Step | Hyp | Ref
| Expression |
1 | | reelprrecn 10894 |
. . . 4
⊢ ℝ
∈ {ℝ, ℂ} |
2 | 1 | a1i 11 |
. . 3
⊢ (𝐴 ∈ ℂ → ℝ
∈ {ℝ, ℂ}) |
3 | | relogcl 25636 |
. . . 4
⊢ (𝑥 ∈ ℝ+
→ (log‘𝑥) ∈
ℝ) |
4 | 3 | adantl 481 |
. . 3
⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+)
→ (log‘𝑥) ∈
ℝ) |
5 | | rpreccl 12685 |
. . . 4
⊢ (𝑥 ∈ ℝ+
→ (1 / 𝑥) ∈
ℝ+) |
6 | 5 | adantl 481 |
. . 3
⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+)
→ (1 / 𝑥) ∈
ℝ+) |
7 | | recn 10892 |
. . . 4
⊢ (𝑦 ∈ ℝ → 𝑦 ∈
ℂ) |
8 | | mulcl 10886 |
. . . . 5
⊢ ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝐴 · 𝑦) ∈ ℂ) |
9 | | efcl 15720 |
. . . . 5
⊢ ((𝐴 · 𝑦) ∈ ℂ → (exp‘(𝐴 · 𝑦)) ∈ ℂ) |
10 | 8, 9 | syl 17 |
. . . 4
⊢ ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ) →
(exp‘(𝐴 ·
𝑦)) ∈
ℂ) |
11 | 7, 10 | sylan2 592 |
. . 3
⊢ ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℝ) →
(exp‘(𝐴 ·
𝑦)) ∈
ℂ) |
12 | | ovexd 7290 |
. . 3
⊢ ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℝ) →
((exp‘(𝐴 ·
𝑦)) · 𝐴) ∈ V) |
13 | | relogf1o 25627 |
. . . . . . . 8
⊢ (log
↾ ℝ+):ℝ+–1-1-onto→ℝ |
14 | | f1of 6700 |
. . . . . . . 8
⊢ ((log
↾ ℝ+):ℝ+–1-1-onto→ℝ → (log ↾
ℝ+):ℝ+⟶ℝ) |
15 | 13, 14 | mp1i 13 |
. . . . . . 7
⊢ (𝐴 ∈ ℂ → (log
↾
ℝ+):ℝ+⟶ℝ) |
16 | 15 | feqmptd 6819 |
. . . . . 6
⊢ (𝐴 ∈ ℂ → (log
↾ ℝ+) = (𝑥 ∈ ℝ+ ↦ ((log
↾ ℝ+)‘𝑥))) |
17 | | fvres 6775 |
. . . . . . 7
⊢ (𝑥 ∈ ℝ+
→ ((log ↾ ℝ+)‘𝑥) = (log‘𝑥)) |
18 | 17 | mpteq2ia 5173 |
. . . . . 6
⊢ (𝑥 ∈ ℝ+
↦ ((log ↾ ℝ+)‘𝑥)) = (𝑥 ∈ ℝ+ ↦
(log‘𝑥)) |
19 | 16, 18 | eqtrdi 2795 |
. . . . 5
⊢ (𝐴 ∈ ℂ → (log
↾ ℝ+) = (𝑥 ∈ ℝ+ ↦
(log‘𝑥))) |
20 | 19 | oveq2d 7271 |
. . . 4
⊢ (𝐴 ∈ ℂ → (ℝ
D (log ↾ ℝ+)) = (ℝ D (𝑥 ∈ ℝ+ ↦
(log‘𝑥)))) |
21 | | dvrelog 25697 |
. . . 4
⊢ (ℝ
D (log ↾ ℝ+)) = (𝑥 ∈ ℝ+ ↦ (1 /
𝑥)) |
22 | 20, 21 | eqtr3di 2794 |
. . 3
⊢ (𝐴 ∈ ℂ → (ℝ
D (𝑥 ∈
ℝ+ ↦ (log‘𝑥))) = (𝑥 ∈ ℝ+ ↦ (1 /
𝑥))) |
23 | | eqid 2738 |
. . . 4
⊢
(TopOpen‘ℂfld) =
(TopOpen‘ℂfld) |
24 | 23 | cnfldtopon 23852 |
. . . . 5
⊢
(TopOpen‘ℂfld) ∈
(TopOn‘ℂ) |
