Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcmineqlem12 Structured version   Visualization version   GIF version

Theorem lcmineqlem12 39277
Description: Base case for induction. (Contributed by metakunt, 12-May-2024.)
Hypothesis
Ref Expression
lcmineqlem12.1 (𝜑𝑁 ∈ ℕ)
Assertion
Ref Expression
lcmineqlem12 (𝜑 → ∫(0[,]1)((𝑡↑(1 − 1)) · ((1 − 𝑡)↑(𝑁 − 1))) d𝑡 = (1 / (1 · (𝑁C1))))
Distinct variable groups:   𝑡,𝑁   𝜑,𝑡

Proof of Theorem lcmineqlem12
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elunitcn 12858 . . . 4 (𝑡 ∈ (0[,]1) → 𝑡 ∈ ℂ)
2 1m1e0 11709 . . . . . . . 8 (1 − 1) = 0
32oveq2i 7161 . . . . . . 7 (𝑡↑(1 − 1)) = (𝑡↑0)
4 simpr 488 . . . . . . . 8 ((𝜑𝑡 ∈ ℂ) → 𝑡 ∈ ℂ)
54exp0d 13512 . . . . . . 7 ((𝜑𝑡 ∈ ℂ) → (𝑡↑0) = 1)
63, 5syl5eq 2871 . . . . . 6 ((𝜑𝑡 ∈ ℂ) → (𝑡↑(1 − 1)) = 1)
76oveq1d 7165 . . . . 5 ((𝜑𝑡 ∈ ℂ) → ((𝑡↑(1 − 1)) · ((1 − 𝑡)↑(𝑁 − 1))) = (1 · ((1 − 𝑡)↑(𝑁 − 1))))
8 1cnd 10635 . . . . . . . 8 ((𝜑𝑡 ∈ ℂ) → 1 ∈ ℂ)
98, 4subcld 10996 . . . . . . 7 ((𝜑𝑡 ∈ ℂ) → (1 − 𝑡) ∈ ℂ)
10 lcmineqlem12.1 . . . . . . . . 9 (𝜑𝑁 ∈ ℕ)
11 nnm1nn0 11938 . . . . . . . . 9 (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℕ0)
1210, 11syl 17 . . . . . . . 8 (𝜑 → (𝑁 − 1) ∈ ℕ0)
1312adantr 484 . . . . . . 7 ((𝜑𝑡 ∈ ℂ) → (𝑁 − 1) ∈ ℕ0)
149, 13expcld 13518 . . . . . 6 ((𝜑𝑡 ∈ ℂ) → ((1 − 𝑡)↑(𝑁 − 1)) ∈ ℂ)
1514mulid2d 10658 . . . . 5 ((𝜑𝑡 ∈ ℂ) → (1 · ((1 − 𝑡)↑(𝑁 − 1))) = ((1 − 𝑡)↑(𝑁 − 1)))
167, 15eqtrd 2859 . . . 4 ((𝜑𝑡 ∈ ℂ) → ((𝑡↑(1 − 1)) · ((1 − 𝑡)↑(𝑁 − 1))) = ((1 − 𝑡)↑(𝑁 − 1)))
171, 16sylan2 595 . . 3 ((𝜑𝑡 ∈ (0[,]1)) → ((𝑡↑(1 − 1)) · ((1 − 𝑡)↑(𝑁 − 1))) = ((1 − 𝑡)↑(𝑁 − 1)))
1817itgeq2dv 24391 . 2 (𝜑 → ∫(0[,]1)((𝑡↑(1 − 1)) · ((1 − 𝑡)↑(𝑁 − 1))) d𝑡 = ∫(0[,]1)((1 − 𝑡)↑(𝑁 − 1)) d𝑡)
19 0red 10643 . . . . 5 (𝜑 → 0 ∈ ℝ)
20 1red 10641 . . . . 5 (𝜑 → 1 ∈ ℝ)
211, 14sylan2 595 . . . . 5 ((𝜑𝑡 ∈ (0[,]1)) → ((1 − 𝑡)↑(𝑁 − 1)) ∈ ℂ)
2219, 20, 21itgioo 24425 . . . 4 (𝜑 → ∫(0(,)1)((1 − 𝑡)↑(𝑁 − 1)) d𝑡 = ∫(0[,]1)((1 − 𝑡)↑(𝑁 − 1)) d𝑡)
23 eqidd 2825 . . . . . . 7 ((𝜑𝑡 ∈ (0(,)1)) → (𝑥 ∈ (0(,)1) ↦ ((1 − 𝑥)↑(𝑁 − 1))) = (𝑥 ∈ (0(,)1) ↦ ((1 − 𝑥)↑(𝑁 − 1))))
24 oveq2 7158 . . . . . . . . . 10 (𝑥 = 𝑡 → (1 − 𝑥) = (1 − 𝑡))
2524oveq1d 7165 . . . . . . . . 9 (𝑥 = 𝑡 → ((1 − 𝑥)↑(𝑁 − 1)) = ((1 − 𝑡)↑(𝑁 − 1)))
2625adantl 485 . . . . . . . 8 ((𝜑𝑥 = 𝑡) → ((1 − 𝑥)↑(𝑁 − 1)) = ((1 − 𝑡)↑(𝑁 − 1)))
2726adantlr 714 . . . . . . 7 (((𝜑𝑡 ∈ (0(,)1)) ∧ 𝑥 = 𝑡) → ((1 − 𝑥)↑(𝑁 − 1)) = ((1 − 𝑡)↑(𝑁 − 1)))
28 simpr 488 . . . . . . 7 ((𝜑𝑡 ∈ (0(,)1)) → 𝑡 ∈ (0(,)1))
29 1cnd 10635 . . . . . . . . 9 ((𝜑𝑡 ∈ (0(,)1)) → 1 ∈ ℂ)
30 elioore 12768 . . . . . . . . . 10 (𝑡 ∈ (0(,)1) → 𝑡 ∈ ℝ)
31 recn 10626 . . . . . . . . . 10 (𝑡 ∈ ℝ → 𝑡 ∈ ℂ)
3228, 30, 313syl 18 . . . . . . . . 9 ((𝜑𝑡 ∈ (0(,)1)) → 𝑡 ∈ ℂ)
3329, 32subcld 10996 . . . . . . . 8 ((𝜑𝑡 ∈ (0(,)1)) → (1 − 𝑡) ∈ ℂ)
3412adantr 484 . . . . . . . 8 ((𝜑𝑡 ∈ (0(,)1)) → (𝑁 − 1) ∈ ℕ0)
3533, 34expcld 13518 . . . . . . 7 ((𝜑𝑡 ∈ (0(,)1)) → ((1 − 𝑡)↑(𝑁 − 1)) ∈ ℂ)
