MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvcxp2 Structured version   Visualization version   GIF version

Theorem dvcxp2 26579
Description: The derivative of a complex power with respect to the second argument. (Contributed by Mario Carneiro, 24-Feb-2015.)
Assertion
Ref Expression
dvcxp2 (𝐴 ∈ ℝ+ → (ℂ D (𝑥 ∈ ℂ ↦ (𝐴𝑐𝑥))) = (𝑥 ∈ ℂ ↦ ((log‘𝐴) · (𝐴𝑐𝑥))))
Distinct variable group:   𝑥,𝐴

Proof of Theorem dvcxp2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 cnelprrecn 11198 . . . 4 ℂ ∈ {ℝ, ℂ}
21a1i 11 . . 3 (𝐴 ∈ ℝ+ → ℂ ∈ {ℝ, ℂ})
3 simpr 484 . . . 4 ((𝐴 ∈ ℝ+𝑥 ∈ ℂ) → 𝑥 ∈ ℂ)
4 relogcl 26414 . . . . . 6 (𝐴 ∈ ℝ+ → (log‘𝐴) ∈ ℝ)
54adantr 480 . . . . 5 ((𝐴 ∈ ℝ+𝑥 ∈ ℂ) → (log‘𝐴) ∈ ℝ)
65recnd 11238 . . . 4 ((𝐴 ∈ ℝ+𝑥 ∈ ℂ) → (log‘𝐴) ∈ ℂ)
73, 6mulcld 11230 . . 3 ((𝐴 ∈ ℝ+𝑥 ∈ ℂ) → (𝑥 · (log‘𝐴)) ∈ ℂ)
8 efcl 16022 . . . 4 (𝑦 ∈ ℂ → (exp‘𝑦) ∈ ℂ)
98adantl 481 . . 3 ((𝐴 ∈ ℝ+𝑦 ∈ ℂ) → (exp‘𝑦) ∈ ℂ)
103, 6mulcomd 11231 . . . . . 6 ((𝐴 ∈ ℝ+𝑥 ∈ ℂ) → (𝑥 · (log‘𝐴)) = ((log‘𝐴) · 𝑥))
1110mpteq2dva 5238 . . . . 5 (𝐴 ∈ ℝ+ → (𝑥 ∈ ℂ ↦ (𝑥 · (log‘𝐴))) = (𝑥 ∈ ℂ ↦ ((log‘𝐴) · 𝑥)))
1211oveq2d 7417 . . . 4 (𝐴 ∈ ℝ+ → (ℂ D (𝑥 ∈ ℂ ↦ (𝑥 · (log‘𝐴)))) = (ℂ D (𝑥 ∈ ℂ ↦ ((log‘𝐴) · 𝑥))))
13 1cnd 11205 . . . . 5 ((𝐴 ∈ ℝ+𝑥 ∈ ℂ) → 1 ∈ ℂ)
142dvmptid 25799 . . . . 5 (𝐴 ∈ ℝ+ → (ℂ D (𝑥 ∈ ℂ ↦ 𝑥)) = (𝑥 ∈ ℂ ↦ 1))
154recnd 11238 . . . . 5 (𝐴 ∈ ℝ+ → (log‘𝐴) ∈ ℂ)
162, 3, 13, 14, 15dvmptcmul 25806 . . . 4 (𝐴 ∈ ℝ+ → (ℂ D (𝑥 ∈ ℂ ↦ ((log‘𝐴) · 𝑥))) = (𝑥 ∈ ℂ ↦ ((log‘𝐴) · 1)))
176mulridd 11227 . . . . 5 ((𝐴 ∈ ℝ+𝑥 ∈ ℂ) → ((log‘𝐴) · 1) = (log‘𝐴))
1817mpteq2dva 5238 . . . 4 (𝐴 ∈ ℝ+ → (𝑥 ∈ ℂ ↦ ((log‘𝐴) · 1)) = (𝑥 ∈ ℂ ↦ (log‘𝐴)))
1912, 16, 183eqtrd 2768 . . 3 (𝐴 ∈ ℝ+ → (ℂ D (𝑥 ∈ ℂ ↦ (𝑥 · (log‘𝐴)))) = (𝑥 ∈ ℂ ↦ (log‘𝐴)))
20 dvef 25822 . . . 4 (ℂ D exp) = exp
21 eff 16021 . . . . . . . 8 exp:ℂ⟶ℂ
2221a1i 11 . . . . . . 7 (𝐴 ∈ ℝ+ → exp:ℂ⟶ℂ)
2322feqmptd 6950 . . . . . 6 (𝐴 ∈ ℝ+ → exp = (𝑦 ∈ ℂ ↦ (exp‘𝑦)))
2423eqcomd 2730 . . . . 5 (𝐴 ∈ ℝ+ → (𝑦 ∈ ℂ ↦ (exp‘𝑦)) = exp)
2524oveq2d 7417 . . . 4 (𝐴 ∈ ℝ+ → (ℂ D (𝑦 ∈ ℂ ↦ (exp‘𝑦))) = (ℂ D exp))
2620, 25, 243eqtr4a 2790 . . 3 (𝐴 ∈ ℝ+ → (ℂ D (𝑦 ∈ ℂ ↦ (exp‘𝑦))) = (𝑦 ∈ ℂ ↦ (exp‘𝑦)))
27 fveq2 6881 . . 3 (𝑦 = (𝑥 · (log‘𝐴)) → (exp‘𝑦) = (exp‘(𝑥 · (log‘𝐴))))
282, 2, 7, 5, 9, 9, 19, 26, 27, 27dvmptco 25814 . 2 (𝐴 ∈ ℝ+ → (ℂ D (𝑥 ∈ ℂ ↦ (exp‘(𝑥 · (log‘𝐴))))) = (𝑥 ∈ ℂ ↦ ((exp‘(𝑥 · (log‘𝐴))) · (log‘𝐴))))
