ ↦ 𝑥)
4038, 39eqtr4i 2770 . . . 4 (𝑥 ∈ ℂ ↦ (𝑥↑1)) = ( I ↾ ℂ)
4140oveq2i 7279 . . 3 (ℂ D (𝑥 ∈ ℂ ↦ (𝑥↑1))) = (ℂ D ( I ↾ ℂ))
42 1m1e0 12028 . . . . . . . . . 10 (1 − 1) = 0
4342oveq2i 7279 . . . . . . . . 9 (𝑥↑(1 − 1)) = (𝑥↑0)
44 exp0 13767 . . . . . . . . 9 (𝑥 ∈ ℂ → (𝑥↑0) = 1)
4543, 44eqtrid 2791 . . . . . . . 8 (𝑥 ∈ ℂ → (𝑥↑(1 − 1)) = 1)
4645oveq2d 7284 . . . . . . 7 (𝑥 ∈ ℂ → (1 · (𝑥↑(1 − 1))) = (1 · 1))
47 1t1e1 12118 . . . . . . 7 (1 · 1) = 1
4846, 47eqtrdi 2795 . . . . . 6 (𝑥 ∈ ℂ → (1 · (𝑥↑(1 − 1))) = 1)
4948mpteq2ia 5181 . . . . 5 (𝑥 ∈ ℂ ↦ (1 · (𝑥↑(1 − 1)))) = (𝑥 ∈ ℂ ↦ 1)
50 fconstmpt 5648 . . . . 5 (ℂ × {1}) = (𝑥 ∈ ℂ ↦ 1)
5149, 50eqtr4i 2770 . . . 4 (𝑥 ∈ ℂ ↦ (1 · (𝑥↑(1 − 1)))) = (ℂ × {1})
52 dvid 25063 . . . 4 (ℂ D ( I ↾ ℂ)) = (ℂ × {1})
5351, 52eqtr4i 2770 . . 3 (𝑥 ∈ ℂ ↦ (1 · (𝑥↑(1 − 1)))) = (ℂ D ( I ↾ ℂ))
5441, 53eqtr4i 2770 . 2 (ℂ D (𝑥 ∈ ℂ ↦ (𝑥↑1))) = (𝑥 ∈ ℂ ↦ (1 · (𝑥↑(1 − 1))))
55 nncn 11964 . . . . . . . . . . . 12 (𝑘 ∈ ℕ → 𝑘 ∈ ℂ)
5655adantr 480 . . . . . . . . . . 11 ((𝑘 ∈ ℕ ∧ 𝑥 ∈ ℂ) → 𝑘 ∈ ℂ)
57 ax-1cn 10913 . . . . . . . . . . 11 1 ∈ ℂ
58 pncan 11210 . . . . . . . . . . 11 ((𝑘 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑘 + 1) − 1) = 𝑘)
5956, 57, 58sylancl 585 . . . . . . . . . 10 ((𝑘 ∈ ℕ ∧ 𝑥 ∈ ℂ) → ((𝑘 + 1) − 1) = 𝑘)
6059oveq2d 7284 . . . . . . . . 9 ((𝑘 ∈ ℕ ∧ 𝑥 ∈ ℂ) → (𝑥↑((𝑘 + 1) − 1)) = (𝑥𝑘))
6160oveq2d 7284 . . . . . . . 8 ((𝑘 ∈ ℕ ∧ 𝑥 ∈ ℂ) → ((𝑘 + 1) · (𝑥↑((𝑘 + 1) − 1))) = ((𝑘 + 1) · (𝑥𝑘)))
6257a1i 11 . . . . . . . . 9 ((𝑘 ∈ ℕ ∧ 𝑥 ∈ ℂ) → 1 ∈ ℂ)
63 id 22 . . . . . . . . . 10 (𝑥 ∈ ℂ → 𝑥 ∈ ℂ)
64 nnnn0 12223 . . . . . . . . . 10 (𝑘 ∈ ℕ → 𝑘 ∈ ℕ0)
65 expcl 13781 . . . . . . . . . 10 ((𝑥 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝑥𝑘) ∈ ℂ)
6663, 64, 65syl2anr 596 . . . . . . . . 9 ((𝑘 ∈ ℕ ∧ 𝑥 ∈ ℂ) → (𝑥𝑘) ∈ ℂ)
