MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvcxp1 Structured version   Visualization version   GIF version

Theorem dvcxp1 24883
Description: The derivative of a complex power with respect to the first argument. (Contributed by Mario Carneiro, 24-Feb-2015.)
Assertion
Ref Expression
dvcxp1 (𝐴 ∈ ℂ → (ℝ D (𝑥 ∈ ℝ+ ↦ (𝑥𝑐𝐴))) = (𝑥 ∈ ℝ+ ↦ (𝐴 · (𝑥𝑐(𝐴 − 1)))))
Distinct variable group:   𝑥,𝐴

Proof of Theorem dvcxp1
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 reelprrecn 10344 . . . 4 ℝ ∈ {ℝ, ℂ}
21a1i 11 . . 3 (𝐴 ∈ ℂ → ℝ ∈ {ℝ, ℂ})
3 relogcl 24721 . . . 4 (𝑥 ∈ ℝ+ → (log‘𝑥) ∈ ℝ)
43adantl 475 . . 3 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) → (log‘𝑥) ∈ ℝ)
5 rpreccl 12140 . . . 4 (𝑥 ∈ ℝ+ → (1 / 𝑥) ∈ ℝ+)
65adantl 475 . . 3 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) → (1 / 𝑥) ∈ ℝ+)
7 recn 10342 . . . 4 (𝑦 ∈ ℝ → 𝑦 ∈ ℂ)
8 mulcl 10336 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝐴 · 𝑦) ∈ ℂ)
9 efcl 15185 . . . . 5 ((𝐴 · 𝑦) ∈ ℂ → (exp‘(𝐴 · 𝑦)) ∈ ℂ)
108, 9syl 17 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (exp‘(𝐴 · 𝑦)) ∈ ℂ)
117, 10sylan2 586 . . 3 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℝ) → (exp‘(𝐴 · 𝑦)) ∈ ℂ)
12 ovexd 6939 . . 3 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℝ) → ((exp‘(𝐴 · 𝑦)) · 𝐴) ∈ V)
13 dvrelog 24782 . . . 4 (ℝ D (log ↾ ℝ+)) = (𝑥 ∈ ℝ+ ↦ (1 / 𝑥))
14 relogf1o 24712 . . . . . . . 8 (log ↾ ℝ+):ℝ+1-1-onto→ℝ
15 f1of 6378 . . . . . . . 8 ((log ↾ ℝ+):ℝ+1-1-onto→ℝ → (log ↾ ℝ+):ℝ+⟶ℝ)
1614, 15mp1i 13 . . . . . . 7 (𝐴 ∈ ℂ → (log ↾ ℝ+):ℝ+⟶ℝ)
1716feqmptd 6496 . . . . . 6 (𝐴 ∈ ℂ → (log ↾ ℝ+) = (𝑥 ∈ ℝ+ ↦ ((log ↾ ℝ+)‘𝑥)))
18 fvres 6452 . . . . . . 7 (𝑥 ∈ ℝ+ → ((log ↾ ℝ+)‘𝑥) = (log‘𝑥))
1918mpteq2ia 4963 . . . . . 6 (𝑥 ∈ ℝ+ ↦ ((log ↾ ℝ+)‘𝑥)) = (𝑥 ∈ ℝ+ ↦ (log‘𝑥))
2017, 19syl6eq 2877 . . . . 5 (𝐴 ∈ ℂ → (log ↾ ℝ+) = (𝑥 ∈ ℝ+ ↦ (log‘𝑥)))
2120oveq2d 6921 . . . 4 (𝐴 ∈ ℂ → (ℝ D (log ↾ ℝ+)) = (ℝ D (𝑥 ∈ ℝ+ ↦ (log‘𝑥))))
2213, 21syl5reqr 2876 . . 3 (𝐴 ∈ ℂ → (ℝ D (𝑥 ∈ ℝ+ ↦ (log‘𝑥))) = (𝑥 ∈ ℝ+ ↦ (1 / 𝑥)))
23 eqid 2825 . . . 4 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
2423cnfldtopon 22956 . . . . 5 (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
25 toponmax 21101 . . . . 5 ((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) → ℂ ∈ (TopOpen‘ℂfld))
