| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | reelprrecn 11247 | . . . 4
⊢ ℝ
∈ {ℝ, ℂ} | 
| 2 | 1 | a1i 11 | . . 3
⊢ (𝐴 ∈ ℂ → ℝ
∈ {ℝ, ℂ}) | 
| 3 |  | relogcl 26617 | . . . 4
⊢ (𝑥 ∈ ℝ+
→ (log‘𝑥) ∈
ℝ) | 
| 4 | 3 | adantl 481 | . . 3
⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+)
→ (log‘𝑥) ∈
ℝ) | 
| 5 |  | rpreccl 13061 | . . . 4
⊢ (𝑥 ∈ ℝ+
→ (1 / 𝑥) ∈
ℝ+) | 
| 6 | 5 | adantl 481 | . . 3
⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+)
→ (1 / 𝑥) ∈
ℝ+) | 
| 7 |  | recn 11245 | . . . 4
⊢ (𝑦 ∈ ℝ → 𝑦 ∈
ℂ) | 
| 8 |  | mulcl 11239 | . . . . 5
⊢ ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝐴 · 𝑦) ∈ ℂ) | 
| 9 |  | efcl 16118 | . . . . 5
⊢ ((𝐴 · 𝑦) ∈ ℂ → (exp‘(𝐴 · 𝑦)) ∈ ℂ) | 
| 10 | 8, 9 | syl 17 | . . . 4
⊢ ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ) →
(exp‘(𝐴 ·
𝑦)) ∈
ℂ) | 
| 11 | 7, 10 | sylan2 593 | . . 3
⊢ ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℝ) →
(exp‘(𝐴 ·
𝑦)) ∈
ℂ) | 
| 12 |  | ovexd 7466 | . . 3
⊢ ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℝ) →
((exp‘(𝐴 ·
𝑦)) · 𝐴) ∈ V) | 
| 13 |  | relogf1o 26608 | . . . . . . . 8
⊢ (log
↾ ℝ+):ℝ+–1-1-onto→ℝ | 
| 14 |  | f1of 6848 | . . . . . . . 8
⊢ ((log
↾ ℝ+):ℝ+–1-1-onto→ℝ → (log ↾
ℝ+):ℝ+⟶ℝ) | 
| 15 | 13, 14 | mp1i 13 | . . . . . . 7
⊢ (𝐴 ∈ ℂ → (log
↾
ℝ+):ℝ+⟶ℝ) | 
| 16 | 15 | feqmptd 6977 | . . . . . 6
⊢ (𝐴 ∈ ℂ → (log
↾ ℝ+) = (𝑥 ∈ ℝ+ ↦ ((log
↾ ℝ+)‘𝑥))) | 
| 17 |  | fvres 6925 | . . . . . . 7
⊢ (𝑥 ∈ ℝ+
→ ((log ↾ ℝ+)‘𝑥) = (log‘𝑥)) | 
| 18 | 17 | mpteq2ia 5245 | . . . . . 6
⊢ (𝑥 ∈ ℝ+
↦ ((log ↾ ℝ+)‘𝑥)) = (𝑥 ∈ ℝ+ ↦
(log‘𝑥)) | 
| 19 | 16, 18 | eqtrdi 2793 | . . . . 5
⊢ (𝐴 ∈ ℂ → (log
↾ ℝ+) = (𝑥 ∈ ℝ+ ↦
(log‘𝑥))) | 
| 20 | 19 | oveq2d 7447 | . . . 4
⊢ (𝐴 ∈ ℂ → (ℝ
D (log ↾ ℝ+)) = (ℝ D (𝑥 ∈ ℝ+ ↦
(log‘𝑥)))) | 
| 21 |  | dvrelog 26679 | . . . 4
⊢ (ℝ
D (log ↾ ℝ+)) = (𝑥 ∈ ℝ+ ↦ (1 /
𝑥)) | 
| 22 | 20, 21 | eqtr3di 2792 | . . 3
⊢ (𝐴 ∈ ℂ → (ℝ
D (𝑥 ∈
ℝ+ ↦ (log‘𝑥))) = (𝑥 ∈ ℝ+ ↦ (1 /
𝑥))) | 
| 23 |  | eqid 2737 | . . . 4
⊢
(TopOpen‘ℂfld) =
(TopOpen‘ℂfld) | 
| 24 | 23 | cnfldtopon 24803 | . . . . 5
⊢
(TopOpen‘ℂfld) ∈