6756, 62, 66adddird 10984 . . . . . . . 8 ((𝑘 ∈ ℕ ∧ 𝑥 ∈ ℂ) → ((𝑘 + 1) · (𝑥𝑘)) = ((𝑘 · (𝑥𝑘)) + (1 · (𝑥𝑘))))
6866mulid2d 10977 . . . . . . . . 9 ((𝑘 ∈ ℕ ∧ 𝑥 ∈ ℂ) → (1 · (𝑥𝑘)) = (𝑥𝑘))
6968oveq2d 7284 . . . . . . . 8 ((𝑘 ∈ ℕ ∧ 𝑥 ∈ ℂ) → ((𝑘 · (𝑥𝑘)) + (1 · (𝑥𝑘))) = ((𝑘 · (𝑥𝑘)) + (𝑥𝑘)))
7061, 67, 693eqtrd 2783 . . . . . . 7 ((𝑘 ∈ ℕ ∧ 𝑥 ∈ ℂ) → ((𝑘 + 1) · (𝑥↑((𝑘 + 1) − 1))) = ((𝑘 · (𝑥𝑘)) + (𝑥𝑘)))
7170mpteq2dva 5178 . . . . . 6 (𝑘 ∈ ℕ → (𝑥 ∈ ℂ ↦ ((𝑘 + 1) · (𝑥↑((𝑘 + 1) − 1)))) = (𝑥 ∈ ℂ ↦ ((𝑘 · (𝑥𝑘)) + (𝑥𝑘))))
72 cnex 10936 . . . . . . . 8 ℂ ∈ V
7372a1i 11 . . . . . . 7 (𝑘 ∈ ℕ → ℂ ∈ V)
7456, 66mulcld 10979 . . . . . . 7 ((𝑘 ∈ ℕ ∧ 𝑥 ∈ ℂ) → (𝑘 · (𝑥𝑘)) ∈ ℂ)
75 nnm1nn0 12257 . . . . . . . . . . 11 (𝑘 ∈ ℕ → (𝑘 − 1) ∈ ℕ0)
76 expcl 13781 . . . . . . . . . . 11 ((𝑥 ∈ ℂ ∧ (𝑘 − 1) ∈ ℕ0) → (𝑥↑(𝑘 − 1)) ∈ ℂ)
7763, 75, 76syl2anr 596 . . . . . . . . . 10 ((𝑘 ∈ ℕ ∧ 𝑥 ∈ ℂ) → (𝑥↑(𝑘 − 1)) ∈ ℂ)
7856, 77mulcld 10979 . . . . . . . . 9 ((𝑘 ∈ ℕ ∧ 𝑥 ∈ ℂ) → (𝑘 · (𝑥↑(𝑘 − 1))) ∈ ℂ)
79 simpr 484 . . . . . . . . 9 ((𝑘 ∈ ℕ ∧ 𝑥 ∈ ℂ) → 𝑥 ∈ ℂ)
80 eqidd 2740 . . . . . . . . 9 (𝑘 ∈ ℕ → (𝑥 ∈ ℂ ↦ (𝑘 · (𝑥↑(𝑘 − 1)))) = (𝑥 ∈ ℂ ↦ (𝑘 · (𝑥↑(𝑘 − 1)))))
8139a1i 11 . . . . . . . . 9 (𝑘 ∈ ℕ → ( I ↾ ℂ) = (𝑥 ∈ ℂ ↦ 𝑥))
8273, 78, 79, 80, 81offval2 7544 . . . . . . . 8 (𝑘 ∈ ℕ → ((𝑥 ∈ ℂ ↦ (𝑘 · (𝑥↑(𝑘 − 1)))) ∘f · ( I ↾ ℂ)) = (𝑥 ∈ ℂ ↦ ((𝑘 · (𝑥↑(𝑘 − 1))) · 𝑥)))
8356, 77, 79mulassd 10982 . . . . . . . . . 10 ((𝑘 ∈ ℕ ∧ 𝑥 ∈ ℂ) → ((𝑘 · (𝑥↑(𝑘 − 1))) · 𝑥) = (𝑘 · ((𝑥↑(𝑘 − 1)) · 𝑥)))
84 expm1t 13792 . . . . . . . . . . . 12 ((𝑥 ∈ ℂ ∧ 𝑘 ∈ ℕ) → (𝑥𝑘) = ((𝑥↑(𝑘 − 1)) · 𝑥))
8584ancoms 458 . . . . . . . . . . 11 ((𝑘 ∈ ℕ ∧ 𝑥 ∈ ℂ) → (𝑥𝑘) = ((𝑥↑(𝑘 − 1)) · 𝑥))
8685oveq2d 7284 . . . . . . . . . 10 ((𝑘 ∈ ℕ ∧ 𝑥 ∈ ℂ) → (𝑘 · (𝑥𝑘)) = (𝑘 · ((𝑥↑(𝑘 − 1)) · 𝑥)))
8783, 86eqtr4d 2782 . . . . . . . . 9 ((𝑘 ∈ ℕ ∧ 𝑥 ∈ ℂ) → ((𝑘 · (𝑥↑(𝑘 − 1))) · 𝑥) = (𝑘 · (𝑥𝑘)))
