Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvcxp1 Structured version   Visualization version   GIF version

Theorem dvcxp1 25418
 Description: The derivative of a complex power with respect to the first argument. (Contributed by Mario Carneiro, 24-Feb-2015.)
Assertion
Ref Expression
dvcxp1 (𝐴 ∈ ℂ → (ℝ D (𝑥 ∈ ℝ+ ↦ (𝑥𝑐𝐴))) = (𝑥 ∈ ℝ+ ↦ (𝐴 · (𝑥𝑐(𝐴 − 1)))))
Distinct variable group:   𝑥,𝐴

Proof of Theorem dvcxp1
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 reelprrecn 10657 . . . 4 ℝ ∈ {ℝ, ℂ}
21a1i 11 . . 3 (𝐴 ∈ ℂ → ℝ ∈ {ℝ, ℂ})
3 relogcl 25256 . . . 4 (𝑥 ∈ ℝ+ → (log‘𝑥) ∈ ℝ)
43adantl 486 . . 3 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) → (log‘𝑥) ∈ ℝ)
5 rpreccl 12446 . . . 4 (𝑥 ∈ ℝ+ → (1 / 𝑥) ∈ ℝ+)
65adantl 486 . . 3 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) → (1 / 𝑥) ∈ ℝ+)
7 recn 10655 . . . 4 (𝑦 ∈ ℝ → 𝑦 ∈ ℂ)
8 mulcl 10649 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝐴 · 𝑦) ∈ ℂ)
9 efcl 15474 . . . . 5 ((𝐴 · 𝑦) ∈ ℂ → (exp‘(𝐴 · 𝑦)) ∈ ℂ)
108, 9syl 17 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (exp‘(𝐴 · 𝑦)) ∈ ℂ)
117, 10sylan2 596 . . 3 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℝ) → (exp‘(𝐴 · 𝑦)) ∈ ℂ)
12 ovexd 7183 . . 3 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℝ) → ((exp‘(𝐴 · 𝑦)) · 𝐴) ∈ V)
13 dvrelog 25317 . . . 4 (ℝ D (log ↾ ℝ+)) = (𝑥 ∈ ℝ+ ↦ (1 / 𝑥))
14 relogf1o 25247 . . . . . . . 8 (log ↾ ℝ+):ℝ+1-1-onto→ℝ
15 f1of 6600 . . . . . . . 8 ((log ↾ ℝ+):ℝ+1-1-onto→ℝ → (log ↾ ℝ+):ℝ+⟶ℝ)
1614, 15mp1i 13 . . . . . . 7 (𝐴 ∈ ℂ → (log ↾ ℝ+):ℝ+⟶ℝ)
1716feqmptd 6719 . . . . . 6 (𝐴 ∈ ℂ → (log ↾ ℝ+) = (𝑥 ∈ ℝ+ ↦ ((log ↾ ℝ+)‘𝑥)))
18 fvres 6675 . . . . . . 7 (𝑥 ∈ ℝ+ → ((log ↾ ℝ+)‘𝑥) = (log‘𝑥))
1918mpteq2ia 5121 . . . . . 6 (𝑥 ∈ ℝ+ ↦ ((log ↾ ℝ+)‘𝑥)) = (𝑥 ∈ ℝ+ ↦ (log‘𝑥))
2017, 19eqtrdi 2810 . . . . 5 (𝐴 ∈ ℂ → (log ↾ ℝ+) = (𝑥 ∈ ℝ+ ↦ (log‘𝑥)))
2120oveq2d 7164 . . . 4 (𝐴 ∈ ℂ → (ℝ D (log ↾ ℝ+)) = (ℝ D (𝑥 ∈ ℝ+ ↦ (log‘𝑥))))
2213, 21syl5reqr 2809 . . 3 (𝐴 ∈ ℂ → (ℝ D (𝑥 ∈ ℝ+ ↦ (log‘𝑥))) = (𝑥 ∈ ℝ+ ↦ (1 / 𝑥)))
23 eqid 2759 . . . 4 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
2423cnfldtopon 23474 . . . . 5 (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
25 toponmax 21616 . . . . 5 ((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) → ℂ ∈ (TopOpen‘ℂfld))
