Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcmineqlem12 Structured version   Visualization version   GIF version

Theorem lcmineqlem12 40048
Description: Base case for induction. (Contributed by metakunt, 12-May-2024.)
Hypothesis
Ref Expression
lcmineqlem12.1 (𝜑𝑁 ∈ ℕ)
Assertion
Ref Expression
lcmineqlem12 (𝜑 → ∫(0[,]1)((𝑡↑(1 − 1)) · ((1 − 𝑡)↑(𝑁 − 1))) d𝑡 = (1 / (1 · (𝑁C1))))
Distinct variable groups:   𝑡,𝑁   𝜑,𝑡

Proof of Theorem lcmineqlem12
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elunitcn 13200 . . . 4 (𝑡 ∈ (0[,]1) → 𝑡 ∈ ℂ)
2 1m1e0 12045 . . . . . . . 8 (1 − 1) = 0
32oveq2i 7286 . . . . . . 7 (𝑡↑(1 − 1)) = (𝑡↑0)
4 simpr 485 . . . . . . . 8 ((𝜑𝑡 ∈ ℂ) → 𝑡 ∈ ℂ)
54exp0d 13858 . . . . . . 7 ((𝜑𝑡 ∈ ℂ) → (𝑡↑0) = 1)
63, 5eqtrid 2790 . . . . . 6 ((𝜑𝑡 ∈ ℂ) → (𝑡↑(1 − 1)) = 1)
76oveq1d 7290 . . . . 5 ((𝜑𝑡 ∈ ℂ) → ((𝑡↑(1 − 1)) · ((1 − 𝑡)↑(𝑁 − 1))) = (1 · ((1 − 𝑡)↑(𝑁 − 1))))
8 1cnd 10970 . . . . . . . 8 ((𝜑𝑡 ∈ ℂ) → 1 ∈ ℂ)
98, 4subcld 11332 . . . . . . 7 ((𝜑𝑡 ∈ ℂ) → (1 − 𝑡) ∈ ℂ)
10 lcmineqlem12.1 . . . . . . . . 9 (𝜑𝑁 ∈ ℕ)
11 nnm1nn0 12274 . . . . . . . . 9 (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℕ0)
1210, 11syl 17 . . . . . . . 8 (𝜑 → (𝑁 − 1) ∈ ℕ0)
1312adantr 481 . . . . . . 7 ((𝜑𝑡 ∈ ℂ) → (𝑁 − 1) ∈ ℕ0)
149, 13expcld 13864 . . . . . 6 ((𝜑𝑡 ∈ ℂ) → ((1 − 𝑡)↑(𝑁 − 1)) ∈ ℂ)
1514mulid2d 10993 . . . . 5 ((𝜑𝑡 ∈ ℂ) → (1 · ((1 − 𝑡)↑(𝑁 − 1))) = ((1 − 𝑡)↑(𝑁 − 1)))
167, 15eqtrd 2778 . . . 4 ((𝜑𝑡 ∈ ℂ) → ((𝑡↑(1 − 1)) · ((1 − 𝑡)↑(𝑁 − 1))) = ((1 − 𝑡)↑(𝑁 − 1)))
171, 16sylan2 593 . . 3 ((𝜑𝑡 ∈ (0[,]1)) → ((𝑡↑(1 − 1)) · ((1 − 𝑡)↑(𝑁 − 1))) = ((1 − 𝑡)↑(𝑁 − 1)))
1817itgeq2dv 24946 . 2 (𝜑 → ∫(0[,]1)((𝑡↑(1 − 1)) · ((1 − 𝑡)↑(𝑁 − 1))) d𝑡 = ∫(0[,]1)((1 − 𝑡)↑(𝑁 − 1)) d𝑡)
19 0red 10978 . . . . 5 (𝜑 → 0 ∈ ℝ)
20 1red 10976 . . . . 5 (𝜑 → 1 ∈ ℝ)
211, 14sylan2 593 . . . . 5 ((𝜑𝑡 ∈ (0[,]1)) → ((1 − 𝑡)↑(𝑁 − 1)) ∈ ℂ)
2219, 20, 21itgioo 24980 . . . 4 (𝜑 → ∫(0(,)1)((1 − 𝑡)↑(𝑁 − 1)) d𝑡 = ∫(0[,]1)((1 − 𝑡)↑(𝑁 − 1)) d𝑡)
23 eqidd 2739 . . . . . . 7 ((𝜑𝑡 ∈ (0(,)1)) → (𝑥 ∈ (0(,)1) ↦ ((1 − 𝑥)↑(𝑁 − 1))) = (𝑥 ∈ (0(,)1) ↦ ((1 − 𝑥)↑(𝑁 − 1))))
24 oveq2 7283 . . . . . . . . . 10 (𝑥 = 𝑡 → (1 − 𝑥) = (1 − 𝑡))
2524oveq1d 7290 . . . . . . . . 9 (𝑥 = 𝑡 → ((1 − 𝑥)↑(𝑁 − 1)) = ((1 − 𝑡)↑(𝑁 − 1)))