8887mpteq2dva 5178 . . . . . . . 8 (𝑘 ∈ ℕ → (𝑥 ∈ ℂ ↦ ((𝑘 · (𝑥↑(𝑘 − 1))) · 𝑥)) = (𝑥 ∈ ℂ ↦ (𝑘 · (𝑥𝑘))))
8982, 88eqtrd 2779 . . . . . . 7 (𝑘 ∈ ℕ → ((𝑥 ∈ ℂ ↦ (𝑘 · (𝑥↑(𝑘 − 1)))) ∘f · ( I ↾ ℂ)) = (𝑥 ∈ ℂ ↦ (𝑘 · (𝑥𝑘))))
9052, 50eqtri 2767 . . . . . . . . . 10 (ℂ D ( I ↾ ℂ)) = (𝑥 ∈ ℂ ↦ 1)
9190a1i 11 . . . . . . . . 9 (𝑘 ∈ ℕ → (ℂ D ( I ↾ ℂ)) = (𝑥 ∈ ℂ ↦ 1))
92 eqidd 2740 . . . . . . . . 9 (𝑘 ∈ ℕ → (𝑥 ∈ ℂ ↦ (𝑥𝑘)) = (𝑥 ∈ ℂ ↦ (𝑥𝑘)))
9373, 62, 66, 91, 92offval2 7544 . . . . . . . 8 (𝑘 ∈ ℕ → ((ℂ D ( I ↾ ℂ)) ∘f · (𝑥 ∈ ℂ ↦ (𝑥𝑘))) = (𝑥 ∈ ℂ ↦ (1 · (𝑥𝑘))))
9468mpteq2dva 5178 . . . . . . . 8 (𝑘 ∈ ℕ → (𝑥 ∈ ℂ ↦ (1 · (𝑥𝑘))) = (𝑥 ∈ ℂ ↦ (𝑥𝑘)))
9593, 94eqtrd 2779 . . . . . . 7 (𝑘 ∈ ℕ → ((ℂ D ( I ↾ ℂ)) ∘f · (𝑥 ∈ ℂ ↦ (𝑥𝑘))) = (𝑥 ∈ ℂ ↦ (𝑥𝑘)))
9673, 74, 66, 89, 95offval2 7544 . . . . . 6 (𝑘 ∈ ℕ → (((𝑥 ∈ ℂ ↦ (𝑘 · (𝑥↑(𝑘 − 1)))) ∘f · ( I ↾ ℂ)) ∘f + ((ℂ D ( I ↾ ℂ)) ∘f · (𝑥 ∈ ℂ ↦ (𝑥𝑘)))) = (𝑥 ∈ ℂ ↦ ((𝑘 · (𝑥𝑘)) + (𝑥𝑘))))
9771, 96eqtr4d 2782 . . . . 5 (𝑘 ∈ ℕ → (𝑥 ∈ ℂ ↦ ((𝑘 + 1) · (𝑥↑((𝑘 + 1) − 1)))) = (((𝑥 ∈ ℂ ↦ (𝑘 · (𝑥↑(𝑘 − 1)))) ∘f · ( I ↾ ℂ)) ∘f + ((ℂ D ( I ↾ ℂ)) ∘f · (𝑥 ∈ ℂ ↦ (𝑥𝑘)))))
98 oveq1 7275 . . . . . . 7 ((ℂ D (𝑥 ∈ ℂ ↦ (𝑥𝑘))) = (𝑥 ∈ ℂ ↦ (𝑘 · (𝑥↑(𝑘 − 1)))) → ((ℂ D (𝑥 ∈ ℂ ↦ (𝑥𝑘))) ∘f · ( I ↾ ℂ)) = ((𝑥 ∈ ℂ ↦ (𝑘 · (𝑥↑(𝑘 − 1)))) ∘f · ( I ↾ ℂ)))
9998oveq1d 7283 . . . . . 6 ((ℂ D (𝑥 ∈ ℂ ↦ (𝑥𝑘))) = (𝑥 ∈ ℂ ↦ (𝑘 · (𝑥↑(𝑘 − 1)))) → (((ℂ D (𝑥 ∈ ℂ ↦ (𝑥𝑘))) ∘f · ( I ↾ ℂ)) ∘f + ((ℂ D ( I ↾ ℂ)) ∘f · (𝑥 ∈ ℂ ↦ (𝑥𝑘)))) = (((𝑥 ∈ ℂ ↦ (𝑘 · (𝑥↑(𝑘 − 1)))) ∘f · ( I ↾ ℂ)) ∘f + ((ℂ D ( I ↾ ℂ)) ∘f · (𝑥 ∈ ℂ ↦ (𝑥𝑘)))))
10099eqcomd 2745 . . . . 5 ((ℂ D (𝑥 ∈ ℂ ↦ (𝑥𝑘))) = (𝑥 ∈ ℂ ↦ (𝑘 · (𝑥↑(𝑘 − 1)))) → (((𝑥 ∈ ℂ ↦ (𝑘 · (𝑥↑(𝑘 − 1)))) ∘f · ( I ↾ ℂ)) ∘f + ((ℂ D ( I ↾ ℂ)) ∘f · (𝑥 ∈ ℂ ↦ (𝑥𝑘)))) = (((ℂ D (𝑥 ∈ ℂ ↦ (𝑥𝑘))) ∘f · ( I ↾ ℂ)) ∘f + ((ℂ D ( I ↾ ℂ)) ∘f · (𝑥 ∈ ℂ ↦ (𝑥𝑘)))))
