| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dvxpaek | Structured version Visualization version GIF version | ||
| Description: Derivative of the polynomial (𝑥 + 𝐴)↑𝐾. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
| Ref | Expression |
|---|---|
| dvxpaek.s | ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) |
| dvxpaek.x | ⊢ (𝜑 → 𝑋 ∈ ((TopOpen‘ℂfld) ↾t 𝑆)) |
| dvxpaek.a | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| dvxpaek.k | ⊢ (𝜑 → 𝐾 ∈ ℕ) |
| Ref | Expression |
|---|---|
| dvxpaek | ⊢ (𝜑 → (𝑆 D (𝑥 ∈ 𝑋 ↦ ((𝑥 + 𝐴)↑𝐾))) = (𝑥 ∈ 𝑋 ↦ (𝐾 · ((𝑥 + 𝐴)↑(𝐾 − 1))))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvxpaek.s | . . 3 ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) | |
| 2 | cnelprrecn 11102 | . . . 4 ⊢ ℂ ∈ {ℝ, ℂ} | |
| 3 | 2 | a1i 11 | . . 3 ⊢ (𝜑 → ℂ ∈ {ℝ, ℂ}) |
| 4 | dvxpaek.x | . . . . . . 7 ⊢ (𝜑 → 𝑋 ∈ ((TopOpen‘ℂfld) ↾t 𝑆)) | |
| 5 | 1, 4 | dvdmsscn 45917 | . . . . . 6 ⊢ (𝜑 → 𝑋 ⊆ ℂ) |
| 6 | 5 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝑋 ⊆ ℂ) |
| 7 | simpr 484 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝑥 ∈ 𝑋) | |
| 8 | 6, 7 | sseldd 3936 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝑥 ∈ ℂ) |
| 9 | dvxpaek.a | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
| 10 | 9 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ ℂ) |
| 11 | 8, 10 | addcld 11134 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝑥 + 𝐴) ∈ ℂ) |
| 12 | 1red 11116 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 1 ∈ ℝ) | |
| 13 | 0red 11118 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 0 ∈ ℝ) | |
| 14 | 12, 13 | readdcld 11144 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (1 + 0) ∈ ℝ) |
| 15 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝑦 ∈ ℂ) → 𝑦 ∈ ℂ) | |
| 16 | dvxpaek.k | . . . . . 6 ⊢ (𝜑 → 𝐾 ∈ ℕ) | |
| 17 | 16 | nnnn0d 12445 | . . . . 5 ⊢ (𝜑 → 𝐾 ∈ ℕ0) |
| 18 | 17 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑦 ∈ ℂ) → 𝐾 ∈ ℕ0) |
| 19 | 15, 18 | expcld 14053 | . . 3 ⊢ ((𝜑 ∧ 𝑦 ∈ ℂ) → (𝑦↑𝐾) ∈ ℂ) |
| 20 | 18 | nn0cnd 12447 | . . . 4 ⊢ ((𝜑 ∧ 𝑦 ∈ ℂ) → 𝐾 ∈ ℂ) |
| 21 | nnm1nn0 12425 | . . . . . . 7 ⊢ (𝐾 ∈ ℕ → (𝐾 − 1) ∈ ℕ0) | |
| 22 | 16, 21 | syl 17 | . . . . . 6 ⊢ (𝜑 → (𝐾 − 1) ∈ ℕ0) |
| 23 | 22 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 ∈ ℂ) → (𝐾 − 1) ∈ ℕ0) |
