![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dvxpaek | Structured version Visualization version GIF version |
Description: Derivative of the polynomial (𝑥 + 𝐴)↑𝐾. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
Ref | Expression |
---|---|
dvxpaek.s | ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) |
dvxpaek.x | ⊢ (𝜑 → 𝑋 ∈ ((TopOpen‘ℂfld) ↾t 𝑆)) |
dvxpaek.a | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
dvxpaek.k | ⊢ (𝜑 → 𝐾 ∈ ℕ) |
Ref | Expression |
---|---|
dvxpaek | ⊢ (𝜑 → (𝑆 D (𝑥 ∈ 𝑋 ↦ ((𝑥 + 𝐴)↑𝐾))) = (𝑥 ∈ 𝑋 ↦ (𝐾 · ((𝑥 + 𝐴)↑(𝐾 − 1))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dvxpaek.s | . . 3 ⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) | |
2 | cnelprrecn 11277 | . . . 4 ⊢ ℂ ∈ {ℝ, ℂ} | |
3 | 2 | a1i 11 | . . 3 ⊢ (𝜑 → ℂ ∈ {ℝ, ℂ}) |
4 | dvxpaek.x | . . . . . . 7 ⊢ (𝜑 → 𝑋 ∈ ((TopOpen‘ℂfld) ↾t 𝑆)) | |
5 | 1, 4 | dvdmsscn 45857 | . . . . . 6 ⊢ (𝜑 → 𝑋 ⊆ ℂ) |
6 | 5 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝑋 ⊆ ℂ) |
7 | simpr 484 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝑥 ∈ 𝑋) | |
8 | 6, 7 | sseldd 4009 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝑥 ∈ ℂ) |
9 | dvxpaek.a | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
10 | 9 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ ℂ) |
11 | 8, 10 | addcld 11309 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝑥 + 𝐴) ∈ ℂ) |
12 | 1red 11291 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 1 ∈ ℝ) | |
13 | 0red 11293 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 0 ∈ ℝ) | |
14 | 12, 13 | readdcld 11319 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (1 + 0) ∈ ℝ) |
15 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝑦 ∈ ℂ) → 𝑦 ∈ ℂ) | |
16 | dvxpaek.k | . . . . . 6 ⊢ (𝜑 → 𝐾 ∈ ℕ) | |
17 | 16 | nnnn0d 12613 | . . . . 5 ⊢ (𝜑 → 𝐾 ∈ ℕ0) |
18 | 17 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑦 ∈ ℂ) → 𝐾 ∈ ℕ0) |
19 | 15, 18 | expcld 14196 | . . 3 ⊢ ((𝜑 ∧ 𝑦 ∈ ℂ) → (𝑦↑𝐾) ∈ ℂ) |
20 | 18 | nn0cnd 12615 | . . . 4 ⊢ ((𝜑 ∧ 𝑦 ∈ ℂ) → 𝐾 ∈ ℂ) |
21 | nnm1nn0 12594 | . . . . . . 7 ⊢ (𝐾 ∈ ℕ → (𝐾 − 1) ∈ ℕ0) | |
22 | 16, 21 | syl 17 | . . . . . 6 ⊢ (𝜑 → (𝐾 − 1) ∈ ℕ0) |
23 | 22 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑦 ∈ ℂ) → (𝐾 − 1) ∈ ℕ0) |
24 | 15, 23 | expcld 14196 | . . . 4 ⊢ ((𝜑 ∧ 𝑦 ∈ ℂ) → (𝑦↑(𝐾 − 1)) ∈ ℂ) |
