| Step | Hyp | Ref
| Expression |
| 1 | | reelprrecn 11167 |
. . . 4
⊢ ℝ
∈ {ℝ, ℂ} |
| 2 | 1 | a1i 11 |
. . 3
⊢ (𝐴 ∈ ℂ → ℝ
∈ {ℝ, ℂ}) |
| 3 | | relogcl 26491 |
. . . 4
⊢ (𝑥 ∈ ℝ+
→ (log‘𝑥) ∈
ℝ) |
| 4 | 3 | adantl 481 |
. . 3
⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+)
→ (log‘𝑥) ∈
ℝ) |
| 5 | | rpreccl 12986 |
. . . 4
⊢ (𝑥 ∈ ℝ+
→ (1 / 𝑥) ∈
ℝ+) |
| 6 | 5 | adantl 481 |
. . 3
⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+)
→ (1 / 𝑥) ∈
ℝ+) |
| 7 | | recn 11165 |
. . . 4
⊢ (𝑦 ∈ ℝ → 𝑦 ∈
ℂ) |
| 8 | | mulcl 11159 |
. . . . 5
⊢ ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝐴 · 𝑦) ∈ ℂ) |
| 9 | | efcl 16055 |
. . . . 5
⊢ ((𝐴 · 𝑦) ∈ ℂ → (exp‘(𝐴 · 𝑦)) ∈ ℂ) |
| 10 | 8, 9 | syl 17 |
. . . 4
⊢ ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ) →
(exp‘(𝐴 ·
𝑦)) ∈
ℂ) |
| 11 | 7, 10 | sylan2 593 |
. . 3
⊢ ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℝ) →
(exp‘(𝐴 ·
𝑦)) ∈
ℂ) |
| 12 | | ovexd 7425 |
. . 3
⊢ ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℝ) →
((exp‘(𝐴 ·
𝑦)) · 𝐴) ∈ V) |
| 13 | | relogf1o 26482 |
. . . . . . . 8
⊢ (log
↾ ℝ+):ℝ+–1-1-onto→ℝ |
| 14 | | f1of 6803 |
. . . . . . . 8
⊢ ((log
↾ ℝ+):ℝ+–1-1-onto→ℝ → (log ↾
ℝ+):ℝ+⟶ℝ) |
| 15 | 13, 14 | mp1i 13 |
. . . . . . 7
⊢ (𝐴 ∈ ℂ → (log
↾
ℝ+):ℝ+⟶ℝ) |
| 16 | 15 | feqmptd 6932 |
. . . . . 6
⊢ (𝐴 ∈ ℂ → (log
↾ ℝ+) = (𝑥 ∈ ℝ+ ↦ ((log
↾ ℝ+)‘𝑥))) |
| 17 | | fvres 6880 |
. . . . . . 7
⊢ (𝑥 ∈ ℝ+
→ ((log ↾ ℝ+)‘𝑥) = (log‘𝑥)) |
| 18 | 17 | mpteq2ia 5205 |
. . . . . 6
⊢ (𝑥 ∈ ℝ+
↦ ((log ↾ ℝ+)‘𝑥)) = (𝑥 ∈ ℝ+ ↦
(log‘𝑥)) |
| 19 | 16, 18 | eqtrdi 2781 |
. . . . 5
⊢ (𝐴 ∈ ℂ → (log
↾ ℝ+) = (𝑥 ∈ ℝ+ ↦
(log‘𝑥))) |
| 20 | 19 | oveq2d 7406 |
. . . 4
⊢ (𝐴 ∈ ℂ → (ℝ
D (log ↾ ℝ+)) = (ℝ D (𝑥 ∈ ℝ+ ↦
(log‘𝑥)))) |
| 21 | | dvrelog 26553 |
. . . 4
⊢ (ℝ
D (log ↾ ℝ+)) = (𝑥 ∈ ℝ+ ↦ (1 /
𝑥)) |
| 22 | 20, 21 | eqtr3di 2780 |
. . 3
⊢ (𝐴 ∈ ℂ → (ℝ
D (𝑥 ∈
ℝ+ ↦ (log‘𝑥))) = (𝑥 ∈ ℝ+ ↦ (1 /
𝑥))) |
| 23 | | eqid 2730 |
. . . 4
⊢
(TopOpen‘ℂfld) =
(TopOpen‘ℂfld) |
| 24 | 23 | cnfldtopon 24677 |
. . . . 5
⊢
(TopOpen‘ℂfld) ∈
(TopOn‘ℂ) |