3623, 27, 28, 35fvmptd 6767 . . . . . 6 ((𝜑𝑡 ∈ (0(,)1)) → ((𝑥 ∈ (0(,)1) ↦ ((1 − 𝑥)↑(𝑁 − 1)))‘𝑡) = ((1 − 𝑡)↑(𝑁 − 1)))
3736itgeq2dv 24391 . . . . 5 (𝜑 → ∫(0(,)1)((𝑥 ∈ (0(,)1) ↦ ((1 − 𝑥)↑(𝑁 − 1)))‘𝑡) d𝑡 = ∫(0(,)1)((1 − 𝑡)↑(𝑁 − 1)) d𝑡)
38 cnelprrecn 10629 . . . . . . . . . . . . 13 ℂ ∈ {ℝ, ℂ}
3938a1i 11 . . . . . . . . . . . 12 (𝜑 → ℂ ∈ {ℝ, ℂ})
40 1cnd 10635 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ℂ) → 1 ∈ ℂ)
41 simpr 488 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ℂ) → 𝑥 ∈ ℂ)
4240, 41subcld 10996 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ℂ) → (1 − 𝑥) ∈ ℂ)
43 nnnn0 11904 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
4410, 43syl 17 . . . . . . . . . . . . . 14 (𝜑𝑁 ∈ ℕ0)
4544adantr 484 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ℂ) → 𝑁 ∈ ℕ0)
4642, 45expcld 13518 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℂ) → ((1 − 𝑥)↑𝑁) ∈ ℂ)
4745nn0cnd 11957 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ℂ) → 𝑁 ∈ ℂ)
4812adantr 484 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ ℂ) → (𝑁 − 1) ∈ ℕ0)
4942, 48expcld 13518 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ℂ) → ((1 − 𝑥)↑(𝑁 − 1)) ∈ ℂ)
5047, 49mulcld 10660 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ℂ) → (𝑁 · ((1 − 𝑥)↑(𝑁 − 1))) ∈ ℂ)
5140negcld 10983 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ℂ) → -1 ∈ ℂ)
5250, 51mulcld 10660 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℂ) → ((𝑁 · ((1 − 𝑥)↑(𝑁 − 1))) · -1) ∈ ℂ)
53 simpr 488 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ ℂ) → 𝑦 ∈ ℂ)
5444adantr 484 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ ℂ) → 𝑁 ∈ ℕ0)
5553, 54expcld 13518 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ ℂ) → (𝑦𝑁) ∈ ℂ)
5654nn0cnd 11957 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ ℂ) → 𝑁 ∈ ℂ)
5712adantr 484 . . . . . . . . . . . . . . 15 ((𝜑𝑦 ∈ ℂ) → (𝑁 − 1) ∈ ℕ0)
5853, 57expcld 13518 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ ℂ) → (𝑦↑(𝑁 − 1)) ∈ ℂ)
5956, 58mulcld 10660 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ ℂ) → (𝑁 · (𝑦↑(𝑁 − 1))) ∈ ℂ)
60 0cnd 10633 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ ℂ) → 0 ∈ ℂ)
61 1cnd 10635 . . . . . . . . . . . . . . . 16 (𝜑 → 1 ∈ ℂ)
6239, 61dvmptc 24567 . . . . . . . . . . . . . . 15 (𝜑 → (ℂ D (𝑥 ∈ ℂ ↦ 1)) = (𝑥 ∈ ℂ ↦ 0))
6339dvmptid 24566 . . . . . . . . . . . . . . 15 (𝜑 → (ℂ D (𝑥 ∈ ℂ ↦ 𝑥)) = (𝑥 ∈ ℂ ↦ 1))
6439, 40, 60, 62, 41, 40, 63dvmptsub 24576 . . . . . . . . . . . . . 14 (𝜑 → (ℂ D (𝑥 ∈ ℂ ↦ (1 − 𝑥))) = (𝑥 ∈ ℂ ↦ (0 − 1)))
65 df-neg 10872 . . . . . . . . . . . . . . . 16 -1 = (0 − 1)
6665a1i 11 . . . . . . . . . . . . . . 15 (𝜑 → -1 = (0 − 1))
6766mpteq2dv 5149 . . . . . . . . . . . . . 14 (𝜑 → (𝑥 ∈ ℂ ↦ -1) = (𝑥 ∈ ℂ ↦ (0 − 1)))
6864, 67eqtr4d 2862 . . . . . . . . . . . . 13 (𝜑 → (ℂ D (𝑥 ∈ ℂ ↦ (1 − 𝑥))) = (𝑥 ∈ ℂ ↦ -1))
69 dvexp 24562 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ → (ℂ D (𝑦 ∈ ℂ ↦ (𝑦𝑁))) = (𝑦 ∈ ℂ ↦ (𝑁 · (𝑦↑(𝑁 − 1)))))