2625adantl 482 . . . . . . . 8 ((𝜑𝑥 = 𝑡) → ((1 − 𝑥)↑(𝑁 − 1)) = ((1 − 𝑡)↑(𝑁 − 1)))
2726adantlr 712 . . . . . . 7 (((𝜑𝑡 ∈ (0(,)1)) ∧ 𝑥 = 𝑡) → ((1 − 𝑥)↑(𝑁 − 1)) = ((1 − 𝑡)↑(𝑁 − 1)))
28 simpr 485 . . . . . . 7 ((𝜑𝑡 ∈ (0(,)1)) → 𝑡 ∈ (0(,)1))
29 1cnd 10970 . . . . . . . . 9 ((𝜑𝑡 ∈ (0(,)1)) → 1 ∈ ℂ)
30 elioore 13109 . . . . . . . . . 10 (𝑡 ∈ (0(,)1) → 𝑡 ∈ ℝ)
31 recn 10961 . . . . . . . . . 10 (𝑡 ∈ ℝ → 𝑡 ∈ ℂ)
3228, 30, 313syl 18 . . . . . . . . 9 ((𝜑𝑡 ∈ (0(,)1)) → 𝑡 ∈ ℂ)
3329, 32subcld 11332 . . . . . . . 8 ((𝜑𝑡 ∈ (0(,)1)) → (1 − 𝑡) ∈ ℂ)
3412adantr 481 . . . . . . . 8 ((𝜑𝑡 ∈ (0(,)1)) → (𝑁 − 1) ∈ ℕ0)
3533, 34expcld 13864 . . . . . . 7 ((𝜑𝑡 ∈ (0(,)1)) → ((1 − 𝑡)↑(𝑁 − 1)) ∈ ℂ)
3623, 27, 28, 35fvmptd 6882 . . . . . 6 ((𝜑𝑡 ∈ (0(,)1)) → ((𝑥 ∈ (0(,)1) ↦ ((1 − 𝑥)↑(𝑁 − 1)))‘𝑡) = ((1 − 𝑡)↑(𝑁 − 1)))
3736itgeq2dv 24946 . . . . 5 (𝜑 → ∫(0(,)1)((𝑥 ∈ (0(,)1) ↦ ((1 − 𝑥)↑(𝑁 − 1)))‘𝑡) d𝑡 = ∫(0(,)1)((1 − 𝑡)↑(𝑁 − 1)) d𝑡)
38 cnelprrecn 10964 . . . . . . . . . . . . 13 ℂ ∈ {ℝ, ℂ}
3938a1i 11 . . . . . . . . . . . 12 (𝜑 → ℂ ∈ {ℝ, ℂ})
40 1cnd 10970 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ℂ) → 1 ∈ ℂ)
41 simpr 485 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ℂ) → 𝑥 ∈ ℂ)
4240, 41subcld 11332 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ℂ) → (1 − 𝑥) ∈ ℂ)
43 nnnn0 12240 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
4410, 43syl 17 . . . . . . . . . . . . . 14 (𝜑𝑁 ∈ ℕ0)
4544adantr 481 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ℂ) → 𝑁 ∈ ℕ0)
4642, 45expcld 13864 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℂ) → ((1 − 𝑥)↑𝑁) ∈ ℂ)
4745nn0cnd 12295 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ℂ) → 𝑁 ∈ ℂ)
4812adantr 481 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ ℂ) → (𝑁 − 1) ∈ ℕ0)
4942, 48expcld 13864 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ℂ) → ((1 − 𝑥)↑(𝑁 − 1)) ∈ ℂ)
5047, 49mulcld 10995 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ℂ) → (𝑁 · ((1 − 𝑥)↑(𝑁 − 1))) ∈ ℂ)
5140negcld 11319 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ℂ) → -1 ∈ ℂ)
5250, 51mulcld 10995 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℂ) → ((𝑁 · ((1 − 𝑥)↑(𝑁 − 1))) · -1) ∈ ℂ)
53 simpr 485 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ ℂ) → 𝑦 ∈ ℂ)