25 | | toponmax 21983 |
. . . . 5
⊢
((TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
→ ℂ ∈ (TopOpen‘ℂfld)) |
26 | 24, 25 | mp1i 13 |
. . . 4
⊢ (𝐴 ∈ ℂ → ℂ
∈ (TopOpen‘ℂfld)) |
27 | | ax-resscn 10859 |
. . . . . 6
⊢ ℝ
⊆ ℂ |
28 | 27 | a1i 11 |
. . . . 5
⊢ (𝐴 ∈ ℂ → ℝ
⊆ ℂ) |
29 | | df-ss 3900 |
. . . . 5
⊢ (ℝ
⊆ ℂ ↔ (ℝ ∩ ℂ) = ℝ) |
30 | 28, 29 | sylib 217 |
. . . 4
⊢ (𝐴 ∈ ℂ → (ℝ
∩ ℂ) = ℝ) |
31 | | ovexd 7290 |
. . . 4
⊢ ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ) →
((exp‘(𝐴 ·
𝑦)) · 𝐴) ∈ V) |
32 | | cnelprrecn 10895 |
. . . . . 6
⊢ ℂ
∈ {ℝ, ℂ} |
33 | 32 | a1i 11 |
. . . . 5
⊢ (𝐴 ∈ ℂ → ℂ
∈ {ℝ, ℂ}) |
34 | | simpl 482 |
. . . . 5
⊢ ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ) → 𝐴 ∈
ℂ) |
35 | | efcl 15720 |
. . . . . 6
⊢ (𝑥 ∈ ℂ →
(exp‘𝑥) ∈
ℂ) |
36 | 35 | adantl 481 |
. . . . 5
⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) →
(exp‘𝑥) ∈
ℂ) |
37 | | simpr 484 |
. . . . . . 7
⊢ ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ) → 𝑦 ∈
ℂ) |
38 | | 1cnd 10901 |
. . . . . . 7
⊢ ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ) → 1 ∈
ℂ) |
39 | 33 | dvmptid 25026 |
. . . . . . 7
⊢ (𝐴 ∈ ℂ → (ℂ
D (𝑦 ∈ ℂ ↦
𝑦)) = (𝑦 ∈ ℂ ↦ 1)) |
40 | | id 22 |
. . . . . . 7
⊢ (𝐴 ∈ ℂ → 𝐴 ∈
ℂ) |
41 | 33, 37, 38, 39, 40 | dvmptcmul 25033 |
. . . . . 6
⊢ (𝐴 ∈ ℂ → (ℂ
D (𝑦 ∈ ℂ ↦
(𝐴 · 𝑦))) = (𝑦 ∈ ℂ ↦ (𝐴 · 1))) |
42 | | mulid1 10904 |
. . . . . . 7
⊢ (𝐴 ∈ ℂ → (𝐴 · 1) = 𝐴) |
43 | 42 | mpteq2dv 5172 |
. . . . . 6
⊢ (𝐴 ∈ ℂ → (𝑦 ∈ ℂ ↦ (𝐴 · 1)) = (𝑦 ∈ ℂ ↦ 𝐴)) |
44 | 41, 43 | eqtrd 2778 |
. . . . 5
⊢ (𝐴 ∈ ℂ → (ℂ
D (𝑦 ∈ ℂ ↦
(𝐴 · 𝑦))) = (𝑦 ∈ ℂ ↦ 𝐴)) |
45 | | dvef 25049 |
. . . . . 6
⊢ (ℂ
D exp) = exp |
46 | | eff 15719 |
. . . . . . . . . 10
⊢
exp:ℂ⟶ℂ |
47 | 46 | a1i 11 |
. . . . . . . . 9
⊢ (𝐴 ∈ ℂ →
exp:ℂ⟶ℂ) |
48 | 47 | feqmptd 6819 |
. . . . . . . 8
⊢ (𝐴 ∈ ℂ → exp =
(𝑥 ∈ ℂ ↦
(exp‘𝑥))) |
49 | 48 | eqcomd 2744 |
. . . . . . 7
⊢ (𝐴 ∈ ℂ → (𝑥 ∈ ℂ ↦
(exp‘𝑥)) =
exp) |
50 | 49 | oveq2d 7271 |
. . . . . 6
⊢ (𝐴 ∈ ℂ → (ℂ
D (𝑥 ∈ ℂ ↦
(exp‘𝑥))) = (ℂ