25 | 20, 24 | mulcld 11310 | . . 3 ⊢ ((𝜑 ∧ 𝑦 ∈ ℂ) → (𝐾 · (𝑦↑(𝐾 − 1))) ∈ ℂ) |
26 | 1, 4 | dvmptidg 45838 | . . . 4 ⊢ (𝜑 → (𝑆 D (𝑥 ∈ 𝑋 ↦ 𝑥)) = (𝑥 ∈ 𝑋 ↦ 1)) |
27 | 1, 4, 9 | dvmptconst 45836 | . . . 4 ⊢ (𝜑 → (𝑆 D (𝑥 ∈ 𝑋 ↦ 𝐴)) = (𝑥 ∈ 𝑋 ↦ 0)) |
28 | 1, 8, 12, 26, 10, 13, 27 | dvmptadd 26018 | . . 3 ⊢ (𝜑 → (𝑆 D (𝑥 ∈ 𝑋 ↦ (𝑥 + 𝐴))) = (𝑥 ∈ 𝑋 ↦ (1 + 0))) |
29 | dvexp 26011 | . . . 4 ⊢ (𝐾 ∈ ℕ → (ℂ D (𝑦 ∈ ℂ ↦ (𝑦↑𝐾))) = (𝑦 ∈ ℂ ↦ (𝐾 · (𝑦↑(𝐾 − 1))))) | |
30 | 16, 29 | syl 17 | . . 3 ⊢ (𝜑 → (ℂ D (𝑦 ∈ ℂ ↦ (𝑦↑𝐾))) = (𝑦 ∈ ℂ ↦ (𝐾 · (𝑦↑(𝐾 − 1))))) |
31 | oveq1 7455 | . . 3 ⊢ (𝑦 = (𝑥 + 𝐴) → (𝑦↑𝐾) = ((𝑥 + 𝐴)↑𝐾)) | |
32 | oveq1 7455 | . . . 4 ⊢ (𝑦 = (𝑥 + 𝐴) → (𝑦↑(𝐾 − 1)) = ((𝑥 + 𝐴)↑(𝐾 − 1))) | |
33 | 32 | oveq2d 7464 | . . 3 ⊢ (𝑦 = (𝑥 + 𝐴) → (𝐾 · (𝑦↑(𝐾 − 1))) = (𝐾 · ((𝑥 + 𝐴)↑(𝐾 − 1)))) |
34 | 1, 3, 11, 14, 19, 25, 28, 30, 31, 33 | dvmptco 26030 | . 2 ⊢ (𝜑 → (𝑆 D (𝑥 ∈ 𝑋 ↦ ((𝑥 + 𝐴)↑𝐾))) = (𝑥 ∈ 𝑋 ↦ ((𝐾 · ((𝑥 + 𝐴)↑(𝐾 − 1))) · (1 + 0)))) |
35 | 1p0e1 12417 | . . . . . 6 ⊢ (1 + 0) = 1 | |
36 | 35 | oveq2i 7459 | . . . . 5 ⊢ ((𝐾 · ((𝑥 + 𝐴)↑(𝐾 − 1))) · (1 + 0)) = ((𝐾 · ((𝑥 + 𝐴)↑(𝐾 − 1))) · 1) |
37 | 36 | a1i 11 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ((𝐾 · ((𝑥 + 𝐴)↑(𝐾 − 1))) · (1 + 0)) = ((𝐾 · ((𝑥 + 𝐴)↑(𝐾 − 1))) · 1)) |
38 | 16 | nncnd 12309 | . . . . . . 7 ⊢ (𝜑 → 𝐾 ∈ ℂ) |
39 | 38 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐾 ∈ ℂ) |
40 | 22 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝐾 − 1) ∈ ℕ0) |
41 | 11, 40 | expcld 14196 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ((𝑥 + 𝐴)↑(𝐾 − 1)) ∈ ℂ) |
42 | 39, 41 | mulcld 11310 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝐾 · ((𝑥 + 𝐴)↑(𝐾 − 1))) ∈ ℂ) |
43 | 42 | mulridd 11307 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ((𝐾 · ((𝑥 + 𝐴)↑(𝐾 − 1))) · 1) = (𝐾 · ((𝑥 + 𝐴)↑(𝐾 − 1)))) |
44 | 37, 43 | eqtrd 2780 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ((𝐾 · ((𝑥 + 𝐴)↑(𝐾 − 1))) · (1 + 0)) = (𝐾 · ((𝑥 + 𝐴)↑(𝐾 − 1)))) |
45 | 44 | mpteq2dva 5266 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ ((𝐾 · ((𝑥 + 𝐴)↑(𝐾 − 1))) · (1 + 0))) = (𝑥 ∈ 𝑋 ↦ (𝐾 · ((𝑥 + 𝐴)↑(𝐾 − 1))))) |
