| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dvxpaek | Structured version Visualization version GIF version | ||
| Description: Derivative of the polynomial (𝑥 + 𝐴)↑𝐾. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
| Ref | Expression |
|---|---|
| dvxpaek.s | ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) |
| dvxpaek.x | ⊢ (𝜑 → 𝑋 ∈ ((TopOpen‘ℂfld) ↾t 𝑆)) |
| dvxpaek.a | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| dvxpaek.k | ⊢ (𝜑 → 𝐾 ∈ ℕ) |
| Ref | Expression |
|---|---|
| dvxpaek | ⊢ (𝜑 → (𝑆 D (𝑥 ∈ 𝑋 ↦ ((𝑥 + 𝐴)↑𝐾))) = (𝑥 ∈ 𝑋 ↦ (𝐾 · ((𝑥 + 𝐴)↑(𝐾 − 1))))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvxpaek.s | . . 3 ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) | |
| 2 | cnelprrecn 11099 | . . . 4 ⊢ ℂ ∈ {ℝ, ℂ} | |
| 3 | 2 | a1i 11 | . . 3 ⊢ (𝜑 → ℂ ∈ {ℝ, ℂ}) |
| 4 | dvxpaek.x | . . . . . . 7 ⊢ (𝜑 → 𝑋 ∈ ((TopOpen‘ℂfld) ↾t 𝑆)) | |
| 5 | 1, 4 | dvdmsscn 45982 | . . . . . 6 ⊢ (𝜑 → 𝑋 ⊆ ℂ) |
| 6 | 5 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝑋 ⊆ ℂ) |
| 7 | simpr 484 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝑥 ∈ 𝑋) | |
| 8 | 6, 7 | sseldd 3930 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝑥 ∈ ℂ) |
| 9 | dvxpaek.a | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
| 10 | 9 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ ℂ) |
| 11 | 8, 10 | addcld 11131 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝑥 + 𝐴) ∈ ℂ) |
| 12 | 1red 11113 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 1 ∈ ℝ) | |
| 13 | 0red 11115 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 0 ∈ ℝ) | |
| 14 | 12, 13 | readdcld 11141 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (1 + 0) ∈ ℝ) |
| 15 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝑦 ∈ ℂ) → 𝑦 ∈ ℂ) | |
| 16 | dvxpaek.k | . . . . . 6 ⊢ (𝜑 → 𝐾 ∈ ℕ) | |
| 17 | 16 | nnnn0d 12442 | . . . . 5 ⊢ (𝜑 → 𝐾 ∈ ℕ0) |
| 18 | 17 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑦 ∈ ℂ) → 𝐾 ∈ ℕ0) |
| 19 | 15, 18 | expcld 14053 | . . 3 ⊢ ((𝜑 ∧ 𝑦 ∈ ℂ) → (𝑦↑𝐾) ∈ ℂ) |
| 20 | 18 | nn0cnd 12444 | . . . 4 ⊢ ((𝜑 ∧ 𝑦 ∈ ℂ) → 𝐾 ∈ ℂ) |
| 21 | nnm1nn0 12422 | . . . . . . 7 ⊢ (𝐾 ∈ ℕ → (𝐾 − 1) ∈ ℕ0) | |
| 22 | 16, 21 | syl 17 | . . . . . 6 ⊢ (𝜑 → (𝐾 − 1) ∈ ℕ0) |
| 23 | 22 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 ∈ ℂ) → (𝐾 − 1) ∈ ℕ0) |
| 24 | 15, 23 | expcld 14053 | . . . 4 ⊢ ((𝜑 ∧ 𝑦 ∈ ℂ) → (𝑦↑(𝐾 − 1)) ∈ ℂ) |