10197, 100sylan9eq 2799 . . . 4 ((𝑘 ∈ ℕ ∧ (ℂ D (𝑥 ∈ ℂ ↦ (𝑥𝑘))) = (𝑥 ∈ ℂ ↦ (𝑘 · (𝑥↑(𝑘 − 1))))) → (𝑥 ∈ ℂ ↦ ((𝑘 + 1) · (𝑥↑((𝑘 + 1) − 1)))) = (((ℂ D (𝑥 ∈ ℂ ↦ (𝑥𝑘))) ∘f · ( I ↾ ℂ)) ∘f + ((ℂ D ( I ↾ ℂ)) ∘f · (𝑥 ∈ ℂ ↦ (𝑥𝑘)))))
102 cnelprrecn 10948 . . . . . 6 ℂ ∈ {ℝ, ℂ}
103102a1i 11 . . . . 5 ((𝑘 ∈ ℕ ∧ (ℂ D (𝑥 ∈ ℂ ↦ (𝑥𝑘))) = (𝑥 ∈ ℂ ↦ (𝑘 · (𝑥↑(𝑘 − 1))))) → ℂ ∈ {ℝ, ℂ})
10466fmpttd 6983 . . . . . 6 (𝑘 ∈ ℕ → (𝑥 ∈ ℂ ↦ (𝑥𝑘)):ℂ⟶ℂ)
105104adantr 480 . . . . 5 ((𝑘 ∈ ℕ ∧ (ℂ D (𝑥 ∈ ℂ ↦ (𝑥𝑘))) = (𝑥 ∈ ℂ ↦ (𝑘 · (𝑥↑(𝑘 − 1))))) → (𝑥 ∈ ℂ ↦ (𝑥𝑘)):ℂ⟶ℂ)
106 f1oi 6749 . . . . . 6 ( I ↾ ℂ):ℂ–1-1-onto→ℂ
107 f1of 6712 . . . . . 6 (( I ↾ ℂ):ℂ–1-1-onto→ℂ → ( I ↾ ℂ):ℂ⟶ℂ)
108106, 107mp1i 13 . . . . 5 ((𝑘 ∈ ℕ ∧ (ℂ D (𝑥 ∈ ℂ ↦ (𝑥𝑘))) = (𝑥 ∈ ℂ ↦ (𝑘 · (𝑥↑(𝑘 − 1))))) → ( I ↾ ℂ):ℂ⟶ℂ)
109 simpr 484 . . . . . . 7 ((𝑘 ∈ ℕ ∧ (ℂ D (𝑥 ∈ ℂ ↦ (𝑥𝑘))) = (𝑥 ∈ ℂ ↦ (𝑘 · (𝑥↑(𝑘 − 1))))) → (ℂ D (𝑥 ∈ ℂ ↦ (𝑥𝑘))) = (𝑥 ∈ ℂ ↦ (𝑘 · (𝑥↑(𝑘 − 1)))))
110109dmeqd 5811 . . . . . 6 ((𝑘 ∈ ℕ ∧ (ℂ D (𝑥 ∈ ℂ ↦ (𝑥𝑘))) = (𝑥 ∈ ℂ ↦ (𝑘 · (𝑥↑(𝑘 − 1))))) → dom (ℂ D (𝑥 ∈ ℂ ↦ (𝑥𝑘))) = dom (𝑥 ∈ ℂ ↦ (𝑘 · (𝑥↑(𝑘 − 1)))))
11178fmpttd 6983 . . . . . . . 8 (𝑘 ∈ ℕ → (𝑥 ∈ ℂ ↦ (𝑘 · (𝑥↑(𝑘 − 1)))):ℂ⟶ℂ)
112111adantr 480 . . . . . . 7 ((𝑘 ∈ ℕ ∧ (ℂ D (𝑥 ∈ ℂ ↦ (𝑥𝑘))) = (𝑥 ∈ ℂ ↦ (𝑘 · (𝑥↑(𝑘 − 1))))) → (𝑥 ∈ ℂ ↦ (𝑘 · (𝑥↑(𝑘 − 1)))):ℂ⟶ℂ)
113112fdmd 6607 . . . . . 6 ((𝑘 ∈ ℕ ∧ (ℂ D (𝑥 ∈ ℂ ↦ (𝑥𝑘))) = (𝑥 ∈ ℂ ↦ (𝑘 · (𝑥↑(𝑘 − 1))))) → dom (𝑥 ∈ ℂ ↦ (𝑘 · (𝑥↑(𝑘 − 1)))) = ℂ)
114110, 113eqtrd 2779 . . . . 5 ((𝑘 ∈ ℕ ∧ (ℂ D (𝑥 ∈ ℂ ↦ (𝑥𝑘))) = (𝑥 ∈ ℂ ↦ (𝑘 · (𝑥↑(𝑘 − 1))))) → dom (ℂ D (𝑥 ∈ ℂ ↦ (𝑥𝑘))) = ℂ)
115 1ex 10955 . . . . . . . . 9 1 ∈ V
116115fconst 6656 . . . . . . . 8 (ℂ × {1}):ℂ⟶{1}
11752feq1i 6587 . . . . . . . 8 ((ℂ D ( I ↾ ℂ)):ℂ⟶{1} ↔ (ℂ × {1}):ℂ⟶{1})
118116, 117mpbir 230 . . . . . . 7 (ℂ D ( I ↾ ℂ)):ℂ⟶{1}
119118fdmi 6608 . . . . . 6 dom (ℂ D ( I ↾ ℂ)) = ℂ
120119a1i 11 . . . . 5 ((𝑘 ∈ ℕ ∧ (ℂ D (𝑥 ∈ ℂ ↦ (𝑥𝑘))) = (𝑥 ∈ ℂ ↦ (𝑘 · (𝑥↑(𝑘 − 1))))) → dom (ℂ D ( I ↾ ℂ)) = ℂ)