29 rpcn 12980 . . . . . 6 (𝐴 ∈ ℝ+𝐴 ∈ ℂ)
3029adantr 480 . . . . 5 ((𝐴 ∈ ℝ+𝑥 ∈ ℂ) → 𝐴 ∈ ℂ)
31 rpne0 12986 . . . . . 6 (𝐴 ∈ ℝ+𝐴 ≠ 0)
3231adantr 480 . . . . 5 ((𝐴 ∈ ℝ+𝑥 ∈ ℂ) → 𝐴 ≠ 0)
3330, 32, 3cxpefd 26550 . . . 4 ((𝐴 ∈ ℝ+𝑥 ∈ ℂ) → (𝐴𝑐𝑥) = (exp‘(𝑥 · (log‘𝐴))))
3433mpteq2dva 5238 . . 3 (𝐴 ∈ ℝ+ → (𝑥 ∈ ℂ ↦ (𝐴𝑐𝑥)) = (𝑥 ∈ ℂ ↦ (exp‘(𝑥 · (log‘𝐴)))))
3534oveq2d 7417 . 2 (𝐴 ∈ ℝ+ → (ℂ D (𝑥 ∈ ℂ ↦ (𝐴𝑐𝑥))) = (ℂ D (𝑥 ∈ ℂ ↦ (exp‘(𝑥 · (log‘𝐴))))))
3630, 3cxpcld 26546 . . . . 5 ((𝐴 ∈ ℝ+𝑥 ∈ ℂ) → (𝐴𝑐𝑥) ∈ ℂ)
376, 36mulcomd 11231 . . . 4 ((𝐴 ∈ ℝ+𝑥 ∈ ℂ) → ((log‘𝐴) · (𝐴𝑐𝑥)) = ((𝐴𝑐𝑥) · (log‘𝐴)))
3833oveq1d 7416 . . . 4 ((𝐴 ∈ ℝ+𝑥 ∈ ℂ) → ((𝐴𝑐𝑥) · (log‘𝐴)) = ((exp‘(𝑥 · (log‘𝐴))) · (log‘𝐴)))
3937, 38eqtrd 2764 . . 3 ((𝐴 ∈ ℝ+𝑥 ∈ ℂ) → ((log‘𝐴) · (𝐴𝑐𝑥)) = ((exp‘(𝑥 · (log‘𝐴))) · (log‘𝐴)))
4039mpteq2dva 5238 . 2 (𝐴 ∈ ℝ+ → (𝑥 ∈ ℂ ↦ ((log‘𝐴) · (𝐴𝑐𝑥))) = (𝑥 ∈ ℂ ↦ ((exp‘(𝑥 · (log‘𝐴))) · (log‘𝐴))))
4128, 35, 403eqtr4d 2774 1 (𝐴 ∈ ℝ+ → (ℂ D (𝑥 ∈ ℂ ↦ (𝐴𝑐𝑥))) = (𝑥 ∈ ℂ ↦ ((log‘𝐴) · (𝐴𝑐𝑥))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1533  wcel 2098  wne 2932  {cpr 4622  cmpt 5221  wf 6529  cfv 6533  (class class class)co 7401  cc 11103  cr 11104  0cc0 11105  1c1 11106   · cmul 11110  +crp 12970  expce 16001   D cdv 25702  logclog 26393  𝑐ccxp 26394
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5275  ax-sep 5289  ax-nul 5296  ax-pow 5353  ax-pr 5417  ax-un 7718  ax-inf2 9631  ax-cnex 11161  ax-resscn 11162  ax-1cn 11163  ax-icn 11164  ax-addcl 11165  ax-addrcl 11166  ax-mulcl 11167  ax-mulrcl 11168  ax-mulcom 11169  ax-addass 11170  ax-mulass 11171  ax-distr 11172  ax-i2m1 11173  ax-1ne0 11174  ax-1rid 11175  ax-rnegex 11176  ax-rrecex 11177  ax-cnre 11178  ax-pre-lttri 11179  ax-pre-lttrn 11180  ax-pre-ltadd 11181  ax-pre-mulgt0 11182  ax-pre-sup 11183  ax-addf 11184
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-nel 3039  df-ral 3054  df-rex 3063  df-rmo 3368  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-pss 3959  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-tp 4625  df-op 4627  df-uni 4900  df-int 4941  df-iun 4989  df-iin 4990  df-br 5139  df-opab 5201  df-mpt 5222  df-tr 5256  df-id 5564  df-eprel 5570  df-po 5578  df-so 5579  df-fr 5621  df-se 5622  df-we 5623  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-pred 6290  df-ord 6357  df-on 6358  df-lim 6359  