7010, 69syl 17 . . . . . . . . . . . . 13 (𝜑 → (ℂ D (𝑦 ∈ ℂ ↦ (𝑦𝑁))) = (𝑦 ∈ ℂ ↦ (𝑁 · (𝑦↑(𝑁 − 1)))))
71 oveq1 7157 . . . . . . . . . . . . 13 (𝑦 = (1 − 𝑥) → (𝑦𝑁) = ((1 − 𝑥)↑𝑁))
72 oveq1 7157 . . . . . . . . . . . . . 14 (𝑦 = (1 − 𝑥) → (𝑦↑(𝑁 − 1)) = ((1 − 𝑥)↑(𝑁 − 1)))
7372oveq2d 7166 . . . . . . . . . . . . 13 (𝑦 = (1 − 𝑥) → (𝑁 · (𝑦↑(𝑁 − 1))) = (𝑁 · ((1 − 𝑥)↑(𝑁 − 1))))
7439, 39, 42, 51, 55, 59, 68, 70, 71, 73dvmptco 24581 . . . . . . . . . . . 12 (𝜑 → (ℂ D (𝑥 ∈ ℂ ↦ ((1 − 𝑥)↑𝑁))) = (𝑥 ∈ ℂ ↦ ((𝑁 · ((1 − 𝑥)↑(𝑁 − 1))) · -1)))
7561negcld 10983 . . . . . . . . . . . . 13 (𝜑 → -1 ∈ ℂ)
7610nncnd 11653 . . . . . . . . . . . . 13 (𝜑𝑁 ∈ ℂ)
7710nnne0d 11687 . . . . . . . . . . . . 13 (𝜑𝑁 ≠ 0)
7875, 76, 77divcld 11415 . . . . . . . . . . . 12 (𝜑 → (-1 / 𝑁) ∈ ℂ)
7939, 46, 52, 74, 78dvmptcmul 24573 . . . . . . . . . . 11 (𝜑 → (ℂ D (𝑥 ∈ ℂ ↦ ((-1 / 𝑁) · ((1 − 𝑥)↑𝑁)))) = (𝑥 ∈ ℂ ↦ ((-1 / 𝑁) · ((𝑁 · ((1 − 𝑥)↑(𝑁 − 1))) · -1))))
8078adantr 484 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ ℂ) → (-1 / 𝑁) ∈ ℂ)
8180, 50, 51mulassd 10663 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ ℂ) → (((-1 / 𝑁) · (𝑁 · ((1 − 𝑥)↑(𝑁 − 1)))) · -1) = ((-1 / 𝑁) · ((𝑁 · ((1 − 𝑥)↑(𝑁 − 1))) · -1)))
8281eqcomd 2830 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ ℂ) → ((-1 / 𝑁) · ((𝑁 · ((1 − 𝑥)↑(𝑁 − 1))) · -1)) = (((-1 / 𝑁) · (𝑁 · ((1 − 𝑥)↑(𝑁 − 1)))) · -1))
8380, 47, 49mulassd 10663 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ ℂ) → (((-1 / 𝑁) · 𝑁) · ((1 − 𝑥)↑(𝑁 − 1))) = ((-1 / 𝑁) · (𝑁 · ((1 − 𝑥)↑(𝑁 − 1)))))
8483oveq1d 7165 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ ℂ) → ((((-1 / 𝑁) · 𝑁) · ((1 − 𝑥)↑(𝑁 − 1))) · -1) = (((-1 / 𝑁) · (𝑁 · ((1 − 𝑥)↑(𝑁 − 1)))) · -1))
8584eqcomd 2830 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ ℂ) → (((-1 / 𝑁) · (𝑁 · ((1 − 𝑥)↑(𝑁 − 1)))) · -1) = ((((-1 / 𝑁) · 𝑁) · ((1 − 𝑥)↑(𝑁 − 1))) · -1))
8682, 85eqtrd 2859 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ ℂ) → ((-1 / 𝑁) · ((𝑁 · ((1 − 𝑥)↑(𝑁 − 1))) · -1)) = ((((-1 / 𝑁) · 𝑁) · ((1 − 𝑥)↑(𝑁 − 1))) · -1))
8777adantr 484 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ ℂ) → 𝑁 ≠ 0)
8851, 47, 87divcan1d 11416 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ ℂ) → ((-1 / 𝑁) · 𝑁) = -1)
8988oveq1d 7165 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ ℂ) → (((-1 / 𝑁) · 𝑁) · ((1 − 𝑥)↑(𝑁 − 1))) = (-1 · ((1 − 𝑥)↑(𝑁 − 1))))
9089oveq1d 7165 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ ℂ) → ((((-1 / 𝑁) · 𝑁) · ((1 − 𝑥)↑(𝑁 − 1))) · -1) = ((-1 · ((1 − 𝑥)↑(𝑁 − 1))) · -1))
9186, 90eqtrd 2859 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ℂ) → ((-1 / 𝑁) · ((𝑁 · ((1 − 𝑥)↑(𝑁 − 1))) · -1)) = ((-1 · ((1 − 𝑥)↑(𝑁 − 1))) · -1))
9251, 51, 49mul32d 10849 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ ℂ) → ((-1 · -1) · ((1 − 𝑥)↑(𝑁 − 1))) = ((-1 · ((1 − 𝑥)↑(𝑁 − 1))) · -1))
9392eqcomd 2830 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ℂ) → ((-1 · ((1 − 𝑥)↑(𝑁 − 1))) · -1) = ((-1 · -1) · ((1 − 𝑥)↑(𝑁 − 1))))