2624, 25mp1i 13 . . . 4 (𝐴 ∈ ℂ → ℂ ∈ (TopOpen‘ℂfld))
27 ax-resscn 10622 . . . . . 6 ℝ ⊆ ℂ
2827a1i 11 . . . . 5 (𝐴 ∈ ℂ → ℝ ⊆ ℂ)
29 df-ss 3876 . . . . 5 (ℝ ⊆ ℂ ↔ (ℝ ∩ ℂ) = ℝ)
3028, 29sylib 221 . . . 4 (𝐴 ∈ ℂ → (ℝ ∩ ℂ) = ℝ)
31 ovexd 7183 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((exp‘(𝐴 · 𝑦)) · 𝐴) ∈ V)
32 cnelprrecn 10658 . . . . . 6 ℂ ∈ {ℝ, ℂ}
3332a1i 11 . . . . 5 (𝐴 ∈ ℂ → ℂ ∈ {ℝ, ℂ})
34 simpl 487 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ) → 𝐴 ∈ ℂ)
35 efcl 15474 . . . . . 6 (𝑥 ∈ ℂ → (exp‘𝑥) ∈ ℂ)
3635adantl 486 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (exp‘𝑥) ∈ ℂ)
37 simpr 489 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ) → 𝑦 ∈ ℂ)
38 1cnd 10664 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ) → 1 ∈ ℂ)
3933dvmptid 24646 . . . . . . 7 (𝐴 ∈ ℂ → (ℂ D (𝑦 ∈ ℂ ↦ 𝑦)) = (𝑦 ∈ ℂ ↦ 1))
40 id 22 . . . . . . 7 (𝐴 ∈ ℂ → 𝐴 ∈ ℂ)
4133, 37, 38, 39, 40dvmptcmul 24653 . . . . . 6 (𝐴 ∈ ℂ → (ℂ D (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦))) = (𝑦 ∈ ℂ ↦ (𝐴 · 1)))
42 mulid1 10667 . . . . . . 7 (𝐴 ∈ ℂ → (𝐴 · 1) = 𝐴)
4342mpteq2dv 5126 . . . . . 6 (𝐴 ∈ ℂ → (𝑦 ∈ ℂ ↦ (𝐴 · 1)) = (𝑦 ∈ ℂ ↦ 𝐴))
4441, 43eqtrd 2794 . . . . 5 (𝐴 ∈ ℂ → (ℂ D (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦))) = (𝑦 ∈ ℂ ↦ 𝐴))
45 dvef 24669 . . . . . 6 (ℂ D exp) = exp
46 eff 15473 . . . . . . . . . 10 exp:ℂ⟶ℂ
4746a1i 11 . . . . . . . . 9 (𝐴 ∈ ℂ → exp:ℂ⟶ℂ)
4847feqmptd 6719 . . . . . . . 8 (𝐴 ∈ ℂ → exp = (𝑥 ∈ ℂ ↦ (exp‘𝑥)))
4948eqcomd 2765 . . . . . . 7 (𝐴 ∈ ℂ → (𝑥 ∈ ℂ ↦ (exp‘𝑥)) = exp)
5049oveq2d 7164 . . . . . 6 (𝐴 ∈ ℂ → (ℂ D (𝑥 ∈ ℂ ↦ (exp‘𝑥))) = (ℂ D exp))
5145, 50, 493eqtr4a 2820 . . . . 5 (𝐴 ∈ ℂ → (ℂ D (𝑥 ∈ ℂ ↦ (exp‘𝑥))) = (𝑥 ∈ ℂ ↦ (exp‘𝑥)))
52 fveq2 6656 . . . . 5 (𝑥 = (𝐴 · 𝑦) → (exp‘𝑥) = (exp‘(𝐴 · 𝑦)))
5333, 33, 8, 34, 36, 36, 44, 51, 52, 52dvmptco 24661 . . . 4 (𝐴 ∈ ℂ → (ℂ D (𝑦 ∈ ℂ ↦ (exp‘(𝐴 · 𝑦)))) = (𝑦 ∈ ℂ ↦ ((exp‘(𝐴 · 𝑦)) · 𝐴)))
5423, 2, 26, 30, 10, 31, 53dvmptres3 24645 . . 3 (𝐴 ∈ ℂ → (ℝ D (𝑦 ∈ ℝ ↦ (exp‘(𝐴 · 𝑦)))) = (𝑦 ∈ ℝ ↦ ((exp‘(𝐴 · 𝑦)) · 𝐴)))
55 oveq2 7156 . . . 4 (𝑦 = (log‘𝑥) → (𝐴 · 𝑦) = (𝐴 · (log‘𝑥)))
5655fveq2d 6660 . . 3 (𝑦 = (log‘𝑥) → (exp‘(𝐴 · 𝑦)) = (exp‘(𝐴 · (log‘𝑥))))
5756oveq1d 7163 . . 3 (𝑦 = (log‘𝑥) → ((exp‘(𝐴 · 𝑦)) · 𝐴) = ((exp‘(𝐴 · (log‘𝑥))) · 𝐴))