| 25 | 20, 24 | mulcld 11132 | . . 3 ⊢ ((𝜑 ∧ 𝑦 ∈ ℂ) → (𝐾 · (𝑦↑(𝐾 − 1))) ∈ ℂ) |
| 26 | 1, 4 | dvmptidg 45963 | . . . 4 ⊢ (𝜑 → (𝑆 D (𝑥 ∈ 𝑋 ↦ 𝑥)) = (𝑥 ∈ 𝑋 ↦ 1)) |
| 27 | 1, 4, 9 | dvmptconst 45961 | . . . 4 ⊢ (𝜑 → (𝑆 D (𝑥 ∈ 𝑋 ↦ 𝐴)) = (𝑥 ∈ 𝑋 ↦ 0)) |
| 28 | 1, 8, 12, 26, 10, 13, 27 | dvmptadd 25891 | . . 3 ⊢ (𝜑 → (𝑆 D (𝑥 ∈ 𝑋 ↦ (𝑥 + 𝐴))) = (𝑥 ∈ 𝑋 ↦ (1 + 0))) |
| 29 | dvexp 25884 | . . . 4 ⊢ (𝐾 ∈ ℕ → (ℂ D (𝑦 ∈ ℂ ↦ (𝑦↑𝐾))) = (𝑦 ∈ ℂ ↦ (𝐾 · (𝑦↑(𝐾 − 1))))) | |
| 30 | 16, 29 | syl 17 | . . 3 ⊢ (𝜑 → (ℂ D (𝑦 ∈ ℂ ↦ (𝑦↑𝐾))) = (𝑦 ∈ ℂ ↦ (𝐾 · (𝑦↑(𝐾 − 1))))) |
| 31 | oveq1 7353 | . . 3 ⊢ (𝑦 = (𝑥 + 𝐴) → (𝑦↑𝐾) = ((𝑥 + 𝐴)↑𝐾)) | |
| 32 | oveq1 7353 | . . . 4 ⊢ (𝑦 = (𝑥 + 𝐴) → (𝑦↑(𝐾 − 1)) = ((𝑥 + 𝐴)↑(𝐾 − 1))) | |
| 33 | 32 | oveq2d 7362 | . . 3 ⊢ (𝑦 = (𝑥 + 𝐴) → (𝐾 · (𝑦↑(𝐾 − 1))) = (𝐾 · ((𝑥 + 𝐴)↑(𝐾 − 1)))) |
| 34 | 1, 3, 11, 14, 19, 25, 28, 30, 31, 33 | dvmptco 25903 | . 2 ⊢ (𝜑 → (𝑆 D (𝑥 ∈ 𝑋 ↦ ((𝑥 + 𝐴)↑𝐾))) = (𝑥 ∈ 𝑋 ↦ ((𝐾 · ((𝑥 + 𝐴)↑(𝐾 − 1))) · (1 + 0)))) |
| 35 | 1p0e1 12244 | . . . . . 6 ⊢ (1 + 0) = 1 | |
| 36 | 35 | oveq2i 7357 | . . . . 5 ⊢ ((𝐾 · ((𝑥 + 𝐴)↑(𝐾 − 1))) · (1 + 0)) = ((𝐾 · ((𝑥 + 𝐴)↑(𝐾 − 1))) · 1) |
| 37 | 36 | a1i 11 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ((𝐾 · ((𝑥 + 𝐴)↑(𝐾 − 1))) · (1 + 0)) = ((𝐾 · ((𝑥 + 𝐴)↑(𝐾 − 1))) · 1)) |
| 38 | 16 | nncnd 12141 | . . . . . . 7 ⊢ (𝜑 → 𝐾 ∈ ℂ) |
| 39 | 38 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐾 ∈ ℂ) |
| 40 | 22 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝐾 − 1) ∈ ℕ0) |
| 41 | 11, 40 | expcld 14053 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ((𝑥 + 𝐴)↑(𝐾 − 1)) ∈ ℂ) |
| 42 | 39, 41 | mulcld 11132 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝐾 · ((𝑥 + 𝐴)↑(𝐾 − 1))) ∈ ℂ) |
| 43 | 42 | mulridd 11129 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ((𝐾 · ((𝑥 + 𝐴)↑(𝐾 − 1))) · 1) = (𝐾 · ((𝑥 + 𝐴)↑(𝐾 − 1)))) |
| 44 | 37, 43 | eqtrd 2766 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ((𝐾 · ((𝑥 + 𝐴)↑(𝐾 − 1))) · (1 + 0)) = (𝐾 · ((𝑥 + 𝐴)↑(𝐾 − 1)))) |
| 45 | 44 | mpteq2dva 5182 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ ((𝐾 · ((𝑥 + 𝐴)↑(𝐾 − 1))) · (1 + 0))) = (𝑥 ∈ 𝑋 ↦ (𝐾 · ((𝑥 + 𝐴)↑(𝐾 − 1))))) |