| 25 | | toponmax 22820 |
. . . . 5
⊢
((TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
→ ℂ ∈ (TopOpen‘ℂfld)) |
| 26 | 24, 25 | mp1i 13 |
. . . 4
⊢ (𝐴 ∈ ℂ → ℂ
∈ (TopOpen‘ℂfld)) |
| 27 | | ax-resscn 11132 |
. . . . . 6
⊢ ℝ
⊆ ℂ |
| 28 | 27 | a1i 11 |
. . . . 5
⊢ (𝐴 ∈ ℂ → ℝ
⊆ ℂ) |
| 29 | | dfss2 3935 |
. . . . 5
⊢ (ℝ
⊆ ℂ ↔ (ℝ ∩ ℂ) = ℝ) |
| 30 | 28, 29 | sylib 218 |
. . . 4
⊢ (𝐴 ∈ ℂ → (ℝ
∩ ℂ) = ℝ) |
| 31 | | ovexd 7425 |
. . . 4
⊢ ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ) →
((exp‘(𝐴 ·
𝑦)) · 𝐴) ∈ V) |
| 32 | | cnelprrecn 11168 |
. . . . . 6
⊢ ℂ
∈ {ℝ, ℂ} |
| 33 | 32 | a1i 11 |
. . . . 5
⊢ (𝐴 ∈ ℂ → ℂ
∈ {ℝ, ℂ}) |
| 34 | | simpl 482 |
. . . . 5
⊢ ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ) → 𝐴 ∈
ℂ) |
| 35 | | efcl 16055 |
. . . . . 6
⊢ (𝑥 ∈ ℂ →
(exp‘𝑥) ∈
ℂ) |
| 36 | 35 | adantl 481 |
. . . . 5
⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) →
(exp‘𝑥) ∈
ℂ) |
| 37 | | simpr 484 |
. . . . . . 7
⊢ ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ) → 𝑦 ∈
ℂ) |
| 38 | | 1cnd 11176 |
. . . . . . 7
⊢ ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ) → 1 ∈
ℂ) |
| 39 | 33 | dvmptid 25868 |
. . . . . . 7
⊢ (𝐴 ∈ ℂ → (ℂ
D (𝑦 ∈ ℂ ↦
𝑦)) = (𝑦 ∈ ℂ ↦ 1)) |
| 40 | | id 22 |
. . . . . . 7
⊢ (𝐴 ∈ ℂ → 𝐴 ∈
ℂ) |
| 41 | 33, 37, 38, 39, 40 | dvmptcmul 25875 |
. . . . . 6
⊢ (𝐴 ∈ ℂ → (ℂ
D (𝑦 ∈ ℂ ↦
(𝐴 · 𝑦))) = (𝑦 ∈ ℂ ↦ (𝐴 · 1))) |
| 42 | | mulrid 11179 |
. . . . . . 7
⊢ (𝐴 ∈ ℂ → (𝐴 · 1) = 𝐴) |
| 43 | 42 | mpteq2dv 5204 |
. . . . . 6
⊢ (𝐴 ∈ ℂ → (𝑦 ∈ ℂ ↦ (𝐴 · 1)) = (𝑦 ∈ ℂ ↦ 𝐴)) |
| 44 | 41, 43 | eqtrd 2765 |
. . . . 5
⊢ (𝐴 ∈ ℂ → (ℂ
D (𝑦 ∈ ℂ ↦
(𝐴 · 𝑦))) = (𝑦 ∈ ℂ ↦ 𝐴)) |
| 45 | | dvef 25891 |
. . . . . 6
⊢ (ℂ
D exp) = exp |
| 46 | | eff 16054 |
. . . . . . . . . 10
⊢
exp:ℂ⟶ℂ |
| 47 | 46 | a1i 11 |
. . . . . . . . 9
⊢ (𝐴 ∈ ℂ →
exp:ℂ⟶ℂ) |
| 48 | 47 | feqmptd 6932 |
. . . . . . . 8
⊢ (𝐴 ∈ ℂ → exp =
(𝑥 ∈ ℂ ↦
(exp‘𝑥))) |
| 49 | 48 | eqcomd 2736 |
. . . . . . 7
⊢ (𝐴 ∈ ℂ → (𝑥 ∈ ℂ ↦
(exp‘𝑥)) =
exp) |
| 50 | 49 | oveq2d 7406 |
. . . . . 6
⊢ (𝐴 ∈ ℂ → (ℂ
D (𝑥 ∈ ℂ ↦