9491, 93eqtrd 2859 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ℂ) → ((-1 / 𝑁) · ((𝑁 · ((1 − 𝑥)↑(𝑁 − 1))) · -1)) = ((-1 · -1) · ((1 − 𝑥)↑(𝑁 − 1))))
9540, 40mul2negd 11094 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ ℂ) → (-1 · -1) = (1 · 1))
96 1t1e1 11799 . . . . . . . . . . . . . . . 16 (1 · 1) = 1
9795, 96syl6eq 2875 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ ℂ) → (-1 · -1) = 1)
9897oveq1d 7165 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ℂ) → ((-1 · -1) · ((1 − 𝑥)↑(𝑁 − 1))) = (1 · ((1 − 𝑥)↑(𝑁 − 1))))
9949mulid2d 10658 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ℂ) → (1 · ((1 − 𝑥)↑(𝑁 − 1))) = ((1 − 𝑥)↑(𝑁 − 1)))
10098, 99eqtrd 2859 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ℂ) → ((-1 · -1) · ((1 − 𝑥)↑(𝑁 − 1))) = ((1 − 𝑥)↑(𝑁 − 1)))
10194, 100eqtrd 2859 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℂ) → ((-1 / 𝑁) · ((𝑁 · ((1 − 𝑥)↑(𝑁 − 1))) · -1)) = ((1 − 𝑥)↑(𝑁 − 1)))
102101mpteq2dva 5148 . . . . . . . . . . 11 (𝜑 → (𝑥 ∈ ℂ ↦ ((-1 / 𝑁) · ((𝑁 · ((1 − 𝑥)↑(𝑁 − 1))) · -1))) = (𝑥 ∈ ℂ ↦ ((1 − 𝑥)↑(𝑁 − 1))))
10379, 102eqtrd 2859 . . . . . . . . . 10 (𝜑 → (ℂ D (𝑥 ∈ ℂ ↦ ((-1 / 𝑁) · ((1 − 𝑥)↑𝑁)))) = (𝑥 ∈ ℂ ↦ ((1 − 𝑥)↑(𝑁 − 1))))
10480, 46mulcld 10660 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℂ) → ((-1 / 𝑁) · ((1 − 𝑥)↑𝑁)) ∈ ℂ)
105103, 104, 49resdvopclptsd 39265 . . . . . . . . 9 (𝜑 → (ℝ D (𝑥 ∈ (0[,]1) ↦ ((-1 / 𝑁) · ((1 − 𝑥)↑𝑁)))) = (𝑥 ∈ (0(,)1) ↦ ((1 − 𝑥)↑(𝑁 − 1))))
106105fveq1d 6664 . . . . . . . 8 (𝜑 → ((ℝ D (𝑥 ∈ (0[,]1) ↦ ((-1 / 𝑁) · ((1 − 𝑥)↑𝑁))))‘𝑡) = ((𝑥 ∈ (0(,)1) ↦ ((1 − 𝑥)↑(𝑁 − 1)))‘𝑡))
107106ralrimivw 3178 . . . . . . 7 (𝜑 → ∀𝑡 ∈ (0(,)1)((ℝ D (𝑥 ∈ (0[,]1) ↦ ((-1 / 𝑁) · ((1 − 𝑥)↑𝑁))))‘𝑡) = ((𝑥 ∈ (0(,)1) ↦ ((1 − 𝑥)↑(𝑁 − 1)))‘𝑡))
108 itgeq2 24387 . . . . . . 7 (∀𝑡 ∈ (0(,)1)((ℝ D (𝑥 ∈ (0[,]1) ↦ ((-1 / 𝑁) · ((1 − 𝑥)↑𝑁))))‘𝑡) = ((𝑥 ∈ (0(,)1) ↦ ((1 − 𝑥)↑(𝑁 − 1)))‘𝑡) → ∫(0(,)1)((ℝ D (𝑥 ∈ (0[,]1) ↦ ((-1 / 𝑁) · ((1 − 𝑥)↑𝑁))))‘𝑡) d𝑡 = ∫(0(,)1)((𝑥 ∈ (0(,)1) ↦ ((1 − 𝑥)↑(𝑁 − 1)))‘𝑡) d𝑡)
109107, 108syl 17 . . . . . 6 (𝜑 → ∫(0(,)1)((ℝ D (𝑥 ∈ (0[,]1) ↦ ((-1 / 𝑁) · ((1 − 𝑥)↑𝑁))))‘𝑡) d𝑡 = ∫(0(,)1)((𝑥 ∈ (0(,)1) ↦ ((1 − 𝑥)↑(𝑁 − 1)))‘𝑡) d𝑡)
110 0le1 11162 . . . . . . . . . 10 0 ≤ 1
111110a1i 11 . . . . . . . . 9 (𝜑 → 0 ≤ 1)
112 nfv 1916 . . . . . . . . . . . 12 𝑥𝜑
113 ax-1cn 10594 . . . . . . . . . . . . . . 15 1 ∈ ℂ
114 ssid 3976 . . . . . . . . . . . . . . 15 ℂ ⊆ ℂ
115 cncfmptc 23523 . . . . . . . . . . . . . . 15 ((1 ∈ ℂ ∧ ℂ ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑥 ∈ ℂ ↦ 1) ∈ (ℂ–cn→ℂ))
116113, 114, 114, 115mp3an 1458 . . . . . . . . . . . . . 14 (𝑥 ∈ ℂ ↦ 1) ∈ (ℂ–cn→ℂ)
117116a1i 11 . . . . . . . . . . . . 13 (𝜑 → (𝑥 ∈ ℂ ↦ 1) ∈ (ℂ–cn→ℂ))
118 cncfmptid 23524 . . . . . . . . . . . . . . 15 ((ℂ ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑥 ∈ ℂ ↦ 𝑥) ∈ (ℂ–cn→ℂ))
119114, 114, 118mp2an 691 . . . . . . . . . . . . . 14 (𝑥 ∈ ℂ ↦ 𝑥) ∈ (ℂ–cn→ℂ)
120119a1i 11 . . . . . . . . . . . . 13 (𝜑 → (𝑥 ∈ ℂ ↦ 𝑥) ∈ (ℂ–cn→ℂ))