2624, 25mp1i 13 . . . 4 (𝐴 ∈ ℂ → ℂ ∈ (TopOpen‘ℂfld))
27 ax-resscn 10309 . . . . . 6 ℝ ⊆ ℂ
2827a1i 11 . . . . 5 (𝐴 ∈ ℂ → ℝ ⊆ ℂ)
29 df-ss 3812 . . . . 5 (ℝ ⊆ ℂ ↔ (ℝ ∩ ℂ) = ℝ)
3028, 29sylib 210 . . . 4 (𝐴 ∈ ℂ → (ℝ ∩ ℂ) = ℝ)
31 ovexd 6939 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((exp‘(𝐴 · 𝑦)) · 𝐴) ∈ V)
32 cnelprrecn 10345 . . . . . 6 ℂ ∈ {ℝ, ℂ}
3332a1i 11 . . . . 5 (𝐴 ∈ ℂ → ℂ ∈ {ℝ, ℂ})
34 simpl 476 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ) → 𝐴 ∈ ℂ)
35 efcl 15185 . . . . . 6 (𝑥 ∈ ℂ → (exp‘𝑥) ∈ ℂ)
3635adantl 475 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (exp‘𝑥) ∈ ℂ)
37 simpr 479 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ) → 𝑦 ∈ ℂ)
38 1cnd 10351 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ) → 1 ∈ ℂ)
3933dvmptid 24119 . . . . . . 7 (𝐴 ∈ ℂ → (ℂ D (𝑦 ∈ ℂ ↦ 𝑦)) = (𝑦 ∈ ℂ ↦ 1))
40 id 22 . . . . . . 7 (𝐴 ∈ ℂ → 𝐴 ∈ ℂ)
4133, 37, 38, 39, 40dvmptcmul 24126 . . . . . 6 (𝐴 ∈ ℂ → (ℂ D (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦))) = (𝑦 ∈ ℂ ↦ (𝐴 · 1)))
42 mulid1 10354 . . . . . . 7 (𝐴 ∈ ℂ → (𝐴 · 1) = 𝐴)
4342mpteq2dv 4968 . . . . . 6 (𝐴 ∈ ℂ → (𝑦 ∈ ℂ ↦ (𝐴 · 1)) = (𝑦 ∈ ℂ ↦ 𝐴))
4441, 43eqtrd 2861 . . . . 5 (𝐴 ∈ ℂ → (ℂ D (𝑦 ∈ ℂ ↦ (𝐴 · 𝑦))) = (𝑦 ∈ ℂ ↦ 𝐴))
45 dvef 24142 . . . . . 6 (ℂ D exp) = exp
46 eff 15184 . . . . . . . . . 10 exp:ℂ⟶ℂ
4746a1i 11 . . . . . . . . 9 (𝐴 ∈ ℂ → exp:ℂ⟶ℂ)
4847feqmptd 6496 . . . . . . . 8 (𝐴 ∈ ℂ → exp = (𝑥 ∈ ℂ ↦ (exp‘𝑥)))
4948eqcomd 2831 . . . . . . 7 (𝐴 ∈ ℂ → (𝑥 ∈ ℂ ↦ (exp‘𝑥)) = exp)
5049oveq2d 6921 . . . . . 6 (𝐴 ∈ ℂ → (ℂ D (𝑥 ∈ ℂ ↦ (exp‘𝑥))) = (ℂ D exp))
5145, 50, 493eqtr4a 2887 . . . . 5 (𝐴 ∈ ℂ → (ℂ D (𝑥 ∈ ℂ ↦ (exp‘𝑥))) = (𝑥 ∈ ℂ ↦ (exp‘𝑥)))
52 fveq2 6433 . . . . 5 (𝑥 = (𝐴 · 𝑦) → (exp‘𝑥) = (exp‘(𝐴 · 𝑦)))
5333, 33, 8, 34, 36, 36, 44, 51, 52, 52dvmptco 24134 . . . 4 (𝐴 ∈ ℂ → (ℂ D (𝑦 ∈ ℂ ↦ (exp‘(𝐴 · 𝑦)))) = (𝑦 ∈ ℂ ↦ ((exp‘(𝐴 · 𝑦)) · 𝐴)))
5423, 2, 26, 30, 10, 31, 53dvmptres3 24118 . . 3 (𝐴 ∈ ℂ → (ℝ D (𝑦 ∈ ℝ ↦ (exp‘(𝐴 · 𝑦)))) = (𝑦 ∈ ℝ ↦ ((exp‘(𝐴 · 𝑦)) · 𝐴)))
55 oveq2 6913 . . . 4 (𝑦 = (log‘𝑥) → (𝐴 · 𝑦) = (𝐴 · (log‘𝑥)))
5655fveq2d 6437 . . 3 (𝑦 = (log‘𝑥) → (exp‘(𝐴 · 𝑦)) = (exp‘(𝐴 · (log‘𝑥))))
5756oveq1d 6920 . . 3 (𝑦 = (log‘𝑥) → ((exp‘(𝐴 · 𝑦)) · 𝐴) = ((exp‘(𝐴 · (log‘𝑥))) · 𝐴))
582, 2, 4, 6, 11, 12, 22, 54, 56, 57dvmptco 24134 . 2 (𝐴 ∈ ℂ → (ℝ D (𝑥 ∈ ℝ+ ↦ (exp‘(𝐴 · (log‘𝑥))))) = (𝑥 ∈ ℝ+ ↦ (((exp‘(𝐴 · (log‘𝑥))) · 𝐴) · (1 / 𝑥))))