(exp‘𝑥))) = (ℂ
D exp)) |
| 51 | 45, 50, 49 | 3eqtr4a 2791 |
. . . . 5
⊢ (𝐴 ∈ ℂ → (ℂ
D (𝑥 ∈ ℂ ↦
(exp‘𝑥))) = (𝑥 ∈ ℂ ↦
(exp‘𝑥))) |
| 52 | | fveq2 6861 |
. . . . 5
⊢ (𝑥 = (𝐴 · 𝑦) → (exp‘𝑥) = (exp‘(𝐴 · 𝑦))) |
| 53 | 33, 33, 8, 34, 36, 36, 44, 51, 52, 52 | dvmptco 25883 |
. . . 4
⊢ (𝐴 ∈ ℂ → (ℂ
D (𝑦 ∈ ℂ ↦
(exp‘(𝐴 ·
𝑦)))) = (𝑦 ∈ ℂ ↦ ((exp‘(𝐴 · 𝑦)) · 𝐴))) |
| 54 | 23, 2, 26, 30, 10, 31, 53 | dvmptres3 25867 |
. . 3
⊢ (𝐴 ∈ ℂ → (ℝ
D (𝑦 ∈ ℝ ↦
(exp‘(𝐴 ·
𝑦)))) = (𝑦 ∈ ℝ ↦ ((exp‘(𝐴 · 𝑦)) · 𝐴))) |
| 55 | | oveq2 7398 |
. . . 4
⊢ (𝑦 = (log‘𝑥) → (𝐴 · 𝑦) = (𝐴 · (log‘𝑥))) |
| 56 | 55 | fveq2d 6865 |
. . 3
⊢ (𝑦 = (log‘𝑥) → (exp‘(𝐴 · 𝑦)) = (exp‘(𝐴 · (log‘𝑥)))) |
| 57 | 56 | oveq1d 7405 |
. . 3
⊢ (𝑦 = (log‘𝑥) → ((exp‘(𝐴 · 𝑦)) · 𝐴) = ((exp‘(𝐴 · (log‘𝑥))) · 𝐴)) |
| 58 | 2, 2, 4, 6, 11, 12, 22, 54, 56, 57 | dvmptco 25883 |
. 2
⊢ (𝐴 ∈ ℂ → (ℝ
D (𝑥 ∈
ℝ+ ↦ (exp‘(𝐴 · (log‘𝑥))))) = (𝑥 ∈ ℝ+ ↦
(((exp‘(𝐴 ·
(log‘𝑥))) ·
𝐴) · (1 / 𝑥)))) |
| 59 | | rpcn 12969 |
. . . . . 6
⊢ (𝑥 ∈ ℝ+
→ 𝑥 ∈
ℂ) |
| 60 | 59 | adantl 481 |
. . . . 5
⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+)
→ 𝑥 ∈
ℂ) |
| 61 | | rpne0 12975 |
. . . . . 6
⊢ (𝑥 ∈ ℝ+
→ 𝑥 ≠
0) |
| 62 | 61 | adantl 481 |
. . . . 5
⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+)
→ 𝑥 ≠
0) |
| 63 | | simpl 482 |
. . . . 5
⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+)
→ 𝐴 ∈
ℂ) |
| 64 | 60, 62, 63 | cxpefd 26628 |
. . . 4
⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+)
→ (𝑥↑𝑐𝐴) = (exp‘(𝐴 · (log‘𝑥)))) |
| 65 | 64 | mpteq2dva 5203 |
. . 3
⊢ (𝐴 ∈ ℂ → (𝑥 ∈ ℝ+
↦ (𝑥↑𝑐𝐴)) = (𝑥 ∈ ℝ+ ↦
(exp‘(𝐴 ·
(log‘𝑥))))) |
| 66 | 65 | oveq2d 7406 |
. 2
⊢ (𝐴 ∈ ℂ → (ℝ
D (𝑥 ∈
ℝ+ ↦ (𝑥↑𝑐𝐴))) = (ℝ D (𝑥 ∈ ℝ+ ↦
(exp‘(𝐴 ·
(log‘𝑥)))))) |
| 67 | | 1cnd 11176 |
. . . . . . 7
⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+)
→ 1 ∈ ℂ) |
| 68 | 60, 62, 63, 67 | cxpsubd 26634 |
. . . . . 6
⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+)
→ (𝑥↑𝑐(𝐴 − 1)) = ((𝑥↑𝑐𝐴) / (𝑥↑𝑐1))) |
| 69 | 60 | cxp1d 26622 |
. . . . . . 7
⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+)
