Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvxpaek Structured version   Visualization version   GIF version

Theorem dvxpaek 45895
Description: Derivative of the polynomial (𝑥 + 𝐴)↑𝐾. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
dvxpaek.s (𝜑𝑆 ∈ {ℝ, ℂ})
dvxpaek.x (𝜑𝑋 ∈ ((TopOpen‘ℂfld) ↾t 𝑆))
dvxpaek.a (𝜑𝐴 ∈ ℂ)
dvxpaek.k (𝜑𝐾 ∈ ℕ)
Assertion
Ref Expression
dvxpaek (𝜑 → (𝑆 D (𝑥𝑋 ↦ ((𝑥 + 𝐴)↑𝐾))) = (𝑥𝑋 ↦ (𝐾 · ((𝑥 + 𝐴)↑(𝐾 − 1)))))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐾   𝑥,𝑆   𝑥,𝑋   𝜑,𝑥

Proof of Theorem dvxpaek
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 dvxpaek.s . . 3 (𝜑𝑆 ∈ {ℝ, ℂ})
2 cnelprrecn 11245 . . . 4 ℂ ∈ {ℝ, ℂ}
32a1i 11 . . 3 (𝜑 → ℂ ∈ {ℝ, ℂ})
4 dvxpaek.x . . . . . . 7 (𝜑𝑋 ∈ ((TopOpen‘ℂfld) ↾t 𝑆))
51, 4dvdmsscn 45891 . . . . . 6 (𝜑𝑋 ⊆ ℂ)
65adantr 480 . . . . 5 ((𝜑𝑥𝑋) → 𝑋 ⊆ ℂ)
7 simpr 484 . . . . 5 ((𝜑𝑥𝑋) → 𝑥𝑋)
86, 7sseldd 3995 . . . 4 ((𝜑𝑥𝑋) → 𝑥 ∈ ℂ)
9 dvxpaek.a . . . . 5 (𝜑𝐴 ∈ ℂ)
109adantr 480 . . . 4 ((𝜑𝑥𝑋) → 𝐴 ∈ ℂ)
118, 10addcld 11277 . . 3 ((𝜑𝑥𝑋) → (𝑥 + 𝐴) ∈ ℂ)
12 1red 11259 . . . 4 ((𝜑𝑥𝑋) → 1 ∈ ℝ)
13 0red 11261 . . . 4 ((𝜑𝑥𝑋) → 0 ∈ ℝ)
1412, 13readdcld 11287 . . 3 ((𝜑𝑥𝑋) → (1 + 0) ∈ ℝ)
15 simpr 484 . . . 4 ((𝜑𝑦 ∈ ℂ) → 𝑦 ∈ ℂ)
16 dvxpaek.k . . . . . 6 (𝜑𝐾 ∈ ℕ)
1716nnnn0d 12584 . . . . 5 (𝜑𝐾 ∈ ℕ0)
1817adantr 480 . . . 4 ((𝜑𝑦 ∈ ℂ) → 𝐾 ∈ ℕ0)
1915, 18expcld 14182 . . 3 ((𝜑𝑦 ∈ ℂ) → (𝑦𝐾) ∈ ℂ)
2018nn0cnd 12586 . . . 4 ((𝜑𝑦 ∈ ℂ) → 𝐾 ∈ ℂ)
21 nnm1nn0 12564 . . . . . . 7 (𝐾 ∈ ℕ → (𝐾 − 1) ∈ ℕ0)
2216, 21syl 17 . . . . . 6 (𝜑 → (𝐾 − 1) ∈ ℕ0)
2322adantr 480 . . . . 5 ((𝜑𝑦 ∈ ℂ) → (𝐾 − 1) ∈ ℕ0)
2415, 23expcld 14182 . . . 4 ((𝜑𝑦 ∈ ℂ) → (𝑦↑(𝐾 − 1)) ∈ ℂ)
2520, 24mulcld 11278 . . 3 ((𝜑𝑦 ∈ ℂ) → (𝐾 · (𝑦↑(𝐾 − 1))) ∈ ℂ)
261, 4dvmptidg 45872 . . . 4 (𝜑 → (𝑆 D (𝑥𝑋𝑥)) = (𝑥𝑋 ↦ 1))
271, 4, 9dvmptconst 45870 . . . 4 (𝜑 → (𝑆 D (𝑥𝑋𝐴)) = (𝑥𝑋 ↦ 0))
281, 8, 12, 26, 10, 13, 27dvmptadd 26012 . . 3 (𝜑 → (𝑆 D (𝑥𝑋 ↦ (𝑥 + 𝐴))) = (𝑥𝑋 ↦ (1 + 0)))
29 dvexp 26005 . . . 4 (𝐾 ∈ ℕ → (ℂ D (𝑦 ∈ ℂ ↦ (𝑦𝐾))) = (𝑦 ∈ ℂ ↦ (𝐾 · (𝑦↑(𝐾 − 1)))))