5444adantr 481 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ ℂ) → 𝑁 ∈ ℕ0)
5553, 54expcld 13864 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ ℂ) → (𝑦𝑁) ∈ ℂ)
5654nn0cnd 12295 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ ℂ) → 𝑁 ∈ ℂ)
5712adantr 481 . . . . . . . . . . . . . . 15 ((𝜑𝑦 ∈ ℂ) → (𝑁 − 1) ∈ ℕ0)
5853, 57expcld 13864 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ ℂ) → (𝑦↑(𝑁 − 1)) ∈ ℂ)
5956, 58mulcld 10995 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ ℂ) → (𝑁 · (𝑦↑(𝑁 − 1))) ∈ ℂ)
60 0cnd 10968 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ ℂ) → 0 ∈ ℂ)
61 1cnd 10970 . . . . . . . . . . . . . . . 16 (𝜑 → 1 ∈ ℂ)
6239, 61dvmptc 25122 . . . . . . . . . . . . . . 15 (𝜑 → (ℂ D (𝑥 ∈ ℂ ↦ 1)) = (𝑥 ∈ ℂ ↦ 0))
6339dvmptid 25121 . . . . . . . . . . . . . . 15 (𝜑 → (ℂ D (𝑥 ∈ ℂ ↦ 𝑥)) = (𝑥 ∈ ℂ ↦ 1))
6439, 40, 60, 62, 41, 40, 63dvmptsub 25131 . . . . . . . . . . . . . 14 (𝜑 → (ℂ D (𝑥 ∈ ℂ ↦ (1 − 𝑥))) = (𝑥 ∈ ℂ ↦ (0 − 1)))
65 df-neg 11208 . . . . . . . . . . . . . . . 16 -1 = (0 − 1)
6665a1i 11 . . . . . . . . . . . . . . 15 (𝜑 → -1 = (0 − 1))
6766mpteq2dv 5176 . . . . . . . . . . . . . 14 (𝜑 → (𝑥 ∈ ℂ ↦ -1) = (𝑥 ∈ ℂ ↦ (0 − 1)))
6864, 67eqtr4d 2781 . . . . . . . . . . . . 13 (𝜑 → (ℂ D (𝑥 ∈ ℂ ↦ (1 − 𝑥))) = (𝑥 ∈ ℂ ↦ -1))
69 dvexp 25117 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ → (ℂ D (𝑦 ∈ ℂ ↦ (𝑦𝑁))) = (𝑦 ∈ ℂ ↦ (𝑁 · (𝑦↑(𝑁 − 1)))))
7010, 69syl 17 . . . . . . . . . . . . 13 (𝜑 → (ℂ D (𝑦 ∈ ℂ ↦ (𝑦𝑁))) = (𝑦 ∈ ℂ ↦ (𝑁 · (𝑦↑(𝑁 − 1)))))
71 oveq1 7282 . . . . . . . . . . . . 13 (𝑦 = (1 − 𝑥) → (𝑦𝑁) = ((1 − 𝑥)↑𝑁))
72 oveq1 7282 . . . . . . . . . . . . . 14 (𝑦 = (1 − 𝑥) → (𝑦↑(𝑁 − 1)) = ((1 − 𝑥)↑(𝑁 − 1)))
7372oveq2d 7291 . . . . . . . . . . . . 13 (𝑦 = (1 − 𝑥) → (𝑁 · (𝑦↑(𝑁 − 1))) = (𝑁 · ((1 − 𝑥)↑(𝑁 − 1))))
7439, 39, 42, 51, 55, 59, 68, 70, 71, 73dvmptco 25136 . . . . . . . . . . . 12 (𝜑 → (ℂ D (𝑥 ∈ ℂ ↦ ((1 − 𝑥)↑𝑁))) = (𝑥 ∈ ℂ ↦ ((𝑁 · ((1 − 𝑥)↑(𝑁 − 1))) · -1)))
7561negcld 11319 . . . . . . . . . . . . 13 (𝜑 → -1 ∈ ℂ)
7610nncnd 11989 . . . . . . . . . . . . 13 (𝜑𝑁 ∈ ℂ)
7710nnne0d 12023 . . . . . . . . . . . . 13 (𝜑𝑁 ≠ 0)
7875, 76, 77divcld 11751 . . . . . . . . . . . 12 (𝜑 → (-1 / 𝑁) ∈ ℂ)