121103, 105, 108, 114, 120dvmulf 25088 . . . 4 ((𝑘 ∈ ℕ ∧ (ℂ D (𝑥 ∈ ℂ ↦ (𝑥𝑘))) = (𝑥 ∈ ℂ ↦ (𝑘 · (𝑥↑(𝑘 − 1))))) → (ℂ D ((𝑥 ∈ ℂ ↦ (𝑥𝑘)) ∘f · ( I ↾ ℂ))) = (((ℂ D (𝑥 ∈ ℂ ↦ (𝑥𝑘))) ∘f · ( I ↾ ℂ)) ∘f + ((ℂ D ( I ↾ ℂ)) ∘f · (𝑥 ∈ ℂ ↦ (𝑥𝑘)))))
12273, 66, 79, 92, 81offval2 7544 . . . . . . 7 (𝑘 ∈ ℕ → ((𝑥 ∈ ℂ ↦ (𝑥𝑘)) ∘f · ( I ↾ ℂ)) = (𝑥 ∈ ℂ ↦ ((𝑥𝑘) · 𝑥)))
123 expp1 13770 . . . . . . . . 9 ((𝑥 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝑥↑(𝑘 + 1)) = ((𝑥𝑘) · 𝑥))
12463, 64, 123syl2anr 596 . . . . . . . 8 ((𝑘 ∈ ℕ ∧ 𝑥 ∈ ℂ) → (𝑥↑(𝑘 + 1)) = ((𝑥𝑘) · 𝑥))
125124mpteq2dva 5178 . . . . . . 7 (𝑘 ∈ ℕ → (𝑥 ∈ ℂ ↦ (𝑥↑(𝑘 + 1))) = (𝑥 ∈ ℂ ↦ ((𝑥𝑘) · 𝑥)))
126122, 125eqtr4d 2782 . . . . . 6 (𝑘 ∈ ℕ → ((𝑥 ∈ ℂ ↦ (𝑥𝑘)) ∘f · ( I ↾ ℂ)) = (𝑥 ∈ ℂ ↦ (𝑥↑(𝑘 + 1))))
127126oveq2d 7284 . . . . 5 (𝑘 ∈ ℕ → (ℂ D ((𝑥 ∈ ℂ ↦ (𝑥𝑘)) ∘f · ( I ↾ ℂ))) = (ℂ D (𝑥 ∈ ℂ ↦ (𝑥↑(𝑘 + 1)))))
128127adantr 480 . . . 4 ((𝑘 ∈ ℕ ∧ (ℂ D (𝑥 ∈ ℂ ↦ (𝑥𝑘))) = (𝑥 ∈ ℂ ↦ (𝑘 · (𝑥↑(𝑘 − 1))))) → (ℂ D ((𝑥 ∈ ℂ ↦ (𝑥𝑘)) ∘f · ( I ↾ ℂ))) = (ℂ D (𝑥 ∈ ℂ ↦ (𝑥↑(𝑘 + 1)))))
129101, 121, 1283eqtr2rd 2786 . . 3 ((𝑘 ∈ ℕ ∧ (ℂ D (𝑥 ∈ ℂ ↦ (𝑥𝑘))) = (𝑥 ∈ ℂ ↦ (𝑘 · (𝑥↑(𝑘 − 1))))) → (ℂ D (𝑥 ∈ ℂ ↦ (𝑥↑(𝑘 + 1)))) = (𝑥 ∈ ℂ ↦ ((𝑘 + 1) · (𝑥↑((𝑘 + 1) − 1)))))
130129ex 412 . 2 (𝑘 ∈ ℕ → ((ℂ D (𝑥 ∈ ℂ ↦ (𝑥𝑘))) = (𝑥 ∈ ℂ ↦ (𝑘 · (𝑥↑(𝑘 − 1)))) → (ℂ D (𝑥 ∈ ℂ ↦ (𝑥↑(𝑘 + 1)))) = (𝑥 ∈ ℂ ↦ ((𝑘 + 1) · (𝑥↑((𝑘 + 1) − 1))))))
1319, 18, 27, 36, 54, 130nnind 11974 1 (𝑁 ∈ ℕ → (ℂ D (𝑥 ∈ ℂ ↦ (𝑥𝑁))) = (𝑥 ∈ ℂ ↦ (𝑁 · (𝑥↑(𝑁 − 1)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2109  Vcvv 3430  {csn 4566  {cpr 4568  cmpt 5161   I cid 5487   × cxp 5586  dom cdm 5588  cres 5590  wf 6426  1-1-ontowf1o 6429  (class class class)co 7268  f cof 7522  cc 10853  cr 10854  0cc0 10855  1c1 10856   + caddc 10858   · cmul 10860  cmin 11188  cn 11956  0cn0 12216  cexp 13763   D cdv 25008