582, 2, 4, 6, 11, 12, 22, 54, 56, 57dvmptco 24661 . 2 (𝐴 ∈ ℂ → (ℝ D (𝑥 ∈ ℝ+ ↦ (exp‘(𝐴 · (log‘𝑥))))) = (𝑥 ∈ ℝ+ ↦ (((exp‘(𝐴 · (log‘𝑥))) · 𝐴) · (1 / 𝑥))))
59 rpcn 12430 . . . . . 6 (𝑥 ∈ ℝ+𝑥 ∈ ℂ)
6059adantl 486 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) → 𝑥 ∈ ℂ)
61 rpne0 12436 . . . . . 6 (𝑥 ∈ ℝ+𝑥 ≠ 0)
6261adantl 486 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) → 𝑥 ≠ 0)
63 simpl 487 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) → 𝐴 ∈ ℂ)
6460, 62, 63cxpefd 25392 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) → (𝑥𝑐𝐴) = (exp‘(𝐴 · (log‘𝑥))))
6564mpteq2dva 5125 . . 3 (𝐴 ∈ ℂ → (𝑥 ∈ ℝ+ ↦ (𝑥𝑐𝐴)) = (𝑥 ∈ ℝ+ ↦ (exp‘(𝐴 · (log‘𝑥)))))
6665oveq2d 7164 . 2 (𝐴 ∈ ℂ → (ℝ D (𝑥 ∈ ℝ+ ↦ (𝑥𝑐𝐴))) = (ℝ D (𝑥 ∈ ℝ+ ↦ (exp‘(𝐴 · (log‘𝑥))))))
67 1cnd 10664 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) → 1 ∈ ℂ)
6860, 62, 63, 67cxpsubd 25398 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) → (𝑥𝑐(𝐴 − 1)) = ((𝑥𝑐𝐴) / (𝑥𝑐1)))
6960cxp1d 25386 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) → (𝑥𝑐1) = 𝑥)
7069oveq2d 7164 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) → ((𝑥𝑐𝐴) / (𝑥𝑐1)) = ((𝑥𝑐𝐴) / 𝑥))
7160, 63cxpcld 25388 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) → (𝑥𝑐𝐴) ∈ ℂ)
7271, 60, 62divrecd 11447 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) → ((𝑥𝑐𝐴) / 𝑥) = ((𝑥𝑐𝐴) · (1 / 𝑥)))
7368, 70, 723eqtrd 2798 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) → (𝑥𝑐(𝐴 − 1)) = ((𝑥𝑐𝐴) · (1 / 𝑥)))
7473oveq2d 7164 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) → (𝐴 · (𝑥𝑐(𝐴 − 1))) = (𝐴 · ((𝑥𝑐𝐴) · (1 / 𝑥))))
756rpcnd 12464 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) → (1 / 𝑥) ∈ ℂ)
7663, 71, 75mul12d 10877 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) → (𝐴 · ((𝑥𝑐𝐴) · (1 / 𝑥))) = ((𝑥𝑐𝐴) · (𝐴 · (1 / 𝑥))))
7771, 63, 75mulassd 10692 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) → (((𝑥𝑐𝐴) · 𝐴) · (1 / 𝑥)) = ((𝑥𝑐𝐴) · (𝐴 · (1 / 𝑥))))
7876, 77eqtr4d 2797 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) → (𝐴 · ((𝑥𝑐𝐴) · (1 / 𝑥))) = (((𝑥𝑐𝐴) · 𝐴) · (1 / 𝑥)))
7964oveq1d 7163 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) → ((𝑥𝑐𝐴) · 𝐴) = ((exp‘(𝐴 · (log‘𝑥))) · 𝐴))
8079oveq1d 7163 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) → (((𝑥𝑐𝐴) · 𝐴) · (1 / 𝑥)) = (((exp‘(𝐴 · (log‘𝑥))) · 𝐴) · (1 / 𝑥)))