121117, 120subcncf 24055 . . . . . . . . . . . 12 (𝜑 → (𝑥 ∈ ℂ ↦ (1 − 𝑥)) ∈ (ℂ–cn→ℂ))
122 expcncf 23537 . . . . . . . . . . . . 13 ((𝑁 − 1) ∈ ℕ0 → (𝑦 ∈ ℂ ↦ (𝑦↑(𝑁 − 1))) ∈ (ℂ–cn→ℂ))
12312, 122syl 17 . . . . . . . . . . . 12 (𝜑 → (𝑦 ∈ ℂ ↦ (𝑦↑(𝑁 − 1))) ∈ (ℂ–cn→ℂ))
124 ssidd 3977 . . . . . . . . . . . 12 (𝜑 → ℂ ⊆ ℂ)
125112, 121, 123, 124, 72cncfcompt2 23519 . . . . . . . . . . 11 (𝜑 → (𝑥 ∈ ℂ ↦ ((1 − 𝑥)↑(𝑁 − 1))) ∈ (ℂ–cn→ℂ))
126125resopunitintvd 39263 . . . . . . . . . 10 (𝜑 → (𝑥 ∈ (0(,)1) ↦ ((1 − 𝑥)↑(𝑁 − 1))) ∈ ((0(,)1)–cn→ℂ))
127105eleq1d 2900 . . . . . . . . . 10 (𝜑 → ((ℝ D (𝑥 ∈ (0[,]1) ↦ ((-1 / 𝑁) · ((1 − 𝑥)↑𝑁)))) ∈ ((0(,)1)–cn→ℂ) ↔ (𝑥 ∈ (0(,)1) ↦ ((1 − 𝑥)↑(𝑁 − 1))) ∈ ((0(,)1)–cn→ℂ)))
128126, 127mpbird 260 . . . . . . . . 9 (𝜑 → (ℝ D (𝑥 ∈ (0[,]1) ↦ ((-1 / 𝑁) · ((1 − 𝑥)↑𝑁)))) ∈ ((0(,)1)–cn→ℂ))
129 ioossicc 12823 . . . . . . . . . . . 12 (0(,)1) ⊆ (0[,]1)
130129a1i 11 . . . . . . . . . . 11 (𝜑 → (0(,)1) ⊆ (0[,]1))
131 ioombl 24175 . . . . . . . . . . . 12 (0(,)1) ∈ dom vol
132131a1i 11 . . . . . . . . . . 11 (𝜑 → (0(,)1) ∈ dom vol)
133 elunitcn 12858 . . . . . . . . . . . 12 (𝑥 ∈ (0[,]1) → 𝑥 ∈ ℂ)
134133, 49sylan2 595 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (0[,]1)) → ((1 − 𝑥)↑(𝑁 − 1)) ∈ ℂ)
135114a1i 11 . . . . . . . . . . . . . . 15 (𝜑 → ℂ ⊆ ℂ)
136112, 121, 123, 135, 72cncfcompt2 23519 . . . . . . . . . . . . . 14 (𝜑 → (𝑥 ∈ ℂ ↦ ((1 − 𝑥)↑(𝑁 − 1))) ∈ (ℂ–cn→ℂ))
137136resclunitintvd 39264 . . . . . . . . . . . . 13 (𝜑 → (𝑥 ∈ (0[,]1) ↦ ((1 − 𝑥)↑(𝑁 − 1))) ∈ ((0[,]1)–cn→ℂ))
13819, 20, 1373jca 1125 . . . . . . . . . . . 12 (𝜑 → (0 ∈ ℝ ∧ 1 ∈ ℝ ∧ (𝑥 ∈ (0[,]1) ↦ ((1 − 𝑥)↑(𝑁 − 1))) ∈ ((0[,]1)–cn→ℂ)))
139 cnicciblnc 24452 . . . . . . . . . . . 12 ((0 ∈ ℝ ∧ 1 ∈ ℝ ∧ (𝑥 ∈ (0[,]1) ↦ ((1 − 𝑥)↑(𝑁 − 1))) ∈ ((0[,]1)–cn→ℂ)) → (𝑥 ∈ (0[,]1) ↦ ((1 − 𝑥)↑(𝑁 − 1))) ∈ 𝐿1)
140138, 139syl 17 . . . . . . . . . . 11 (𝜑 → (𝑥 ∈ (0[,]1) ↦ ((1 − 𝑥)↑(𝑁 − 1))) ∈ 𝐿1)
141130, 132, 134, 140iblss 24414 . . . . . . . . . 10 (𝜑 → (𝑥 ∈ (0(,)1) ↦ ((1 − 𝑥)↑(𝑁 − 1))) ∈ 𝐿1)
142105, 141eqeltrd 2916 . . . . . . . . 9 (𝜑 → (ℝ D (𝑥 ∈ (0[,]1) ↦ ((-1 / 𝑁) · ((1 − 𝑥)↑𝑁)))) ∈ 𝐿1)
143 cncfmptc 23523 . . . . . . . . . . . . 13 (((-1 / 𝑁) ∈ ℂ ∧ ℂ ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑥 ∈ ℂ ↦ (-1 / 𝑁)) ∈ (ℂ–cn→ℂ))
144114, 114, 143mp3an23 1450 . . . . . . . . . . . 12 ((-1 / 𝑁) ∈ ℂ → (𝑥 ∈ ℂ ↦ (-1 / 𝑁)) ∈ (ℂ–cn→ℂ))
14578, 144syl 17 . . . . . . . . . . 11 (𝜑 → (𝑥 ∈ ℂ ↦ (-1 / 𝑁)) ∈ (ℂ–cn→ℂ))
146145resclunitintvd 39264 . . . . . . . . . 10 (𝜑 → (𝑥 ∈ (0[,]1) ↦ (-1 / 𝑁)) ∈ ((0[,]1)–cn→ℂ))
147 expcncf 23537 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ0 → (𝑦 ∈ ℂ ↦ (𝑦𝑁)) ∈ (ℂ–cn→ℂ))
14844, 147syl 17 . . . . . . . . . . . 12 (𝜑 → (𝑦 ∈ ℂ ↦ (𝑦𝑁)) ∈ (ℂ–cn→ℂ))
149112, 121, 148, 124, 71cncfcompt2 23519 . . . . . . . . . . 11 (𝜑 → (𝑥 ∈ ℂ ↦ ((1 − 𝑥)↑𝑁)) ∈ (ℂ–cn→ℂ))
150149resclunitintvd 39264 . . . . . . . . . 10 (𝜑 → (𝑥 ∈ (0[,]1) ↦ ((1 − 𝑥)↑𝑁)) ∈ ((0[,]1)–cn→ℂ))