→ (𝑥↑𝑐1) = 𝑥) |
| 70 | 69 | oveq2d 7406 |
. . . . . 6
⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+)
→ ((𝑥↑𝑐𝐴) / (𝑥↑𝑐1)) = ((𝑥↑𝑐𝐴) / 𝑥)) |
| 71 | 60, 63 | cxpcld 26624 |
. . . . . . 7
⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+)
→ (𝑥↑𝑐𝐴) ∈ ℂ) |
| 72 | 71, 60, 62 | divrecd 11968 |
. . . . . 6
⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+)
→ ((𝑥↑𝑐𝐴) / 𝑥) = ((𝑥↑𝑐𝐴) · (1 / 𝑥))) |
| 73 | 68, 70, 72 | 3eqtrd 2769 |
. . . . 5
⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+)
→ (𝑥↑𝑐(𝐴 − 1)) = ((𝑥↑𝑐𝐴) · (1 / 𝑥))) |
| 74 | 73 | oveq2d 7406 |
. . . 4
⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+)
→ (𝐴 · (𝑥↑𝑐(𝐴 − 1))) = (𝐴 · ((𝑥↑𝑐𝐴) · (1 / 𝑥)))) |
| 75 | 6 | rpcnd 13004 |
. . . . . 6
⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+)
→ (1 / 𝑥) ∈
ℂ) |
| 76 | 63, 71, 75 | mul12d 11390 |
. . . . 5
⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+)
→ (𝐴 · ((𝑥↑𝑐𝐴) · (1 / 𝑥))) = ((𝑥↑𝑐𝐴) · (𝐴 · (1 / 𝑥)))) |
| 77 | 71, 63, 75 | mulassd 11204 |
. . . . 5
⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+)
→ (((𝑥↑𝑐𝐴) · 𝐴) · (1 / 𝑥)) = ((𝑥↑𝑐𝐴) · (𝐴 · (1 / 𝑥)))) |
| 78 | 76, 77 | eqtr4d 2768 |
. . . 4
⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+)
→ (𝐴 · ((𝑥↑𝑐𝐴) · (1 / 𝑥))) = (((𝑥↑𝑐𝐴) · 𝐴) · (1 / 𝑥))) |
| 79 | 64 | oveq1d 7405 |
. . . . 5
⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+)
→ ((𝑥↑𝑐𝐴) · 𝐴) = ((exp‘(𝐴 · (log‘𝑥))) · 𝐴)) |
| 80 | 79 | oveq1d 7405 |
. . . 4
⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+)
→ (((𝑥↑𝑐𝐴) · 𝐴) · (1 / 𝑥)) = (((exp‘(𝐴 · (log‘𝑥))) · 𝐴) · (1 / 𝑥))) |
| 81 | 74, 78, 80 | 3eqtrd 2769 |
. . 3
⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+)
→ (𝐴 · (𝑥↑𝑐(𝐴 − 1))) =
(((exp‘(𝐴 ·
(log‘𝑥))) ·
𝐴) · (1 / 𝑥))) |
| 82 | 81 | mpteq2dva 5203 |
. 2
⊢ (𝐴 ∈ ℂ → (𝑥 ∈ ℝ+
↦ (𝐴 · (𝑥↑𝑐(𝐴 − 1)))) = (𝑥 ∈ ℝ+
↦ (((exp‘(𝐴
· (log‘𝑥)))
· 𝐴) · (1 /
𝑥)))) |
| 83 | 58, 66, 82 | 3eqtr4d 2775 |
1
⊢ (𝐴 ∈ ℂ → (ℝ
D (𝑥 ∈
ℝ+ ↦ (𝑥↑𝑐𝐴))) = (𝑥 ∈ ℝ+ ↦ (𝐴 · (𝑥↑𝑐(𝐴 − 1))))) |