7939, 46, 52, 74, 78dvmptcmul 25128 . . . . . . . . . . 11 (𝜑 → (ℂ D (𝑥 ∈ ℂ ↦ ((-1 / 𝑁) · ((1 − 𝑥)↑𝑁)))) = (𝑥 ∈ ℂ ↦ ((-1 / 𝑁) · ((𝑁 · ((1 − 𝑥)↑(𝑁 − 1))) · -1))))
8078adantr 481 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ ℂ) → (-1 / 𝑁) ∈ ℂ)
8180, 50, 51mulassd 10998 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ ℂ) → (((-1 / 𝑁) · (𝑁 · ((1 − 𝑥)↑(𝑁 − 1)))) · -1) = ((-1 / 𝑁) · ((𝑁 · ((1 − 𝑥)↑(𝑁 − 1))) · -1)))
8281eqcomd 2744 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ ℂ) → ((-1 / 𝑁) · ((𝑁 · ((1 − 𝑥)↑(𝑁 − 1))) · -1)) = (((-1 / 𝑁) · (𝑁 · ((1 − 𝑥)↑(𝑁 − 1)))) · -1))
8380, 47, 49mulassd 10998 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ ℂ) → (((-1 / 𝑁) · 𝑁) · ((1 − 𝑥)↑(𝑁 − 1))) = ((-1 / 𝑁) · (𝑁 · ((1 − 𝑥)↑(𝑁 − 1)))))
8483oveq1d 7290 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ ℂ) → ((((-1 / 𝑁) · 𝑁) · ((1 − 𝑥)↑(𝑁 − 1))) · -1) = (((-1 / 𝑁) · (𝑁 · ((1 − 𝑥)↑(𝑁 − 1)))) · -1))
8584eqcomd 2744 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ ℂ) → (((-1 / 𝑁) · (𝑁 · ((1 − 𝑥)↑(𝑁 − 1)))) · -1) = ((((-1 / 𝑁) · 𝑁) · ((1 − 𝑥)↑(𝑁 − 1))) · -1))
8682, 85eqtrd 2778 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ ℂ) → ((-1 / 𝑁) · ((𝑁 · ((1 − 𝑥)↑(𝑁 − 1))) · -1)) = ((((-1 / 𝑁) · 𝑁) · ((1 − 𝑥)↑(𝑁 − 1))) · -1))
8777adantr 481 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ ℂ) → 𝑁 ≠ 0)
8851, 47, 87divcan1d 11752 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ ℂ) → ((-1 / 𝑁) · 𝑁) = -1)
8988oveq1d 7290 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ ℂ) → (((-1 / 𝑁) · 𝑁) · ((1 − 𝑥)↑(𝑁 − 1))) = (-1 · ((1 − 𝑥)↑(𝑁 − 1))))
9089oveq1d 7290 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ ℂ) → ((((-1 / 𝑁) · 𝑁) · ((1 − 𝑥)↑(𝑁 − 1))) · -1) = ((-1 · ((1 − 𝑥)↑(𝑁 − 1))) · -1))
9186, 90eqtrd 2778 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ℂ) → ((-1 / 𝑁) · ((𝑁 · ((1 − 𝑥)↑(𝑁 − 1))) · -1)) = ((-1 · ((1 − 𝑥)↑(𝑁 − 1))) · -1))
9251, 51, 49mul32d 11185 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ ℂ) → ((-1 · -1) · ((1 − 𝑥)↑(𝑁 − 1))) = ((-1 · ((1 − 𝑥)↑(𝑁 − 1))) · -1))
9392eqcomd 2744 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ℂ) → ((-1 · ((1 − 𝑥)↑(𝑁 − 1))) · -1) = ((-1 · -1) · ((1 − 𝑥)↑(𝑁 − 1))))