D exp)) |
51 | 45, 50, 49 | 3eqtr4a 2805 |
. . . . 5
⊢ (𝐴 ∈ ℂ → (ℂ
D (𝑥 ∈ ℂ ↦
(exp‘𝑥))) = (𝑥 ∈ ℂ ↦
(exp‘𝑥))) |
52 | | fveq2 6756 |
. . . . 5
⊢ (𝑥 = (𝐴 · 𝑦) → (exp‘𝑥) = (exp‘(𝐴 · 𝑦))) |
53 | 33, 33, 8, 34, 36, 36, 44, 51, 52, 52 | dvmptco 25041 |
. . . 4
⊢ (𝐴 ∈ ℂ → (ℂ
D (𝑦 ∈ ℂ ↦
(exp‘(𝐴 ·
𝑦)))) = (𝑦 ∈ ℂ ↦ ((exp‘(𝐴 · 𝑦)) · 𝐴))) |
54 | 23, 2, 26, 30, 10, 31, 53 | dvmptres3 25025 |
. . 3
⊢ (𝐴 ∈ ℂ → (ℝ
D (𝑦 ∈ ℝ ↦
(exp‘(𝐴 ·
𝑦)))) = (𝑦 ∈ ℝ ↦ ((exp‘(𝐴 · 𝑦)) · 𝐴))) |
55 | | oveq2 7263 |
. . . 4
⊢ (𝑦 = (log‘𝑥) → (𝐴 · 𝑦) = (𝐴 · (log‘𝑥))) |
56 | 55 | fveq2d 6760 |
. . 3
⊢ (𝑦 = (log‘𝑥) → (exp‘(𝐴 · 𝑦)) = (exp‘(𝐴 · (log‘𝑥)))) |
57 | 56 | oveq1d 7270 |
. . 3
⊢ (𝑦 = (log‘𝑥) → ((exp‘(𝐴 · 𝑦)) · 𝐴) = ((exp‘(𝐴 · (log‘𝑥))) · 𝐴)) |
58 | 2, 2, 4, 6, 11, 12, 22, 54, 56, 57 | dvmptco 25041 |
. 2
⊢ (𝐴 ∈ ℂ → (ℝ
D (𝑥 ∈
ℝ+ ↦ (exp‘(𝐴 · (log‘𝑥))))) = (𝑥 ∈ ℝ+ ↦
(((exp‘(𝐴 ·
(log‘𝑥))) ·
𝐴) · (1 / 𝑥)))) |
59 | | rpcn 12669 |
. . . . . 6
⊢ (𝑥 ∈ ℝ+
→ 𝑥 ∈
ℂ) |
60 | 59 | adantl 481 |
. . . . 5
⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+)
→ 𝑥 ∈
ℂ) |
61 | | rpne0 12675 |
. . . . . 6
⊢ (𝑥 ∈ ℝ+
→ 𝑥 ≠
0) |
62 | 61 | adantl 481 |
. . . . 5
⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+)
→ 𝑥 ≠
0) |
63 | | simpl 482 |
. . . . 5
⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+)
→ 𝐴 ∈
ℂ) |
64 | 60, 62, 63 | cxpefd 25772 |
. . . 4
⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+)
→ (𝑥↑𝑐𝐴) = (exp‘(𝐴 · (log‘𝑥)))) |
65 | 64 | mpteq2dva 5170 |
. . 3
⊢ (𝐴 ∈ ℂ → (𝑥 ∈ ℝ+
↦ (𝑥↑𝑐𝐴)) = (𝑥 ∈ ℝ+ ↦
(exp‘(𝐴 ·
(log‘𝑥))))) |
66 | 65 | oveq2d 7271 |
. 2
⊢ (𝐴 ∈ ℂ → (ℝ
D (𝑥 ∈
ℝ+ ↦ (𝑥↑𝑐𝐴))) = (ℝ D (𝑥 ∈ ℝ+ ↦
(exp‘(𝐴 ·
(log‘𝑥)))))) |
67 | | 1cnd 10901 |
. . . . . . 7
⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+)
→ 1 ∈ ℂ) |
68 | 60, 62, 63, 67 | cxpsubd 25778 |
. . . . . 6
⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+)
→ (𝑥↑𝑐(𝐴 − 1)) = ((𝑥↑𝑐𝐴) / (𝑥↑𝑐1))) |
69 | 60 | cxp1d 25766 |
. . . . . . 7
⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+)