| 24 | 15, 23 | expcld 14053 | . . . 4 ⊢ ((𝜑 ∧ 𝑦 ∈ ℂ) → (𝑦↑(𝐾 − 1)) ∈ ℂ) |
| 25 | 20, 24 | mulcld 11135 | . . 3 ⊢ ((𝜑 ∧ 𝑦 ∈ ℂ) → (𝐾 · (𝑦↑(𝐾 − 1))) ∈ ℂ) |
| 26 | 1, 4 | dvmptidg 45898 | . . . 4 ⊢ (𝜑 → (𝑆 D (𝑥 ∈ 𝑋 ↦ 𝑥)) = (𝑥 ∈ 𝑋 ↦ 1)) |
| 27 | 1, 4, 9 | dvmptconst 45896 | . . . 4 ⊢ (𝜑 → (𝑆 D (𝑥 ∈ 𝑋 ↦ 𝐴)) = (𝑥 ∈ 𝑋 ↦ 0)) |
| 28 | 1, 8, 12, 26, 10, 13, 27 | dvmptadd 25862 | . . 3 ⊢ (𝜑 → (𝑆 D (𝑥 ∈ 𝑋 ↦ (𝑥 + 𝐴))) = (𝑥 ∈ 𝑋 ↦ (1 + 0))) |
| 29 | dvexp 25855 | . . . 4 ⊢ (𝐾 ∈ ℕ → (ℂ D (𝑦 ∈ ℂ ↦ (𝑦↑𝐾))) = (𝑦 ∈ ℂ ↦ (𝐾 · (𝑦↑(𝐾 − 1))))) | |
| 30 | 16, 29 | syl 17 | . . 3 ⊢ (𝜑 → (ℂ D (𝑦 ∈ ℂ ↦ (𝑦↑𝐾))) = (𝑦 ∈ ℂ ↦ (𝐾 · (𝑦↑(𝐾 − 1))))) |
| 31 | oveq1 7356 | . . 3 ⊢ (𝑦 = (𝑥 + 𝐴) → (𝑦↑𝐾) = ((𝑥 + 𝐴)↑𝐾)) | |
| 32 | oveq1 7356 | . . . 4 ⊢ (𝑦 = (𝑥 + 𝐴) → (𝑦↑(𝐾 − 1)) = ((𝑥 + 𝐴)↑(𝐾 − 1))) | |
| 33 | 32 | oveq2d 7365 | . . 3 ⊢ (𝑦 = (𝑥 + 𝐴) → (𝐾 · (𝑦↑(𝐾 − 1))) = (𝐾 · ((𝑥 + 𝐴)↑(𝐾 − 1)))) |
| 34 | 1, 3, 11, 14, 19, 25, 28, 30, 31, 33 | dvmptco 25874 | . 2 ⊢ (𝜑 → (𝑆 D (𝑥 ∈ 𝑋 ↦ ((𝑥 + 𝐴)↑𝐾))) = (𝑥 ∈ 𝑋 ↦ ((𝐾 · ((𝑥 + 𝐴)↑(𝐾 − 1))) · (1 + 0)))) |
| 35 | 1p0e1 12247 | . . . . . 6 ⊢ (1 + 0) = 1 | |
| 36 | 35 | oveq2i 7360 | . . . . 5 ⊢ ((𝐾 · ((𝑥 + 𝐴)↑(𝐾 − 1))) · (1 + 0)) = ((𝐾 · ((𝑥 + 𝐴)↑(𝐾 − 1))) · 1) |
| 37 | 36 | a1i 11 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ((𝐾 · ((𝑥 + 𝐴)↑(𝐾 − 1))) · (1 + 0)) = ((𝐾 · ((𝑥 + 𝐴)↑(𝐾 − 1))) · 1)) |
| 38 | 16 | nncnd 12144 | . . . . . . 7 ⊢ (𝜑 → 𝐾 ∈ ℂ) |
| 39 | 38 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐾 ∈ ℂ) |
| 40 | 22 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝐾 − 1) ∈ ℕ0) |
| 41 | 11, 40 | expcld 14053 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ((𝑥 + 𝐴)↑(𝐾 − 1)) ∈ ℂ) |
| 42 | 39, 41 | mulcld 11135 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝐾 · ((𝑥 + 𝐴)↑(𝐾 − 1))) ∈ ℂ) |
| 43 | 42 | mulridd 11132 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ((𝐾 · ((𝑥 + 𝐴)↑(𝐾 − 1))) · 1) = (𝐾 · ((𝑥 + 𝐴)↑(𝐾 − 1)))) |
| 44 | 37, 43 | eqtrd 2764 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ((𝐾 · ((𝑥 + 𝐴)↑(𝐾 − 1))) · (1 + 0)) = (𝐾 · ((𝑥 + 𝐴)↑(𝐾 − 1)))) |
| 45 | 44 | mpteq2dva 5185 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ ((𝐾 · ((𝑥 + 𝐴)↑(𝐾 − 1))) · (1 + 0))) = (𝑥 ∈ 𝑋 ↦ (𝐾 · ((𝑥 + 𝐴)↑(𝐾 − 1))))) |