151146, 150mulcncf 24056 . . . . . . . . 9 (𝜑 → (𝑥 ∈ (0[,]1) ↦ ((-1 / 𝑁) · ((1 − 𝑥)↑𝑁))) ∈ ((0[,]1)–cn→ℂ))
15219, 20, 111, 128, 142, 151ftc2 24653 . . . . . . . 8 (𝜑 → ∫(0(,)1)((ℝ D (𝑥 ∈ (0[,]1) ↦ ((-1 / 𝑁) · ((1 − 𝑥)↑𝑁))))‘𝑡) d𝑡 = (((𝑥 ∈ (0[,]1) ↦ ((-1 / 𝑁) · ((1 − 𝑥)↑𝑁)))‘1) − ((𝑥 ∈ (0[,]1) ↦ ((-1 / 𝑁) · ((1 − 𝑥)↑𝑁)))‘0)))
153 eqidd 2825 . . . . . . . . . 10 (𝜑 → (𝑥 ∈ (0[,]1) ↦ ((-1 / 𝑁) · ((1 − 𝑥)↑𝑁))) = (𝑥 ∈ (0[,]1) ↦ ((-1 / 𝑁) · ((1 − 𝑥)↑𝑁))))
154 simpr 488 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 = 1) → 𝑥 = 1)
155154oveq2d 7166 . . . . . . . . . . . . . . 15 ((𝜑𝑥 = 1) → (1 − 𝑥) = (1 − 1))
156155, 2syl6eq 2875 . . . . . . . . . . . . . 14 ((𝜑𝑥 = 1) → (1 − 𝑥) = 0)
157156oveq1d 7165 . . . . . . . . . . . . 13 ((𝜑𝑥 = 1) → ((1 − 𝑥)↑𝑁) = (0↑𝑁))
158 0exp 13472 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℕ → (0↑𝑁) = 0)
15910, 158syl 17 . . . . . . . . . . . . . 14 (𝜑 → (0↑𝑁) = 0)
160159adantr 484 . . . . . . . . . . . . 13 ((𝜑𝑥 = 1) → (0↑𝑁) = 0)
161157, 160eqtrd 2859 . . . . . . . . . . . 12 ((𝜑𝑥 = 1) → ((1 − 𝑥)↑𝑁) = 0)
162161oveq2d 7166 . . . . . . . . . . 11 ((𝜑𝑥 = 1) → ((-1 / 𝑁) · ((1 − 𝑥)↑𝑁)) = ((-1 / 𝑁) · 0))
16378mul01d 10838 . . . . . . . . . . . 12 (𝜑 → ((-1 / 𝑁) · 0) = 0)
164163adantr 484 . . . . . . . . . . 11 ((𝜑𝑥 = 1) → ((-1 / 𝑁) · 0) = 0)
165162, 164eqtrd 2859 . . . . . . . . . 10 ((𝜑𝑥 = 1) → ((-1 / 𝑁) · ((1 − 𝑥)↑𝑁)) = 0)
166 1elunit 12860 . . . . . . . . . . 11 1 ∈ (0[,]1)
167166a1i 11 . . . . . . . . . 10 (𝜑 → 1 ∈ (0[,]1))
168 0cnd 10633 . . . . . . . . . 10 (𝜑 → 0 ∈ ℂ)
169153, 165, 167, 168fvmptd 6767 . . . . . . . . 9 (𝜑 → ((𝑥 ∈ (0[,]1) ↦ ((-1 / 𝑁) · ((1 − 𝑥)↑𝑁)))‘1) = 0)
170 simpr 488 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 = 0) → 𝑥 = 0)
171170oveq2d 7166 . . . . . . . . . . . . . . 15 ((𝜑𝑥 = 0) → (1 − 𝑥) = (1 − 0))
172 1m0e1 11758 . . . . . . . . . . . . . . 15 (1 − 0) = 1
173171, 172syl6eq 2875 . . . . . . . . . . . . . 14 ((𝜑𝑥 = 0) → (1 − 𝑥) = 1)
174173oveq1d 7165 . . . . . . . . . . . . 13 ((𝜑𝑥 = 0) → ((1 − 𝑥)↑𝑁) = (1↑𝑁))
17544nn0zd 12085 . . . . . . . . . . . . . . 15 (𝜑𝑁 ∈ ℤ)
176 1exp 13466 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℤ → (1↑𝑁) = 1)
177175, 176syl 17 . . . . . . . . . . . . . 14 (𝜑 → (1↑𝑁) = 1)
178177adantr 484 . . . . . . . . . . . . 13 ((𝜑𝑥 = 0) → (1↑𝑁) = 1)
179174, 178eqtrd 2859 . . . . . . . . . . . 12 ((𝜑𝑥 = 0) → ((1 − 𝑥)↑𝑁) = 1)
180179oveq2d 7166 . . . . . . . . . . 11 ((𝜑𝑥 = 0) → ((-1 / 𝑁) · ((1 − 𝑥)↑𝑁)) = ((-1 / 𝑁) · 1))
18178adantr 484 . . . . . . . . . . . 12 ((𝜑𝑥 = 0) → (-1 / 𝑁) ∈ ℂ)
182181mulid1d 10657 . . . . . . . . . . 11 ((𝜑𝑥 = 0) → ((-1 / 𝑁) · 1) = (-1 / 𝑁))
183180, 182eqtrd 2859 . . . . . . . . . 10 ((𝜑𝑥 = 0) → ((-1 / 𝑁) · ((1 − 𝑥)↑𝑁)) = (-1 / 𝑁))
184 0elunit 12859 . . . . . . . . . . 11 0 ∈ (0[,]1)
185184a1i 11 . . . . . . . . . 10 (𝜑 → 0 ∈ (0[,]1))
186153, 183, 185, 78fvmptd 6767 . . . . . . . . 9 (𝜑 → ((𝑥 ∈ (0[,]1) ↦ ((-1 / 𝑁) · ((1 − 𝑥)↑𝑁)))‘0) = (-1 / 𝑁))