→ (𝑥↑𝑐1) = 𝑥) |
70 | 69 | oveq2d 7271 |
. . . . . 6
⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+)
→ ((𝑥↑𝑐𝐴) / (𝑥↑𝑐1)) = ((𝑥↑𝑐𝐴) / 𝑥)) |
71 | 60, 63 | cxpcld 25768 |
. . . . . . 7
⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+)
→ (𝑥↑𝑐𝐴) ∈ ℂ) |
72 | 71, 60, 62 | divrecd 11684 |
. . . . . 6
⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+)
→ ((𝑥↑𝑐𝐴) / 𝑥) = ((𝑥↑𝑐𝐴) · (1 / 𝑥))) |
73 | 68, 70, 72 | 3eqtrd 2782 |
. . . . 5
⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+)
→ (𝑥↑𝑐(𝐴 − 1)) = ((𝑥↑𝑐𝐴) · (1 / 𝑥))) |
74 | 73 | oveq2d 7271 |
. . . 4
⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+)
→ (𝐴 · (𝑥↑𝑐(𝐴 − 1))) = (𝐴 · ((𝑥↑𝑐𝐴) · (1 / 𝑥)))) |
75 | 6 | rpcnd 12703 |
. . . . . 6
⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+)
→ (1 / 𝑥) ∈
ℂ) |
76 | 63, 71, 75 | mul12d 11114 |
. . . . 5
⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+)
→ (𝐴 · ((𝑥↑𝑐𝐴) · (1 / 𝑥))) = ((𝑥↑𝑐𝐴) · (𝐴 · (1 / 𝑥)))) |
77 | 71, 63, 75 | mulassd 10929 |
. . . . 5
⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+)
→ (((𝑥↑𝑐𝐴) · 𝐴) · (1 / 𝑥)) = ((𝑥↑𝑐𝐴) · (𝐴 · (1 / 𝑥)))) |
78 | 76, 77 | eqtr4d 2781 |
. . . 4
⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+)
→ (𝐴 · ((𝑥↑𝑐𝐴) · (1 / 𝑥))) = (((𝑥↑𝑐𝐴) · 𝐴) · (1 / 𝑥))) |
79 | 64 | oveq1d 7270 |
. . . . 5
⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+)
→ ((𝑥↑𝑐𝐴) · 𝐴) = ((exp‘(𝐴 · (log‘𝑥))) · 𝐴)) |
80 | 79 | oveq1d 7270 |
. . . 4
⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+)
→ (((𝑥↑𝑐𝐴) · 𝐴) · (1 / 𝑥)) = (((exp‘(𝐴 · (log‘𝑥))) · 𝐴) · (1 / 𝑥))) |
81 | 74, 78, 80 | 3eqtrd 2782 |
. . 3
⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+)
→ (𝐴 · (𝑥↑𝑐(𝐴 − 1))) =
(((exp‘(𝐴 ·
(log‘𝑥))) ·
𝐴) · (1 / 𝑥))) |
82 | 81 | mpteq2dva 5170 |
. 2
⊢ (𝐴 ∈ ℂ → (𝑥 ∈ ℝ+
↦ (𝐴 · (𝑥↑𝑐(𝐴 − 1)))) = (𝑥 ∈ ℝ+
↦ (((exp‘(𝐴
· (log‘𝑥)))
· 𝐴) · (1 /
𝑥)))) |
83 | 58, 66, 82 | 3eqtr4d 2788 |
1
⊢ (𝐴 ∈ ℂ → (ℝ
D (𝑥 ∈
ℝ+ ↦ (𝑥↑𝑐𝐴))) = (𝑥 ∈ ℝ+ ↦ (𝐴 · (𝑥↑𝑐(𝐴 − 1))))) |