59 rpcn 12124 . . . . . 6 (𝑥 ∈ ℝ+𝑥 ∈ ℂ)
6059adantl 475 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) → 𝑥 ∈ ℂ)
61 rpne0 12130 . . . . . 6 (𝑥 ∈ ℝ+𝑥 ≠ 0)
6261adantl 475 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) → 𝑥 ≠ 0)
63 simpl 476 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) → 𝐴 ∈ ℂ)
6460, 62, 63cxpefd 24857 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) → (𝑥𝑐𝐴) = (exp‘(𝐴 · (log‘𝑥))))
6564mpteq2dva 4967 . . 3 (𝐴 ∈ ℂ → (𝑥 ∈ ℝ+ ↦ (𝑥𝑐𝐴)) = (𝑥 ∈ ℝ+ ↦ (exp‘(𝐴 · (log‘𝑥)))))
6665oveq2d 6921 . 2 (𝐴 ∈ ℂ → (ℝ D (𝑥 ∈ ℝ+ ↦ (𝑥𝑐𝐴))) = (ℝ D (𝑥 ∈ ℝ+ ↦ (exp‘(𝐴 · (log‘𝑥))))))
67 1cnd 10351 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) → 1 ∈ ℂ)
6860, 62, 63, 67cxpsubd 24863 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) → (𝑥𝑐(𝐴 − 1)) = ((𝑥𝑐𝐴) / (𝑥𝑐1)))
6960cxp1d 24851 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) → (𝑥𝑐1) = 𝑥)
7069oveq2d 6921 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) → ((𝑥𝑐𝐴) / (𝑥𝑐1)) = ((𝑥𝑐𝐴) / 𝑥))
7160, 63cxpcld 24853 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) → (𝑥𝑐𝐴) ∈ ℂ)
7271, 60, 62divrecd 11130 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) → ((𝑥𝑐𝐴) / 𝑥) = ((𝑥𝑐𝐴) · (1 / 𝑥)))
7368, 70, 723eqtrd 2865 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) → (𝑥𝑐(𝐴 − 1)) = ((𝑥𝑐𝐴) · (1 / 𝑥)))
7473oveq2d 6921 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) → (𝐴 · (𝑥𝑐(𝐴 − 1))) = (𝐴 · ((𝑥𝑐𝐴) · (1 / 𝑥))))
756rpcnd 12158 . . . . . 6 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) → (1 / 𝑥) ∈ ℂ)
7663, 71, 75mul12d 10564 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) → (𝐴 · ((𝑥𝑐𝐴) · (1 / 𝑥))) = ((𝑥𝑐𝐴) · (𝐴 · (1 / 𝑥))))
7771, 63, 75mulassd 10380 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) → (((𝑥𝑐𝐴) · 𝐴) · (1 / 𝑥)) = ((𝑥𝑐𝐴) · (𝐴 · (1 / 𝑥))))
7876, 77eqtr4d 2864 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) → (𝐴 · ((𝑥𝑐𝐴) · (1 / 𝑥))) = (((𝑥𝑐𝐴) · 𝐴) · (1 / 𝑥)))
7964oveq1d 6920 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) → ((𝑥𝑐𝐴) · 𝐴) = ((exp‘(𝐴 · (log‘𝑥))) · 𝐴))
8079oveq1d 6920 . . . 4 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) → (((𝑥𝑐𝐴) · 𝐴) · (1 / 𝑥)) = (((exp‘(𝐴 · (log‘𝑥))) · 𝐴) · (1 / 𝑥)))