| 46 | 34, 45 | eqtrd 2766 | 1 ⊢ (𝜑 → (𝑆 D (𝑥 ∈ 𝑋 ↦ ((𝑥 + 𝐴)↑𝐾))) = (𝑥 ∈ 𝑋 ↦ (𝐾 · ((𝑥 + 𝐴)↑(𝐾 − 1))))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ⊆ wss 3897 {cpr 4575 ↦ cmpt 5170 ‘cfv 6481 (class class class)co 7346 ℂcc 11004 ℝcr 11005 0cc0 11006 1c1 11007 + caddc 11009 · cmul 11011 − cmin 11344 ℕcn 12125 ℕ0cn0 12381 ↑cexp 13968 ↾t crest 17324 TopOpenctopn 17325 ℂfldccnfld 21291 D cdv 25791 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 ax-pre-sup 11084 ax-addf 11085 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-tp 4578 df-op 4580 df-uni 4857 df-int 4896 df-iun 4941 df-iin 4942 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-se 5568 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-isom 6490 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-of 7610 df-om 7797 df-1st 7921 df-2nd 7922 df-supp 8091 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-2o 8386 df-er 8622 df-map 8752 df-pm 8753 df-ixp 8822 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-fsupp 9246 df-fi 9295 df-sup 9326 df-inf 9327 df-oi 9396 df-card 9832 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-div 11775 df-nn 12126 df-2 12188 df-3 12189 df-4 12190 df-5 12191 df-6 12192 df-7 12193 df-8 12194 df-9 12195 df-n0 12382 df-z 12469 df-dec 12589 df-uz 12733 df-q 12847 df-rp 12891 df-xneg 13011 df-xadd 13012 df-xmul 13013 df-icc 13252 df-fz 13408 df-fzo 13555 df-seq 13909 df-exp 13969 df-hash 14238 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-struct 17058 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-mulr 17175 df-starv 17176 df-sca 17177 df-vsca 17178 df-ip 17179 df-tset 17180 df-ple 17181 df-ds 17183 df-unif 17184 df-hom 17185 df-cco 17186 df-rest 17326 df-topn 17327 df-0g 17345 df-gsum 17346 df-topgen 17347 df-pt 17348 df-prds 17351 df-xrs 17406 df-qtop 17411 df-imas 17412 df-xps 17414 df-mre 17488 df-mrc 17489 df-acs 17491 df-mgm 18548 df-sgrp 18627 df-mnd 18643 df-submnd 18692 df-mulg 18981 df-cntz 19229 df-cmn 19694 df-psmet 21283 df-xmet 21284 df-met 21285 df-bl 21286 df-mopn 21287 df-fbas 21288 df-fg 21289 df-cnfld 21292 df-top 22809 df-topon 22826 df-topsp 22848 df-bases 22861 df-cld 22934 df-ntr 22935 df-cls 22936 df-nei 23013 df-lp 23051 df-perf 23052 df-cn 23142 df-cnp 23143 df-haus 23230 df-tx 23477 df-hmeo 23670 df-fil 23761 df-fm 23853 df-flim 23854 df-flf 23855 df-xms 24235 df-ms 24236 df-tms 24237 df-cncf 24798 df-limc 25794 df-dv 25795 |
| This theorem is referenced by: dvnxpaek 45988 |
| Copyright terms: Public domain | W3C validator |