9491, 93eqtrd 2778 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ℂ) → ((-1 / 𝑁) · ((𝑁 · ((1 − 𝑥)↑(𝑁 − 1))) · -1)) = ((-1 · -1) · ((1 − 𝑥)↑(𝑁 − 1))))
9540, 40mul2negd 11430 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ ℂ) → (-1 · -1) = (1 · 1))
96 1t1e1 12135 . . . . . . . . . . . . . . . 16 (1 · 1) = 1
9795, 96eqtrdi 2794 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ ℂ) → (-1 · -1) = 1)
9897oveq1d 7290 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ℂ) → ((-1 · -1) · ((1 − 𝑥)↑(𝑁 − 1))) = (1 · ((1 − 𝑥)↑(𝑁 − 1))))
9949mulid2d 10993 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ℂ) → (1 · ((1 − 𝑥)↑(𝑁 − 1))) = ((1 − 𝑥)↑(𝑁 − 1)))
10098, 99eqtrd 2778 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ℂ) → ((-1 · -1) · ((1 − 𝑥)↑(𝑁 − 1))) = ((1 − 𝑥)↑(𝑁 − 1)))
10194, 100eqtrd 2778 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℂ) → ((-1 / 𝑁) · ((𝑁 · ((1 − 𝑥)↑(𝑁 − 1))) · -1)) = ((1 − 𝑥)↑(𝑁 − 1)))
102101mpteq2dva 5174 . . . . . . . . . . 11 (𝜑 → (𝑥 ∈ ℂ ↦ ((-1 / 𝑁) · ((𝑁 · ((1 − 𝑥)↑(𝑁 − 1))) · -1))) = (𝑥 ∈ ℂ ↦ ((1 − 𝑥)↑(𝑁 − 1))))
10379, 102eqtrd 2778 . . . . . . . . . 10 (𝜑 → (ℂ D (𝑥 ∈ ℂ ↦ ((-1 / 𝑁) · ((1 − 𝑥)↑𝑁)))) = (𝑥 ∈ ℂ ↦ ((1 − 𝑥)↑(𝑁 − 1))))
10480, 46mulcld 10995 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℂ) → ((-1 / 𝑁) · ((1 − 𝑥)↑𝑁)) ∈ ℂ)
105103, 104, 49resdvopclptsd 40036 . . . . . . . . 9 (𝜑 → (ℝ D (𝑥 ∈ (0[,]1) ↦ ((-1 / 𝑁) · ((1 − 𝑥)↑𝑁)))) = (𝑥 ∈ (0(,)1) ↦ ((1 − 𝑥)↑(𝑁 − 1))))
106105fveq1d 6776 . . . . . . . 8 (𝜑 → ((ℝ D (𝑥 ∈ (0[,]1) ↦ ((-1 / 𝑁) · ((1 − 𝑥)↑𝑁))))‘𝑡) = ((𝑥 ∈ (0(,)1) ↦ ((1 − 𝑥)↑(𝑁 − 1)))‘𝑡))
107106ralrimivw 3104 . . . . . . 7 (𝜑 → ∀𝑡 ∈ (0(,)1)((ℝ D (𝑥 ∈ (0[,]1) ↦ ((-1 / 𝑁) · ((1 − 𝑥)↑𝑁))))‘𝑡) = ((𝑥 ∈ (0(,)1) ↦ ((1 − 𝑥)↑(𝑁 − 1)))‘𝑡))
108 itgeq2 24942 . . . . . . 7 (∀𝑡 ∈ (0(,)1)((ℝ D (𝑥 ∈ (0[,]1) ↦ ((-1 / 𝑁) · ((1 − 𝑥)↑𝑁))))‘𝑡) = ((𝑥 ∈ (0(,)1) ↦ ((1 − 𝑥)↑(𝑁 − 1)))‘𝑡) → ∫(0(,)1)((ℝ D (𝑥 ∈ (0[,]1) ↦ ((-1 / 𝑁) · ((1 − 𝑥)↑𝑁))))‘𝑡) d𝑡 = ∫(0(,)1)((𝑥 ∈ (0(,)1) ↦ ((1 − 𝑥)↑(𝑁 − 1)))‘𝑡) d𝑡)
109107, 108syl 17 . . . . . 6 (𝜑 → ∫(0(,)1)((ℝ D (𝑥 ∈ (0[,]1) ↦ ((-1 / 𝑁) · ((1 − 𝑥)↑𝑁))))‘𝑡) d𝑡 = ∫(0(,)1)((𝑥 ∈ (0(,)1) ↦ ((1 − 𝑥)↑(𝑁 − 1)))‘𝑡) d𝑡)
110 0le1 11498 . . . . . . . . . 10 0 ≤ 1
111110a1i 11 . . . . . . . . 9 (𝜑 → 0 ≤ 1)
112 nfv 1917 . . . . . . . . . . . 12 𝑥𝜑