8174, 78, 803eqtrd 2865 . . 3 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℝ+) → (𝐴 · (𝑥𝑐(𝐴 − 1))) = (((exp‘(𝐴 · (log‘𝑥))) · 𝐴) · (1 / 𝑥)))
8281mpteq2dva 4967 . 2 (𝐴 ∈ ℂ → (𝑥 ∈ ℝ+ ↦ (𝐴 · (𝑥𝑐(𝐴 − 1)))) = (𝑥 ∈ ℝ+ ↦ (((exp‘(𝐴 · (log‘𝑥))) · 𝐴) · (1 / 𝑥))))
8358, 66, 823eqtr4d 2871 1 (𝐴 ∈ ℂ → (ℝ D (𝑥 ∈ ℝ+ ↦ (𝑥𝑐𝐴))) = (𝑥 ∈ ℝ+ ↦ (𝐴 · (𝑥𝑐(𝐴 − 1)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386   = wceq 1656  wcel 2164  wne 2999  Vcvv 3414  cin 3797  wss 3798  {cpr 4399  cmpt 4952  cres 5344  wf 6119  1-1-ontowf1o 6122  cfv 6123  (class class class)co 6905  cc 10250  cr 10251  0cc0 10252  1c1 10253   · cmul 10257  cmin 10585   / cdiv 11009  +crp 12112  expce 15164  TopOpenctopn 16435  fldccnfld 20106  TopOnctopon 21085   D cdv 24026  logclog 24700  𝑐ccxp 24701
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-8 2166  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-13 2389  ax-ext 2803  ax-rep 4994  ax-sep 5005  ax-nul 5013  ax-pow 5065  ax-pr 5127  ax-un 7209  ax-inf2 8815  ax-cnex 10308  ax-resscn 10309  ax-1cn 10310  ax-icn 10311  ax-addcl 10312  ax-addrcl 10313  ax-mulcl 10314  ax-mulrcl 10315  ax-mulcom 10316  ax-addass 10317  ax-mulass 10318  ax-distr 10319  ax-i2m1 10320  ax-1ne0 10321  ax-1rid 10322  ax-rnegex 10323  ax-rrecex 10324  ax-cnre 10325  ax-pre-lttri 10326  ax-pre-lttrn 10327  ax-pre-ltadd 10328  ax-pre-mulgt0 10329  ax-pre-sup 10330  ax-addf 10331  ax-mulf 10332
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-3or 1112  df-3an 1113  df-tru 1660  df-fal 1670  df-ex 1879  df-nf 1883  df-sb 2068  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-nel 3103  df-ral 3122  df-rex 3123  df-reu 3124  df-rmo 3125  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-pss 3814  df-nul 4145  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-tp 4402  df-op 4404  df-uni 4659  df-int 4698  df-iun 4742  df-iin 4743  df-br 4874  df-opab 4936  df-mpt 4953  df-tr 4976  df-id 5250  df-eprel 5255  df-po 5263  df-so 5264  df-fr 5301  df-se 5302  df-we 5303  df-xp 5348  df-rel 5349  df-cnv 5350  df-co 5351  df-dm 5352  df-rn 5353  df-res 5354  df-ima 5355  df-pred 5920  df-ord 5966  df-on 5967  df-lim 5968  df-suc 5969  df-iota 6086  df-fun 6125  df-fn 6126  df-f 6127  df-f1 6128  df-fo 6129  df-f1o 6130  df-fv 6131  df-isom 6132  df-riota 6866  df-ov 6908  df-oprab 