| 46 | 34, 45 | eqtrd 2764 | 1 ⊢ (𝜑 → (𝑆 D (𝑥 ∈ 𝑋 ↦ ((𝑥 + 𝐴)↑𝐾))) = (𝑥 ∈ 𝑋 ↦ (𝐾 · ((𝑥 + 𝐴)↑(𝐾 − 1))))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ⊆ wss 3903 {cpr 4579 ↦ cmpt 5173 ‘cfv 6482 (class class class)co 7349 ℂcc 11007 ℝcr 11008 0cc0 11009 1c1 11010 + caddc 11012 · cmul 11014 − cmin 11347 ℕcn 12128 ℕ0cn0 12384 ↑cexp 13968 ↾t crest 17324 TopOpenctopn 17325 ℂfldccnfld 21261 D cdv 25762 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 ax-pre-sup 11087 ax-addf 11088 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4859 df-int 4897 df-iun 4943 df-iin 4944 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-isom 6491 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-of 7613 df-om 7800 df-1st 7924 df-2nd 7925 df-supp 8094 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-1o 8388 df-2o 8389 df-er 8625 df-map 8755 df-pm 8756 df-ixp 8825 df-en 8873 df-dom 8874 df-sdom 8875 df-fin 8876 df-fsupp 9252 df-fi 9301 df-sup 9332 df-inf 9333 df-oi 9402 df-card 9835 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-div 11778 df-nn 12129 df-2 12191 df-3 12192 df-4 12193 df-5 12194 df-6 12195 df-7 12196 df-8 12197 df-9 12198 df-n0 12385 df-z 12472 df-dec 12592 df-uz 12736 df-q 12850 df-rp 12894 df-xneg 13014 df-xadd 13015 df-xmul 13016 df-icc 13255 df-fz 13411 df-fzo 13558 df-seq 13909 df-exp 13969 df-hash 14238 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-struct 17058 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-mulr 17175 df-starv 17176 df-sca 17177 df-vsca 17178 df-ip 17179 df-tset 17180 df-ple 17181 df-ds 17183 df-unif 17184 df-hom 17185 df-cco 17186 df-rest 17326 df-topn 17327 df-0g 17345 df-gsum 17346 df-topgen 17347 df-pt 17348 df-prds 17351 df-xrs 17406 df-qtop 17411 df-imas 17412 df-xps 17414 df-mre 17488 df-mrc 17489 df-acs 17491 df-mgm 18514 df-sgrp 18593 df-mnd 18609 df-submnd 18658 df-mulg 18947 df-cntz 19196 df-cmn 19661 df-psmet 21253 df-xmet 21254 df-met 21255 df-bl 21256 df-mopn 21257 df-fbas 21258 df-fg 21259 df-cnfld 21262 df-top 22779 df-topon 22796 df-topsp 22818 df-bases 22831 df-cld 22904 df-ntr 22905 df-cls 22906 df-nei 22983 df-lp 23021 df-perf 23022 df-cn 23112 df-cnp 23113 df-haus 23200 df-tx 23447 df-hmeo 23640 df-fil 23731 df-fm 23823 df-flim 23824 df-flf 23825 df-xms 24206 df-ms 24207 df-tms 24208 df-cncf 24769 df-limc 25765 df-dv 25766 |
| This theorem is referenced by: dvnxpaek 45923 |
| Copyright terms: Public domain | W3C validator |