46 | 34, 45 | eqtrd 2780 | 1 ⊢ (𝜑 → (𝑆 D (𝑥 ∈ 𝑋 ↦ ((𝑥 + 𝐴)↑𝐾))) = (𝑥 ∈ 𝑋 ↦ (𝐾 · ((𝑥 + 𝐴)↑(𝐾 − 1))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ⊆ wss 3976 {cpr 4650 ↦ cmpt 5249 ‘cfv 6573 (class class class)co 7448 ℂcc 11182 ℝcr 11183 0cc0 11184 1c1 11185 + caddc 11187 · cmul 11189 − cmin 11520 ℕcn 12293 ℕ0cn0 12553 ↑cexp 14112 ↾t crest 17480 TopOpenctopn 17481 ℂfldccnfld 21387 D cdv 25918 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 ax-pre-sup 11262 ax-addf 11263 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-tp 4653 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-iin 5018 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-se 5653 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-isom 6582 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-of 7714 df-om 7904 df-1st 8030 df-2nd 8031 df-supp 8202 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-2o 8523 df-er 8763 df-map 8886 df-pm 8887 df-ixp 8956 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-fsupp 9432 df-fi 9480 df-sup 9511 df-inf 9512 df-oi 9579 df-card 10008 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-div 11948 df-nn 12294 df-2 12356 df-3 12357 df-4 12358 df-5 12359 df-6 12360 df-7 12361 df-8 12362 df-9 12363 df-n0 12554 df-z 12640 df-dec 12759 df-uz 12904 df-q 13014 df-rp 13058 df-xneg 13175 df-xadd 13176 df-xmul 13177 df-icc 13414 df-fz 13568 df-fzo 13712 df-seq 14053 df-exp 14113 df-hash 14380 df-cj 15148 df-re 15149 df-im 15150 df-sqrt 15284 df-abs 15285 df-struct 17194 df-sets 17211 df-slot 17229 df-ndx 17241 df-base 17259 df-ress 17288 df-plusg 17324 df-mulr 17325 df-starv 17326 df-sca 17327 df-vsca 17328 df-ip 17329 df-tset 17330 df-ple 17331 df-ds 17333 df-unif 17334 df-hom 17335 df-cco 17336 df-rest 17482 df-topn 17483 df-0g 17501 df-gsum 17502 df-topgen 17503 df-pt 17504 df-prds 17507 df-xrs 17562 df-qtop 17567 df-imas 17568 df-xps 17570 df-mre 17644 df-mrc 17645 df-acs 17647 df-mgm 18678 df-sgrp 18757 df-mnd 18773 df-submnd 18819 df-mulg 19108 df-cntz 19357 df-cmn 19824 df-psmet 21379 df-xmet 21380 df-met 21381 df-bl 21382 df-mopn 21383 df-fbas 21384 df-fg 21385 df-cnfld 21388 df-top 22921 df-topon 22938 df-topsp 22960 df-bases 22974 df-cld 23048 df-ntr 23049 df-cls 23050 df-nei 23127 df-lp 23165 df-perf 23166 df-cn 23256 df-cnp 23257 df-haus 23344 df-tx 23591 df-hmeo 23784 df-fil 23875 df-fm 23967 df-flim 23968 df-flf 23969 df-xms 24351 df-ms 24352 df-tms 24353 df-cncf 24923 df-limc 25921 df-dv 25922 |
This theorem is referenced by: dvnxpaek 45863 |
Copyright terms: Public domain | W3C validator |