6909  df-mpt2 6910  df-of 7157  df-om 7327  df-1st 7428  df-2nd 7429  df-supp 7560  df-wrecs 7672  df-recs 7734  df-rdg 7772  df-1o 7826  df-2o 7827  df-oadd 7830  df-er 8009  df-map 8124  df-pm 8125  df-ixp 8176  df-en 8223  df-dom 8224  df-sdom 8225  df-fin 8226  df-fsupp 8545  df-fi 8586  df-sup 8617  df-inf 8618  df-oi 8684  df-card 9078  df-cda 9305  df-pnf 10393  df-mnf 10394  df-xr 10395  df-ltxr 10396  df-le 10397  df-sub 10587  df-neg 10588  df-div 11010  df-nn 11351  df-2 11414  df-3 11415  df-4 11416  df-5 11417  df-6 11418  df-7 11419  df-8 11420  df-9 11421  df-n0 11619  df-z 11705  df-dec 11822  df-uz 11969  df-q 12072  df-rp 12113  df-xneg 12232  df-xadd 12233  df-xmul 12234  df-ioo 12467  df-ioc 12468  df-ico 12469  df-icc 12470  df-fz 12620  df-fzo 12761  df-fl 12888  df-mod 12964  df-seq 13096  df-exp 13155  df-fac 13354  df-bc 13383  df-hash 13411  df-shft 14184  df-cj 14216  df-re 14217  df-im 14218  df-sqrt 14352  df-abs 14353  df-limsup 14579  df-clim 14596  df-rlim 14597  df-sum 14794  df-ef 15170  df-sin 15172  df-cos 15173  df-pi 15175  df-struct 16224  df-ndx 16225  df-slot 16226  df-base 16228  df-sets 16229  df-ress 16230  df-plusg 16318  df-mulr 16319  df-starv 16320  df-sca 16321  df-vsca 16322  df-ip 16323  df-tset 16324  df-ple 16325  df-ds 16327  df-unif 16328  df-hom 16329  df-cco 16330  df-rest 16436  df-topn 16437  df-0g 16455  df-gsum 16456  df-topgen 16457  df-pt 16458  df-prds 16461  df-xrs 16515  df-qtop 16520  df-imas 16521  df-xps 16523  df-mre 16599  df-mrc 16600  df-acs 16602  df-mgm 17595  df-sgrp 17637  df-mnd 17648  df-submnd 17689  df-mulg 17895  df-cntz 18100  df-cmn 18548  df-psmet 20098  df-xmet 20099  df-met 20100  df-bl 20101  df-mopn 20102  df-fbas 20103  df-fg 20104  df-cnfld 20107  df-top 21069  df-topon 21086  df-topsp 21108  df-bases 21121  df-cld 21194  df-ntr 21195  df-cls 21196  df-nei 21273  df-lp 21311  df-perf 21312  df-cn 21402  df-cnp 21403  df-haus 21490  df-cmp 21561  df-tx 21736  df-hmeo 21929  df-fil 22020  df-fm 22112  df-flim 22113  df-flf 22114  df-xms 22495  df-ms 22496  df-tms 22497  df-cncf 23051  df-limc 24029  df-dv 24030  df-log 24702  df-cxp 24703
This theorem is referenced by:  dvsqrt  24885  logdivsqrle  31266
  Copyright terms: Public domain W3C validator