8174, 78, 803eqtrd 2798 . . 3 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) → (𝐴 · (𝑥𝑐(𝐴 − 1))) = (((exp‘(𝐴 · (log‘𝑥))) · 𝐴) · (1 / 𝑥)))
8281mpteq2dva 5125 . 2 (𝐴 ∈ ℂ → (𝑥 ∈ ℝ+ ↦ (𝐴 · (𝑥𝑐(𝐴 − 1)))) = (𝑥 ∈ ℝ+ ↦ (((exp‘(𝐴 · (log‘𝑥))) · 𝐴) · (1 / 𝑥))))
8358, 66, 823eqtr4d 2804 1 (𝐴 ∈ ℂ → (ℝ D (𝑥 ∈ ℝ+ ↦ (𝑥𝑐𝐴))) = (𝑥 ∈ ℝ+ ↦ (𝐴 · (𝑥𝑐(𝐴 − 1)))))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 400   = wceq 1539   ∈ wcel 2112   ≠ wne 2952  Vcvv 3410   ∩ cin 3858   ⊆ wss 3859  {cpr 4522   ↦ cmpt 5110   ↾ cres 5524  ⟶wf 6329  –1-1-onto→wf1o 6332  ‘cfv 6333  (class class class)co 7148  ℂcc 10563  ℝcr 10564  0cc0 10565  1c1 10566   · cmul 10570   − cmin 10898   / cdiv 11325  ℝ+crp 12420  expce 15453  TopOpenctopn 16743  ℂfldccnfld 20156  TopOnctopon 21600   D cdv 24552  logclog 25235  ↑𝑐ccxp 25236 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5232  ax-pr 5296  ax-un 7457  ax-inf2 9127  ax-cnex 10621  ax-resscn 10622  ax-1cn 10623  ax-icn 10624  ax-addcl 10625  ax-addrcl 10626  ax-mulcl 10627  ax-mulrcl 10628  ax-mulcom 10629  ax-addass 10630  ax-mulass 10631  ax-distr 10632  ax-i2m1 10633  ax-1ne0 10634  ax-1rid 10635  ax-rnegex 10636  ax-rrecex 10637  ax-cnre 10638  ax-pre-lttri 10639  ax-pre-lttrn 10640  ax-pre-ltadd 10641  ax-pre-mulgt0 10642  ax-pre-sup 10643  ax-addf 10644  ax-mulf 10645 This theorem depends on definitions:  df-bi 210  df-an 401  df-or 846  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2071  df-mo 2558  df-eu 2589  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2902  df-ne 2953  df-nel 3057  df-ral 3076  df-rex 3077  df-reu 3078  df-rmo 3079  df-rab 3080  df-v 3412  df-sbc 3698  df-csb 3807  df-dif 3862  df-un 3864  df-in 3866  df-ss 3876  df-pss 3878  df-nul 4227  df-if 4419  df-pw 4494  df-sn 4521  df-pr 4523  df-tp 4525  df-op 4527  df-uni 4797  df-int 4837  df-iun 4883  df-iin 4884  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5428  df-eprel 5433  df-po 5441  df-so 5442  df-fr 5481  df-se 5482  df-we 5483  df-xp 5528  df-rel 5529  df-cnv 5530  df-co 5531  df-dm 5532  df-rn 5533  df-res 5534  df-ima 5535  df-pred 6124  df-ord 6170  df-on 6171  df-lim 6172  df-suc 6173  df-iota 6292  df-fun 6335  df-fn 6336  df-f 6337  df-f1 6338  df-fo 6339  df-f1o 6340  df-fv 6341  df-isom 6342  