113 ax-1cn 10929 . . . . . . . . . . . . . . 15 1 ∈ ℂ
114 ssid 3943 . . . . . . . . . . . . . . 15 ℂ ⊆ ℂ
115 cncfmptc 24075 . . . . . . . . . . . . . . 15 ((1 ∈ ℂ ∧ ℂ ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑥 ∈ ℂ ↦ 1) ∈ (ℂ–cn→ℂ))
116113, 114, 114, 115mp3an 1460 . . . . . . . . . . . . . 14 (𝑥 ∈ ℂ ↦ 1) ∈ (ℂ–cn→ℂ)
117116a1i 11 . . . . . . . . . . . . 13 (𝜑 → (𝑥 ∈ ℂ ↦ 1) ∈ (ℂ–cn→ℂ))
118 cncfmptid 24076 . . . . . . . . . . . . . . 15 ((ℂ ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑥 ∈ ℂ ↦ 𝑥) ∈ (ℂ–cn→ℂ))
119114, 114, 118mp2an 689 . . . . . . . . . . . . . 14 (𝑥 ∈ ℂ ↦ 𝑥) ∈ (ℂ–cn→ℂ)
120119a1i 11 . . . . . . . . . . . . 13 (𝜑 → (𝑥 ∈ ℂ ↦ 𝑥) ∈ (ℂ–cn→ℂ))
121117, 120subcncf 24609 . . . . . . . . . . . 12 (𝜑 → (𝑥 ∈ ℂ ↦ (1 − 𝑥)) ∈ (ℂ–cn→ℂ))
122 expcncf 24089 . . . . . . . . . . . . 13 ((𝑁 − 1) ∈ ℕ0 → (𝑦 ∈ ℂ ↦ (𝑦↑(𝑁 − 1))) ∈ (ℂ–cn→ℂ))
12312, 122syl 17 . . . . . . . . . . . 12 (𝜑 → (𝑦 ∈ ℂ ↦ (𝑦↑(𝑁 − 1))) ∈ (ℂ–cn→ℂ))
124 ssidd 3944 . . . . . . . . . . . 12 (𝜑 → ℂ ⊆ ℂ)
125112, 121, 123, 124, 72cncfcompt2 24071 . . . . . . . . . . 11 (𝜑 → (𝑥 ∈ ℂ ↦ ((1 − 𝑥)↑(𝑁 − 1))) ∈ (ℂ–cn→ℂ))
126125resopunitintvd 40034 . . . . . . . . . 10 (𝜑 → (𝑥 ∈ (0(,)1) ↦ ((1 − 𝑥)↑(𝑁 − 1))) ∈ ((0(,)1)–cn→ℂ))
127105eleq1d 2823 . . . . . . . . . 10 (𝜑 → ((ℝ D (𝑥 ∈ (0[,]1) ↦ ((-1 / 𝑁) · ((1 − 𝑥)↑𝑁)))) ∈ ((0(,)1)–cn→ℂ) ↔ (𝑥 ∈ (0(,)1) ↦ ((1 − 𝑥)↑(𝑁 − 1))) ∈ ((0(,)1)–cn→ℂ)))
128126, 127mpbird 256 . . . . . . . . 9 (𝜑 → (ℝ D (𝑥 ∈ (0[,]1) ↦ ((-1 / 𝑁) · ((1 − 𝑥)↑𝑁)))) ∈ ((0(,)1)–cn→ℂ))
129 ioossicc 13165 . . . . . . . . . . . 12 (0(,)1) ⊆ (0[,]1)
130129a1i 11 . . . . . . . . . . 11 (𝜑 → (0(,)1) ⊆ (0[,]1))
131 ioombl 24729 . . . . . . . . . . . 12 (0(,)1) ∈ dom vol
132131a1i 11 . . . . . . . . . . 11 (𝜑 → (0(,)1) ∈ dom vol)
133 elunitcn 13200 . . . . . . . . . . . 12 (𝑥 ∈ (0[,]1) → 𝑥 ∈ ℂ)
134133, 49sylan2 593 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (0[,]1)) → ((1 − 𝑥)↑(𝑁 − 1)) ∈ ℂ)
135114a1i 11 . . . . . . . . . . . . . . 15 (𝜑 → ℂ ⊆ ℂ)
136112, 121, 123, 135, 72cncfcompt2 24071 . . . . . . . . . . . . . 14 (𝜑 → (𝑥 ∈ ℂ ↦ ((1 − 𝑥)↑(𝑁 − 1))) ∈ (ℂ–cn→ℂ))
137136resclunitintvd 40035 . . . . . . . . . . . . 13 (𝜑 → (𝑥 ∈ (0[,]1) ↦ ((1 − 𝑥)↑(𝑁 − 1))) ∈ ((0[,]1)–cn→ℂ))