187169, 186oveq12d 7168 . . . . . . . 8 (𝜑 → (((𝑥 ∈ (0[,]1) ↦ ((-1 / 𝑁) · ((1 − 𝑥)↑𝑁)))‘1) − ((𝑥 ∈ (0[,]1) ↦ ((-1 / 𝑁) · ((1 − 𝑥)↑𝑁)))‘0)) = (0 − (-1 / 𝑁)))
188152, 187eqtrd 2859 . . . . . . 7 (𝜑 → ∫(0(,)1)((ℝ D (𝑥 ∈ (0[,]1) ↦ ((-1 / 𝑁) · ((1 − 𝑥)↑𝑁))))‘𝑡) d𝑡 = (0 − (-1 / 𝑁)))
189 df-neg 10872 . . . . . . . . . 10 --(1 / 𝑁) = (0 − -(1 / 𝑁))
190189a1i 11 . . . . . . . . 9 (𝜑 → --(1 / 𝑁) = (0 − -(1 / 𝑁)))
19161, 76, 77divnegd 11428 . . . . . . . . . 10 (𝜑 → -(1 / 𝑁) = (-1 / 𝑁))
192191oveq2d 7166 . . . . . . . . 9 (𝜑 → (0 − -(1 / 𝑁)) = (0 − (-1 / 𝑁)))
193190, 192eqtr2d 2860 . . . . . . . 8 (𝜑 → (0 − (-1 / 𝑁)) = --(1 / 𝑁))
19476, 77reccld 11408 . . . . . . . . 9 (𝜑 → (1 / 𝑁) ∈ ℂ)
195194negnegd 10987 . . . . . . . 8 (𝜑 → --(1 / 𝑁) = (1 / 𝑁))
196193, 195eqtrd 2859 . . . . . . 7 (𝜑 → (0 − (-1 / 𝑁)) = (1 / 𝑁))
197188, 196eqtrd 2859 . . . . . 6 (𝜑 → ∫(0(,)1)((ℝ D (𝑥 ∈ (0[,]1) ↦ ((-1 / 𝑁) · ((1 − 𝑥)↑𝑁))))‘𝑡) d𝑡 = (1 / 𝑁))
198109, 197eqtr3d 2861 . . . . 5 (𝜑 → ∫(0(,)1)((𝑥 ∈ (0(,)1) ↦ ((1 − 𝑥)↑(𝑁 − 1)))‘𝑡) d𝑡 = (1 / 𝑁))
19937, 198eqtr3d 2861 . . . 4 (𝜑 → ∫(0(,)1)((1 − 𝑡)↑(𝑁 − 1)) d𝑡 = (1 / 𝑁))
20022, 199eqtr3d 2861 . . 3 (𝜑 → ∫(0[,]1)((1 − 𝑡)↑(𝑁 − 1)) d𝑡 = (1 / 𝑁))
201 bcn1 13681 . . . . . . 7 (𝑁 ∈ ℕ0 → (𝑁C1) = 𝑁)
20244, 201syl 17 . . . . . 6 (𝜑 → (𝑁C1) = 𝑁)
203202oveq2d 7166 . . . . 5 (𝜑 → (1 · (𝑁C1)) = (1 · 𝑁))
20476mulid2d 10658 . . . . 5 (𝜑 → (1 · 𝑁) = 𝑁)
205203, 204eqtrd 2859 . . . 4 (𝜑 → (1 · (𝑁C1)) = 𝑁)
206205oveq2d 7166 . . 3 (𝜑 → (1 / (1 · (𝑁C1))) = (1 / 𝑁))
207200, 206eqtr4d 2862 . 2 (𝜑 → ∫(0[,]1)((1 − 𝑡)↑(𝑁 − 1)) d𝑡 = (1 / (1 · (𝑁C1))))
20818, 207eqtrd 2859 1 (𝜑 → ∫(0[,]1)((𝑡↑(1 − 1)) · ((1 − 𝑡)↑(𝑁 − 1))) d𝑡 = (1 / (1 · (𝑁C1))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1084   = wceq 1538  wcel 2115  wne 3014  wral 3133  wss 3920  {cpr 4553   class class class wbr 5053  cmpt 5133  dom cdm 5543  cfv 6344  (class class class)co 7150  cc 10534  cr 10535  0cc0 10536  1c1 10537   · cmul 10541  cle 10675  cmin 10869  -cneg 10870   / cdiv 11296  cn 11637  0cn0 11897  cz 11981  (,)cioo 12738  [,]cicc 12741  cexp 13437  Ccbc 13670  cnccncf 23487  volcvol 24073  𝐿1cibl 24227  citg 24228   D cdv 24472
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5177  ax-sep 5190  ax-nul 5197  ax-pow 5254  ax-pr 5318  ax-un 7456  ax-inf2 9102  ax-cc 9856  ax-cnex 10592  ax-resscn 10593  ax-1cn 10594  ax-icn 10595  ax-addcl 10596  ax-addrcl 10597  ax-mulcl 10598  ax-mulrcl 10599  ax-mulcom 10600  ax-addass 10601  ax-mulass 10602  ax-distr 10603  ax-i2m1 10604  ax-1ne0 10605  ax-1rid 10606  ax-rnegex 10607  ax-rrecex 10608  ax-cnre 10609  ax-pre-lttri 10610  ax-pre-lttrn 10611  ax-pre-ltadd 10612  ax-pre-mulgt0 10613  ax-pre-sup 10614  ax-addf 10615  ax-mulf 10616