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-of 7403  df-om 7578  df-1st 7691  df-2nd 7692  df-supp 7834  df-wrecs 7955  df-recs 8016  df-rdg 8054  df-1o 8110  df-2o 8111  df-oadd 8114  df-er 8297  df-map 8416  df-pm 8417  df-ixp 8478  df-en 8526  df-dom 8527  df-sdom 8528  df-fin 8529  df-fsupp 8857  df-fi 8898  df-sup 8929  df-inf 8930  df-oi 8997  df-card 9391  df-pnf 10705  df-mnf 10706  df-xr 10707  df-ltxr 10708  df-le 10709  df-sub 10900  df-neg 10901  df-div 11326  df-nn 11665  df-2 11727  df-3 11728  df-4 11729  df-5 11730  df-6 11731  df-7 11732  df-8 11733  df-9 11734  df-n0 11925  df-z 12011  df-dec 12128  df-uz 12273  df-q 12379  df-rp 12421  df-xneg 12538  df-xadd 12539  df-xmul 12540  df-ioo 12773  df-ioc 12774  df-ico 12775  df-icc 12776  df-fz 12930  df-fzo 13073  df-fl 13201  df-mod 13277  df-seq 13409  df-exp 13470  df-fac 13674  df-bc 13703  df-hash 13731  df-shft 14464  df-cj 14496  df-re 14497  df-im 14498  df-sqrt 14632  df-abs 14633  df-limsup 14866  df-clim 14883  df-rlim 14884  df-sum 15081  df-ef 15459  df-sin 15461  df-cos 15462  df-pi 15464  df-struct 16533  df-ndx 16534  df-slot 16535  df-base 16537  df-sets 16538  df-ress 16539  df-plusg 16626  df-mulr 16627  df-starv 16628  df-sca 16629  df-vsca 16630  df-ip 16631  df-tset 16632  df-ple 16633  df-ds 16635  df-unif 16636  df-hom 16637  df-cco 16638  df-rest 16744  df-topn 16745  df-0g 16763  df-gsum 16764  df-topgen 16765  df-pt 16766  df-prds 16769  df-xrs 16823  df-qtop 16828  df-imas 16829  df-xps 16831  df-mre 16905  df-mrc 16906  df-acs 16908  df-mgm 17908  df-sgrp 17957  df-mnd 17968  df-submnd 18013  df-mulg 18282  df-cntz 18504  df-cmn 18965  df-psmet 20148  df-xmet 20149  df-met 20150  df-bl 20151  df-mopn 20152  df-fbas 20153  df-fg 20154  df-cnfld 20157  df-top 21584  df-topon 21601  df-topsp 21623  df-bases 21636  df-cld 21709  df-ntr 21710  df-cls 21711  df-nei 21788  df-lp 21826  df-perf 21827  df-cn 21917  df-cnp 21918  df-haus 22005  df-cmp 22077  df-tx 22252  df-hmeo 22445  df-fil 22536  df-fm 22628  df-flim 22629  df-flf 22630  df-xms 23012  df-ms 23013  df-tms 23014  df-cncf 23569  df-limc 24555  df-dv 24556  df-log 25237  df-cxp 25238 This theorem is referenced by:  dvsqrt  25420  logdivsqrle  32139
 Copyright terms: Public domain W3C validator