df-suc 6360  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-isom 6542  df-riota 7357  df-ov 7404  df-oprab 7405  df-mpo 7406  df-of 7663  df-om 7849  df-1st 7968  df-2nd 7969  df-supp 8141  df-frecs 8261  df-wrecs 8292  df-recs 8366  df-rdg 8405  df-1o 8461  df-2o 8462  df-er 8698  df-map 8817  df-pm 8818  df-ixp 8887  df-en 8935  df-dom 8936  df-sdom 8937  df-fin 8938  df-fsupp 9357  df-fi 9401  df-sup 9432  df-inf 9433  df-oi 9500  df-card 9929  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-div 11868  df-nn 12209  df-2 12271  df-3 12272  df-4 12273  df-5 12274  df-6 12275  df-7 12276  df-8 12277  df-9 12278  df-n0 12469  df-z 12555  df-dec 12674  df-uz 12819  df-q 12929  df-rp 12971  df-xneg 13088  df-xadd 13089  df-xmul 13090  df-ioo 13324  df-ioc 13325  df-ico 13326  df-icc 13327  df-fz 13481  df-fzo 13624  df-fl 13753  df-mod 13831  df-seq 13963  df-exp 14024  df-fac 14230  df-bc 14259  df-hash 14287  df-shft 15010  df-cj 15042  df-re 15043  df-im 15044  df-sqrt 15178  df-abs 15179  df-limsup 15411  df-clim 15428  df-rlim 15429  df-sum 15629  df-ef 16007  df-sin 16009  df-cos 16010  df-pi 16012  df-struct 17076  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17141  df-ress 17170  df-plusg 17206  df-mulr 17207  df-starv 17208  df-sca 17209  df-vsca 17210  df-ip 17211  df-tset 17212  df-ple 17213  df-ds 17215  df-unif 17216  df-hom 17217  df-cco 17218  df-rest 17364  df-topn 17365  df-0g 17383  df-gsum 17384  df-topgen 17385  df-pt 17386  df-prds 17389  df-xrs 17444  df-qtop 17449  df-imas 17450  df-xps 17452  df-mre 17526  df-mrc 17527  df-acs 17529  df-mgm 18560  df-sgrp 18639  df-mnd 18655  df-submnd 18701  df-mulg 18983  df-cntz 19218  df-cmn 19687  df-psmet 21215  df-xmet 21216  df-met 21217  df-bl 21218  df-mopn 21219  df-fbas 21220  df-fg 21221  df-cnfld 21224  df-top 22706  df-topon 22723  df-topsp 22745  df-bases 22759  df-cld 22833  df-ntr 22834  df-cls 22835  df-nei 22912  df-lp 22950  df-perf 22951  df-cn 23041  df-cnp 23042  df-haus 23129  df-tx 23376  df-hmeo 23569  df-fil 23660  df-fm 23752  df-flim 23753  df-flf 23754  df-xms 24136  df-ms 24137  df-tms 24138  df-cncf 24708  df-limc 25705  df-dv 25706  df-log 26395  df-cxp 26396
This theorem is referenced by:  etransclem46  45447
  Copyright terms: Public domain W3C validator