13819, 20, 1373jca 1127 . . . . . . . . . . . 12 (𝜑 → (0 ∈ ℝ ∧ 1 ∈ ℝ ∧ (𝑥 ∈ (0[,]1) ↦ ((1 − 𝑥)↑(𝑁 − 1))) ∈ ((0[,]1)–cn→ℂ)))
139 cnicciblnc 25007 . . . . . . . . . . . 12 ((0 ∈ ℝ ∧ 1 ∈ ℝ ∧ (𝑥 ∈ (0[,]1) ↦ ((1 − 𝑥)↑(𝑁 − 1))) ∈ ((0[,]1)–cn→ℂ)) → (𝑥 ∈ (0[,]1) ↦ ((1 − 𝑥)↑(𝑁 − 1))) ∈ 𝐿1)
140138, 139syl 17 . . . . . . . . . . 11 (𝜑 → (𝑥 ∈ (0[,]1) ↦ ((1 − 𝑥)↑(𝑁 − 1))) ∈ 𝐿1)
141130, 132, 134, 140iblss 24969 . . . . . . . . . 10 (𝜑 → (𝑥 ∈ (0(,)1) ↦ ((1 − 𝑥)↑(𝑁 − 1))) ∈ 𝐿1)
142105, 141eqeltrd 2839 . . . . . . . . 9 (𝜑 → (ℝ D (𝑥 ∈ (0[,]1) ↦ ((-1 / 𝑁) · ((1 − 𝑥)↑𝑁)))) ∈ 𝐿1)
143 cncfmptc 24075 . . . . . . . . . . . . 13 (((-1 / 𝑁) ∈ ℂ ∧ ℂ ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑥 ∈ ℂ ↦ (-1 / 𝑁)) ∈ (ℂ–cn→ℂ))
144114, 114, 143mp3an23 1452 . . . . . . . . . . . 12 ((-1 / 𝑁) ∈ ℂ → (𝑥 ∈ ℂ ↦ (-1 / 𝑁)) ∈ (ℂ–cn→ℂ))
14578, 144syl 17 . . . . . . . . . . 11 (𝜑 → (𝑥 ∈ ℂ ↦ (-1 / 𝑁)) ∈ (ℂ–cn→ℂ))
146145resclunitintvd 40035 . . . . . . . . . 10 (𝜑 → (𝑥 ∈ (0[,]1) ↦ (-1 / 𝑁)) ∈ ((0[,]1)–cn→ℂ))
147 expcncf 24089 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ0 → (𝑦 ∈ ℂ ↦ (𝑦𝑁)) ∈ (ℂ–cn→ℂ))
14844, 147syl 17 . . . . . . . . . . . 12 (𝜑 → (𝑦 ∈ ℂ ↦ (𝑦𝑁)) ∈ (ℂ–cn→ℂ))
149112, 121, 148, 124, 71cncfcompt2 24071 . . . . . . . . . . 11 (𝜑 → (𝑥 ∈ ℂ ↦ ((1 − 𝑥)↑𝑁)) ∈ (ℂ–cn→ℂ))
150149resclunitintvd 40035 . . . . . . . . . 10 (𝜑 → (𝑥 ∈ (0[,]1) ↦ ((1 − 𝑥)↑𝑁)) ∈ ((0[,]1)–cn→ℂ))
151146, 150mulcncf 24610 . . . . . . . . 9 (𝜑 → (𝑥 ∈ (0[,]1) ↦ ((-1 / 𝑁) · ((1 − 𝑥)↑𝑁))) ∈ ((0[,]1)–cn→ℂ))
15219, 20, 111, 128, 142, 151ftc2 25208 . . . . . . . 8 (𝜑 → ∫(0(,)1)((ℝ D (𝑥 ∈ (0[,]1) ↦ ((-1 / 𝑁) · ((1 − 𝑥)↑𝑁))))‘𝑡) d𝑡 = (((𝑥 ∈ (0[,]1) ↦ ((-1 / 𝑁) · ((1 − 𝑥)↑𝑁)))‘1) − ((𝑥 ∈ (0[,]1) ↦ ((-1 / 𝑁) · ((1 − 𝑥)↑𝑁)))‘0)))
153 eqidd 2739 . . . . . . . . . 10 (𝜑 → (𝑥 ∈ (0[,]1) ↦ ((-1 / 𝑁) · ((1 − 𝑥)↑𝑁))) = (𝑥 ∈ (0[,]1) ↦ ((-1 / 𝑁) · ((1 − 𝑥)↑𝑁))))
154 simpr 485 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 = 1) → 𝑥 = 1)
155154oveq2d 7291 . . . . . . . . . . . . . . 15 ((𝜑𝑥 = 1) → (1 − 𝑥) = (1 − 1))
156155, 2eqtrdi 2794 . . . . . . . . . . . . . 14 ((𝜑𝑥 = 1) → (1 − 𝑥) = 0)
157156oveq1d 7290 . . . . . . . . . . . . 13 ((𝜑𝑥 = 1) → ((1 − 𝑥)↑𝑁) = (0↑𝑁))
158 0exp 13818 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℕ → (0↑𝑁) = 0)