(TopOn‘ℂ) | 
| 25 |  | toponmax 22932 | . . . . 5
⊢
((TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
→ ℂ ∈ (TopOpen‘ℂfld)) | 
| 26 | 24, 25 | mp1i 13 | . . . 4
⊢ (𝐴 ∈ ℂ → ℂ
∈ (TopOpen‘ℂfld)) | 
| 27 |  | ax-resscn 11212 | . . . . . 6
⊢ ℝ
⊆ ℂ | 
| 28 | 27 | a1i 11 | . . . . 5
⊢ (𝐴 ∈ ℂ → ℝ
⊆ ℂ) | 
| 29 |  | dfss2 3969 | . . . . 5
⊢ (ℝ
⊆ ℂ ↔ (ℝ ∩ ℂ) = ℝ) | 
| 30 | 28, 29 | sylib 218 | . . . 4
⊢ (𝐴 ∈ ℂ → (ℝ
∩ ℂ) = ℝ) | 
| 31 |  | ovexd 7466 | . . . 4
⊢ ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ) →
((exp‘(𝐴 ·
𝑦)) · 𝐴) ∈ V) | 
| 32 |  | cnelprrecn 11248 | . . . . . 6
⊢ ℂ
∈ {ℝ, ℂ} | 
| 33 | 32 | a1i 11 | . . . . 5
⊢ (𝐴 ∈ ℂ → ℂ
∈ {ℝ, ℂ}) | 
| 34 |  | simpl 482 | . . . . 5
⊢ ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ) → 𝐴 ∈
ℂ) | 
| 35 |  | efcl 16118 | . . . . . 6
⊢ (𝑥 ∈ ℂ →
(exp‘𝑥) ∈
ℂ) | 
| 36 | 35 | adantl 481 | . . . . 5
⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) →
(exp‘𝑥) ∈
ℂ) | 
| 37 |  | simpr 484 | . . . . . . 7
⊢ ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ) → 𝑦 ∈
ℂ) | 
| 38 |  | 1cnd 11256 | . . . . . . 7
⊢ ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ) → 1 ∈
ℂ) | 
| 39 | 33 | dvmptid 25995 | . . . . . . 7
⊢ (𝐴 ∈ ℂ → (ℂ
D (𝑦 ∈ ℂ ↦
𝑦)) = (𝑦 ∈ ℂ ↦ 1)) | 
| 40 |  | id 22 | . . . . . . 7
⊢ (𝐴 ∈ ℂ → 𝐴 ∈
ℂ) | 
| 41 | 33, 37, 38, 39, 40 | dvmptcmul 26002 | . . . . . 6
⊢ (𝐴 ∈ ℂ → (ℂ
D (𝑦 ∈ ℂ ↦
(𝐴 · 𝑦))) = (𝑦 ∈ ℂ ↦ (𝐴 · 1))) | 
| 42 |  | mulrid 11259 | . . . . . . 7
⊢ (𝐴 ∈ ℂ → (𝐴 · 1) = 𝐴) | 
| 43 | 42 | mpteq2dv 5244 | . . . . . 6
⊢ (𝐴 ∈ ℂ → (𝑦 ∈ ℂ ↦ (𝐴 · 1)) = (𝑦 ∈ ℂ ↦ 𝐴)) | 
| 44 | 41, 43 | eqtrd 2777 | . . . . 5
⊢ (𝐴 ∈ ℂ → (ℂ
D (𝑦 ∈ ℂ ↦
(𝐴 · 𝑦))) = (𝑦 ∈ ℂ ↦ 𝐴)) | 
| 45 |  | dvef 26018 | . . . . . 6
⊢ (ℂ
D exp) = exp | 
| 46 |  | eff 16117 | . . . . . . . . . 10
⊢
exp:ℂ⟶ℂ | 
| 47 | 46 | a1i 11 | . . . . . . . . 9
⊢ (𝐴 ∈ ℂ →
exp:ℂ⟶ℂ) | 
| 48 | 47 | feqmptd 6977 | . . . . . . . 8
⊢ (𝐴 ∈ ℂ → exp =
(𝑥 ∈ ℂ ↦
(exp‘𝑥))) | 
| 49 | 48 | eqcomd 2743 | . . . . . . 7
⊢ (𝐴 ∈ ℂ → (𝑥 ∈ ℂ ↦
(exp‘𝑥)) =
exp) | 
| 50 | 49 | oveq2d 7447 | . . . . . 6