3016, 29syl 17 . . 3 (𝜑 → (ℂ D (𝑦 ∈ ℂ ↦ (𝑦𝐾))) = (𝑦 ∈ ℂ ↦ (𝐾 · (𝑦↑(𝐾 − 1)))))
31 oveq1 7437 . . 3 (𝑦 = (𝑥 + 𝐴) → (𝑦𝐾) = ((𝑥 + 𝐴)↑𝐾))
32 oveq1 7437 . . . 4 (𝑦 = (𝑥 + 𝐴) → (𝑦↑(𝐾 − 1)) = ((𝑥 + 𝐴)↑(𝐾 − 1)))
3332oveq2d 7446 . . 3 (𝑦 = (𝑥 + 𝐴) → (𝐾 · (𝑦↑(𝐾 − 1))) = (𝐾 · ((𝑥 + 𝐴)↑(𝐾 − 1))))
341, 3, 11, 14, 19, 25, 28, 30, 31, 33dvmptco 26024 . 2 (𝜑 → (𝑆 D (𝑥𝑋 ↦ ((𝑥 + 𝐴)↑𝐾))) = (𝑥𝑋 ↦ ((𝐾 · ((𝑥 + 𝐴)↑(𝐾 − 1))) · (1 + 0))))
35 1p0e1 12387 . . . . . 6 (1 + 0) = 1
3635oveq2i 7441 . . . . 5 ((𝐾 · ((𝑥 + 𝐴)↑(𝐾 − 1))) · (1 + 0)) = ((𝐾 · ((𝑥 + 𝐴)↑(𝐾 − 1))) · 1)
3736a1i 11 . . . 4 ((𝜑𝑥𝑋) → ((𝐾 · ((𝑥 + 𝐴)↑(𝐾 − 1))) · (1 + 0)) = ((𝐾 · ((𝑥 + 𝐴)↑(𝐾 − 1))) · 1))
3816nncnd 12279 . . . . . . 7 (𝜑𝐾 ∈ ℂ)
3938adantr 480 . . . . . 6 ((𝜑𝑥𝑋) → 𝐾 ∈ ℂ)
4022adantr 480 . . . . . . 7 ((𝜑𝑥𝑋) → (𝐾 − 1) ∈ ℕ0)
4111, 40expcld 14182 . . . . . 6 ((𝜑𝑥𝑋) → ((𝑥 + 𝐴)↑(𝐾 − 1)) ∈ ℂ)
4239, 41mulcld 11278 . . . . 5 ((𝜑𝑥𝑋) → (𝐾 · ((𝑥 + 𝐴)↑(𝐾 − 1))) ∈ ℂ)
4342mulridd 11275 . . . 4 ((𝜑𝑥𝑋) → ((𝐾 · ((𝑥 + 𝐴)↑(𝐾 − 1))) · 1) = (𝐾 · ((𝑥 + 𝐴)↑(𝐾 − 1))))
4437, 43eqtrd 2774 . . 3 ((𝜑𝑥𝑋) → ((𝐾 · ((𝑥 + 𝐴)↑(𝐾 − 1))) · (1 + 0)) = (𝐾 · ((𝑥 + 𝐴)↑(𝐾 − 1))))
4544mpteq2dva 5247 . 2 (𝜑 → (𝑥𝑋 ↦ ((𝐾 · ((𝑥 + 𝐴)↑(𝐾 − 1))) · (1 + 0))) = (𝑥𝑋 ↦ (𝐾 · ((𝑥 + 𝐴)↑(𝐾 − 1)))))
4634, 45eqtrd 2774 1 (𝜑 → (𝑆 D (𝑥𝑋 ↦ ((𝑥 + 𝐴)↑𝐾))) = (𝑥𝑋 ↦ (𝐾 · ((𝑥 + 𝐴)↑(𝐾 − 1)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1536  wcel 2105  wss 3962  {cpr 4632  cmpt 5230  cfv 6562  (class class class)co 7430  cc 11150  cr 11151  0cc0 11152  1c1 11153   + caddc 11155   · cmul 11157  cmin 11489  cn 12263  0cn0 12523  cexp 14098  t crest 17466  TopOpenctopn 17467  fldccnfld 21381   D cdv 25912
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229  ax-pre-sup 11230  ax-addf 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-tp 4635  df-op 4637  df-uni 4912  df-int 4951  df-iun 4997  df-iin 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-se 5641  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-isom 