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-rep 5213  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7579  ax-cnex 10911  ax-resscn 10912  ax-1cn 10913  ax-icn 10914  ax-addcl 10915  ax-addrcl 10916  ax-mulcl 10917  ax-mulrcl 10918  ax-mulcom 10919  ax-addass 10920  ax-mulass 10921  ax-distr 10922  ax-i2m1 10923  ax-1ne0 10924  ax-1rid 10925  ax-rnegex 10926  ax-rrecex 10927  ax-cnre 10928  ax-pre-lttri 10929  ax-pre-lttrn 10930  ax-pre-ltadd 10931  ax-pre-mulgt0 10932  ax-pre-sup 10933  ax-addf 10934  ax-mulf 10935
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3070  df-rex 3071  df-reu 3072  df-rmo 3073  df-rab 3074  df-v 3432  df-sbc 3720  df-csb 3837  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-pss 3910  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4845  df-int 4885  df-iun 4931  df-iin 4932  df-br 5079  df-opab 5141  df-mpt 5162  df-tr 5196  df-id 5488  df-eprel 5494  df-po 5502  df-so 5503  df-fr 5543  df-se 5544  df-we 5545  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-pred 6199  df-ord 6266  df-on 6267  df-lim 6268  df-suc 6269  df-iota 6388  df-fun 6432  df-fn 6433  df-f 6434  df-f1 6435  df-fo 6436  df-f1o 6437  df-fv 6438  df-isom 6439  df-riota 7225  df-ov 7271  df-oprab 7272  df-mpo 7273  df-of 7524  df-om 7701  df-1st 7817  df-2nd 7818  df-supp 7962  df-frecs 8081  df-wrecs 8112  df-recs 8186  df-rdg 8225  df-1o 8281  df-2o 8282  df-er 8472  df-map 8591  df-pm 8592  df-ixp 8660  df-en 8708  df-dom 8709  df-sdom 8710  df-fin 8711  df-fsupp 9090  df-fi 9131  df-sup 9162  df-inf 9163  df-oi 9230  df-card 9681  df-pnf 10995  df-mnf 10996  df-xr 10997  df-ltxr 10998  df-le 10999  df-sub 11190  df-neg 11191  df-div 11616  df-nn 11957  df-2 12019  df-3 