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-nel 3119  df-ral 3138  df-rex 3139  df-reu 3140  df-rmo 3141  df-rab 3142  df-v 3483  df-sbc 3760  df-csb 3868  df-dif 3923  df-un 3925  df-in 3927  df-ss 3937  df-pss 3939  df-symdif 4205  df-nul 4278  df-if 4452  df-pw 4525  df-sn 4552  df-pr 4554  df-tp 4556  df-op 4558  df-uni 4826  df-int 4864  df-iun 4908  df-iin 4909  df-disj 5019  df-br 5054  df-opab 5116  df-mpt 5134  df-tr 5160  df-id 5448  df-eprel 5453  df-po 5462  df-so 5463  df-fr 5502  df-se 5503  df-we 5504  df-xp 5549  df-rel 5550  df-cnv 5551  df-co 5552  df-dm 5553  df-rn 5554  df-res 5555  df-ima 5556  df-pred 6136  df-ord 6182  df-on 6183  df-lim 6184  df-suc 6185  df-iota 6303  df-fun 6346  df-fn 6347  df-f 6348  df-f1 6349  df-fo 6350  df-f1o 6351  df-fv 6352  df-isom 6353  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-of 7404  df-ofr 7405  df-om 7576  df-1st 7685  df-2nd 7686  df-supp 7828  df-wrecs 7944  df-recs 8005  df-rdg 8043  df-1o 8099  df-2o 8100  df-oadd 8103  df-omul 8104  df-er 8286  df-map 8405  df-pm 8406  df-ixp 8459  df-en 8507  df-dom 8508  df-sdom 8509  df-fin 8510  df-fsupp 8832  df-fi 8873  df-sup 8904  df-inf 8905  df-oi 8972  df-dju 9328  df-card 9366  df-acn 9369  df-pnf 10676  df-mnf 10677  df-xr 10678  df-ltxr 10679  df-le 10680  df-sub 10871  df-neg 10872  df-div 11297  df-nn 11638  df-2 11700  df-3 11701  df-4 11702  df-5 11703  df-6 11704  df-7 11705  df-8 11706  df-9 11707  df-n0 11898  df-z 11982  df-dec 12099  df-uz 12244  df-q 12349  df-rp 12390  df-xneg 12507  df-xadd 12508  df-xmul 12509  df-ioo 12742  df-ioc 12743  df-ico 12744  df-icc 12745  df-fz 12898  df-fzo 13041  df-fl 13169  df-mod 13245  df-seq 13377  df-exp 13438  df-fac 13642  df-bc 13671  df-hash 13699  df-cj 14461  df-re 14462  df-im 14463  df-sqrt 14597  df-abs 14598  df-clim 14848  df-rlim 14849  df-sum 15046  df-struct 16488  df-ndx 16489  df-slot 16490  df-base 16492  df-sets 16493  df-ress 16494  df-plusg 16581  df-mulr 16582  df-starv 16583  df-sca 16584  df-vsca 16585  df-ip 16586  df-tset 16587  df-ple 16588  df-ds 16590  df-unif 16591  df-hom 16592  df-cco 16593  df-rest 16699  df-topn 16700  df-0g 16718  df-gsum 16719  df-topgen 16720  df-pt 16721  df-prds 16724  df-xrs 16778  df-qtop 16783  df-imas 16784  df-xps 16786  df-mre 16860  df-mrc 16861  df-acs 16863  df-mgm 17855  df-sgrp 17904  df-mnd 17915  df-submnd 17960  df-mulg 18228  df-cntz 18450  df-cmn 18911  df-psmet 20540  df-xmet 20541  df-met 20542  df-bl 20543  df-mopn 20544  df-fbas 20545  df-fg 20546  df-cnfld 20549  df-top 21505  df-topon 21522  df-topsp 21544  df-bases 21557  df-cld 21630  df-ntr 21631  df-cls 21632  df-nei 21709  df-lp 21747  df-perf 21748  df-cn 21838  df-cnp 21839  df-haus 21926  df-cmp 21998  df-tx 22173  df-hmeo 22366  df-fil 22457  df-fm 22549  df-flim 22550  df-flf 22551  df-xms 22933  df-ms 22934  df-tms 22935  df-cncf 23489  df-ovol 24074  df-vol 24075  df-mbf 24229  df-itg1 24230  df-itg2 24231  df-ibl 24232  df-itg 24233  df-0p 24280  df-limc 24475  df-dv 24476
This theorem is referenced by:  lcmineqlem13  39278
  Copyright terms: Public domain W3C validator