6571  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-of 7696  df-om 7887  df-1st 8012  df-2nd 8013  df-supp 8184  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-1o 8504  df-2o 8505  df-er 8743  df-map 8866  df-pm 8867  df-ixp 8936  df-en 8984  df-dom 8985  df-sdom 8986  df-fin 8987  df-fsupp 9399  df-fi 9448  df-sup 9479  df-inf 9480  df-oi 9547  df-card 9976  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-div 11918  df-nn 12264  df-2 12326  df-3 12327  df-4 12328  df-5 12329  df-6 12330  df-7 12331  df-8 12332  df-9 12333  df-n0 12524  df-z 12611  df-dec 12731  df-uz 12876  df-q 12988  df-rp 13032  df-xneg 13151  df-xadd 13152  df-xmul 13153  df-icc 13390  df-fz 13544  df-fzo 13691  df-seq 14039  df-exp 14099  df-hash 14366  df-cj 15134  df-re 15135  df-im 15136  df-sqrt 15270  df-abs 15271  df-struct 17180  df-sets 17197  df-slot 17215  df-ndx 17227  df-base 17245  df-ress 17274  df-plusg 17310  df-mulr 17311  df-starv 17312  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ds 17319  df-unif 17320  df-hom 17321  df-cco 17322  df-rest 17468  df-topn 17469  df-0g 17487  df-gsum 17488  df-topgen 17489  df-pt 17490  df-prds 17493  df-xrs 17548  df-qtop 17553  df-imas 17554  df-xps 17556  df-mre 17630  df-mrc 17631  df-acs 17633  df-mgm 18665  df-sgrp 18744  df-mnd 18760  df-submnd 18809  df-mulg 19098  df-cntz 19347  df-cmn 19814  df-psmet 21373  df-xmet 21374  df-met 21375  df-bl 21376  df-mopn 21377  df-fbas 21378  df-fg 21379  df-cnfld 21382  df-top 22915  df-topon 22932  df-topsp 22954  df-bases 22968  df-cld 23042  df-ntr 23043  df-cls 23044  df-nei 23121  df-lp 23159  df-perf 23160  df-cn 23250  df-cnp 23251  df-haus 23338  df-tx 23585  df-hmeo 23778  df-fil 23869  df-fm 23961  df-flim 23962  df-flf 23963  df-xms 24345  df-ms 24346  df-tms 24347  df-cncf 24917  df-limc 25915  df-dv 25916
This theorem is referenced by:  dvnxpaek  45897
  Copyright terms: Public domain W3C validator