12020  df-4 12021  df-5 12022  df-6 12023  df-7 12024  df-8 12025  df-9 12026  df-n0 12217  df-z 12303  df-dec 12420  df-uz 12565  df-q 12671  df-rp 12713  df-xneg 12830  df-xadd 12831  df-xmul 12832  df-icc 13068  df-fz 13222  df-fzo 13365  df-seq 13703  df-exp 13764  df-hash 14026  df-cj 14791  df-re 14792  df-im 14793  df-sqrt 14927  df-abs 14928  df-struct 16829  df-sets 16846  df-slot 16864  df-ndx 16876  df-base 16894  df-ress 16923  df-plusg 16956  df-mulr 16957  df-starv 16958  df-sca 16959  df-vsca 16960  df-ip 16961  df-tset 16962  df-ple 16963  df-ds 16965  df-unif 16966  df-hom 16967  df-cco 16968  df-rest 17114  df-topn 17115  df-0g 17133  df-gsum 17134  df-topgen 17135  df-pt 17136  df-prds 17139  df-xrs 17194  df-qtop 17199  df-imas 17200  df-xps 17202  df-mre 17276  df-mrc 17277  df-acs 17279  df-mgm 18307  df-sgrp 18356  df-mnd 18367  df-submnd 18412  df-mulg 18682  df-cntz 18904  df-cmn 19369  df-psmet 20570  df-xmet 20571  df-met 20572  df-bl 20573  df-mopn 20574  df-fbas 20575  df-fg 20576  df-cnfld 20579  df-top 22024  df-topon 22041  df-topsp 22063  df-bases 22077  df-cld 22151  df-ntr 22152  df-cls 22153  df-nei 22230  df-lp 22268  df-perf 22269  df-cn 22359  df-cnp 22360  df-haus 22447  df-tx 22694  df-hmeo 22887  df-fil 22978  df-fm 23070  df-flim 23071  df-flf 23072  df-xms 23454  df-ms 23455  df-tms 23456  df-cncf 24022  df-limc 25011  df-dv 25012
This theorem is referenced by:  dvexp2  25099  dvexp3  25123  itgpowd  25195  taylthlem2  25514  advlogexp  25791  logdivsum  26662  log2sumbnd  26673  dvasin  35840  areacirclem1  35844  lcmineqlem8  40024  lcmineqlem10  40026  lcmineqlem12  40028  dvrelogpow2b  40056  aks4d1p1p6  40061  lhe4.4ex1a  41900  dvsinexp  43406  dvxpaek  43435
  Copyright terms: Public domain W3C validator