⊢ (𝐴 ∈ ℂ → (ℂ
D (𝑥 ∈ ℂ ↦
(exp‘𝑥))) = (ℂ
D exp)) | 
| 51 | 45, 50, 49 | 3eqtr4a 2803 | . . . . 5
⊢ (𝐴 ∈ ℂ → (ℂ
D (𝑥 ∈ ℂ ↦
(exp‘𝑥))) = (𝑥 ∈ ℂ ↦
(exp‘𝑥))) | 
| 52 |  | fveq2 6906 | . . . . 5
⊢ (𝑥 = (𝐴 · 𝑦) → (exp‘𝑥) = (exp‘(𝐴 · 𝑦))) | 
| 53 | 33, 33, 8, 34, 36, 36, 44, 51, 52, 52 | dvmptco 26010 | . . . 4
⊢ (𝐴 ∈ ℂ → (ℂ
D (𝑦 ∈ ℂ ↦
(exp‘(𝐴 ·
𝑦)))) = (𝑦 ∈ ℂ ↦ ((exp‘(𝐴 · 𝑦)) · 𝐴))) | 
| 54 | 23, 2, 26, 30, 10, 31, 53 | dvmptres3 25994 | . . 3
⊢ (𝐴 ∈ ℂ → (ℝ
D (𝑦 ∈ ℝ ↦
(exp‘(𝐴 ·
𝑦)))) = (𝑦 ∈ ℝ ↦ ((exp‘(𝐴 · 𝑦)) · 𝐴))) | 
| 55 |  | oveq2 7439 | . . . 4
⊢ (𝑦 = (log‘𝑥) → (𝐴 · 𝑦) = (𝐴 · (log‘𝑥))) | 
| 56 | 55 | fveq2d 6910 | . . 3
⊢ (𝑦 = (log‘𝑥) → (exp‘(𝐴 · 𝑦)) = (exp‘(𝐴 · (log‘𝑥)))) | 
| 57 | 56 | oveq1d 7446 | . . 3
⊢ (𝑦 = (log‘𝑥) → ((exp‘(𝐴 · 𝑦)) · 𝐴) = ((exp‘(𝐴 · (log‘𝑥))) · 𝐴)) | 
| 58 | 2, 2, 4, 6, 11, 12, 22, 54, 56, 57 | dvmptco 26010 | . 2
⊢ (𝐴 ∈ ℂ → (ℝ
D (𝑥 ∈
ℝ+ ↦ (exp‘(𝐴 · (log‘𝑥))))) = (𝑥 ∈ ℝ+ ↦
(((exp‘(𝐴 ·
(log‘𝑥))) ·
𝐴) · (1 / 𝑥)))) | 
| 59 |  | rpcn 13045 | . . . . . 6
⊢ (𝑥 ∈ ℝ+
→ 𝑥 ∈
ℂ) | 
| 60 | 59 | adantl 481 | . . . . 5
⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+)
→ 𝑥 ∈
ℂ) | 
| 61 |  | rpne0 13051 | . . . . . 6
⊢ (𝑥 ∈ ℝ+
→ 𝑥 ≠
0) | 
| 62 | 61 | adantl 481 | . . . . 5
⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+)
→ 𝑥 ≠
0) | 
| 63 |  | simpl 482 | . . . . 5
⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+)
→ 𝐴 ∈
ℂ) | 
| 64 | 60, 62, 63 | cxpefd 26754 | . . . 4
⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+)
→ (𝑥↑𝑐𝐴) = (exp‘(𝐴 · (log‘𝑥)))) | 
| 65 | 64 | mpteq2dva 5242 | . . 3
⊢ (𝐴 ∈ ℂ → (𝑥 ∈ ℝ+
↦ (𝑥↑𝑐𝐴)) = (𝑥 ∈ ℝ+ ↦
(exp‘(𝐴 ·
(log‘𝑥))))) | 
| 66 | 65 | oveq2d 7447 | . 2
⊢ (𝐴 ∈ ℂ → (ℝ
D (𝑥 ∈
ℝ+ ↦ (𝑥↑𝑐𝐴))) = (ℝ D (𝑥 ∈ ℝ+ ↦
(exp‘(𝐴 ·
(log‘𝑥)))))) | 
| 67 |  | 1cnd 11256 | . . . . . . 7
⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+)
→ 1 ∈ ℂ) | 
| 68 | 60, 62, 63, 67 | cxpsubd 26760 | . . . . . 6
⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+)
→ (𝑥↑𝑐(𝐴 − 1)) = ((𝑥↑𝑐𝐴) / (𝑥↑𝑐1))) | 
| 69 | 60 | cxp1d 26748 | . . . . . . 7
⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+)
→ (𝑥↑𝑐1) = 𝑥) | 
| 70 | 69 | oveq2d 7447 | . . . . . 6
⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+)
→ ((𝑥↑𝑐𝐴) / (𝑥↑𝑐1)) = ((𝑥↑𝑐𝐴) / 𝑥)) | 
| 71 | 60, 63 | cxpcld 26750 | . . . . . . 7
⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+)
→ (𝑥↑𝑐𝐴) ∈ ℂ) | 
| 72 | 71, 60, 62 | divrecd 12046 | . . . . . 6
⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+)
→ ((𝑥↑𝑐𝐴) / 𝑥) = ((𝑥↑𝑐𝐴) · (1 / 𝑥))) | 
| 73 | 68, 70, 72 | 3eqtrd 2781 | . . . . 5
⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+)
→ (𝑥↑𝑐(𝐴 − 1)) = ((𝑥↑𝑐𝐴) · (1 / 𝑥))) | 
| 74 | 73 | oveq2d 7447 | . . . 4
⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+)
→ (𝐴 · (𝑥↑𝑐(𝐴 − 1))) = (𝐴 · ((𝑥↑𝑐𝐴) · (1 / 𝑥)))) | 
| 75 | 6 | rpcnd 13079 | . . . . . 6
⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+)
→ (1 / 𝑥) ∈
ℂ) | 
| 76 | 63, 71, 75 | mul12d 11470 | . . . . 5
⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+)
→ (𝐴 · ((𝑥↑𝑐𝐴) · (1 / 𝑥))) = ((𝑥↑𝑐𝐴) · (𝐴 · (1 / 𝑥)))) | 
| 77 | 71, 63, 75 | mulassd 11284 | . . . . 5
⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+)
→ (((𝑥↑𝑐𝐴) · 𝐴) · (1 / 𝑥)) = ((𝑥↑𝑐𝐴) · (𝐴 · (1 / 𝑥)))) | 
| 78 | 76, 77 | eqtr4d 2780 | . . . 4
⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+)
→ (𝐴 · ((𝑥↑𝑐𝐴) · (1 / 𝑥))) = (((𝑥↑𝑐𝐴) · 𝐴) · (1 / 𝑥))) | 
| 79 | 64 | oveq1d 7446 | . . . . 5
⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+)
→ ((𝑥↑𝑐𝐴) · 𝐴) = ((exp‘(𝐴 · (log‘𝑥))) · 𝐴)) | 
| 80 | 79 | oveq1d 7446 | . . . 4
⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+)
→ (((𝑥↑𝑐𝐴) · 𝐴) · (1 / 𝑥)) = (((exp‘(𝐴 · (log‘𝑥))) · 𝐴) · (1 / 𝑥))) | 
| 81 | 74, 78, 80 | 3eqtrd 2781 | . . 3
⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+)
→ (𝐴 · (𝑥↑𝑐(𝐴 − 1))) =
(((exp‘(𝐴 ·
(log‘𝑥))) ·
𝐴) · (1 / 𝑥))) | 
| 82 | 81 | mpteq2dva 5242 | . 2
⊢ (𝐴 ∈ ℂ → (𝑥 ∈ ℝ+
↦ (𝐴 · (𝑥↑𝑐(𝐴 − 1)))) = (𝑥 ∈ ℝ+
↦ (((exp‘(𝐴
· (log‘𝑥)))
· 𝐴) · (1 /
𝑥)))) | 
| 83 | 58, 66, 82 | 3eqtr4d 2787 | 1
⊢ (𝐴 ∈ ℂ → (ℝ
D (𝑥 ∈
ℝ+ ↦ (𝑥↑𝑐𝐴))) = (𝑥 ∈ ℝ+ ↦ (𝐴 · (𝑥↑𝑐(𝐴 − 1))))) |