15910, 158syl 17 . . . . . . . . . . . . . 14 (𝜑 → (0↑𝑁) = 0)
160159adantr 481 . . . . . . . . . . . . 13 ((𝜑𝑥 = 1) → (0↑𝑁) = 0)
161157, 160eqtrd 2778 . . . . . . . . . . . 12 ((𝜑𝑥 = 1) → ((1 − 𝑥)↑𝑁) = 0)
162161oveq2d 7291 . . . . . . . . . . 11 ((𝜑𝑥 = 1) → ((-1 / 𝑁) · ((1 − 𝑥)↑𝑁)) = ((-1 / 𝑁) · 0))
16378mul01d 11174 . . . . . . . . . . . 12 (𝜑 → ((-1 / 𝑁) · 0) = 0)
164163adantr 481 . . . . . . . . . . 11 ((𝜑𝑥 = 1) → ((-1 / 𝑁) · 0) = 0)
165162, 164eqtrd 2778 . . . . . . . . . 10 ((𝜑𝑥 = 1) → ((-1 / 𝑁) · ((1 − 𝑥)↑𝑁)) = 0)
166 1elunit 13202 . . . . . . . . . . 11 1 ∈ (0[,]1)
167166a1i 11 . . . . . . . . . 10 (𝜑 → 1 ∈ (0[,]1))
168 0cnd 10968 . . . . . . . . . 10 (𝜑 → 0 ∈ ℂ)
169153, 165, 167, 168fvmptd 6882 . . . . . . . . 9 (𝜑 → ((𝑥 ∈ (0[,]1) ↦ ((-1 / 𝑁) · ((1 − 𝑥)↑𝑁)))‘1) = 0)
170 simpr 485 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 = 0) → 𝑥 = 0)
171170oveq2d 7291 . . . . . . . . . . . . . . 15 ((𝜑𝑥 = 0) → (1 − 𝑥) = (1 − 0))
172 1m0e1 12094 . . . . . . . . . . . . . . 15 (1 − 0) = 1
173171, 172eqtrdi 2794 . . . . . . . . . . . . . 14 ((𝜑𝑥 = 0) → (1 − 𝑥) = 1)
174173oveq1d 7290 . . . . . . . . . . . . 13 ((𝜑𝑥 = 0) → ((1 − 𝑥)↑𝑁) = (1↑𝑁))
17544nn0zd 12424 . . . . . . . . . . . . . . 15 (𝜑𝑁 ∈ ℤ)
176 1exp 13812 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℤ → (1↑𝑁) = 1)
177175, 176syl 17 . . . . . . . . . . . . . 14 (𝜑 → (1↑𝑁) = 1)
178177adantr 481 . . . . . . . . . . . . 13 ((𝜑𝑥 = 0) → (1↑𝑁) = 1)
179174, 178eqtrd 2778 . . . . . . . . . . . 12 ((𝜑𝑥 = 0) → ((1 − 𝑥)↑𝑁) = 1)
180179oveq2d 7291 . . . . . . . . . . 11 ((𝜑𝑥 = 0) → ((-1 / 𝑁) · ((1 − 𝑥)↑𝑁)) = ((-1 / 𝑁) · 1))
18178adantr 481 . . . . . . . . . . . 12 ((𝜑𝑥 = 0) → (-1 / 𝑁) ∈ ℂ)
182181mulid1d 10992 . . . . . . . . . . 11 ((𝜑𝑥 = 0) → ((-1 / 𝑁) · 1) = (-1 / 𝑁))
183180, 182eqtrd 2778 . . . . . . . . . 10 ((𝜑𝑥 = 0) → ((-1 / 𝑁) · ((1 − 𝑥)↑𝑁)) = (-1 / 𝑁))
184 0elunit 13201 . . . . . . . . . . 11 0 ∈ (0[,]1)
185184a1i 11 . . . . . . . . . 10 (𝜑 → 0 ∈ (0[,]1))
186153, 183, 185, 78fvmptd 6882 . . . . . . . . 9 (𝜑 → ((𝑥 ∈ (0[,]1) ↦ ((-1 / 𝑁) · ((1 − 𝑥)↑𝑁)))‘0) = (-1 / 𝑁))
187169, 186oveq12d 7293 . . . . . . . 8 (𝜑 → (((𝑥 ∈ (0[,]1) ↦ ((-1 / 𝑁) · ((1 − 𝑥)↑𝑁)))‘1) − ((𝑥 ∈ (0[,]1) ↦ ((-1 / 𝑁) · ((1 − 𝑥)↑𝑁)))‘0)) = (0 − (-1 / 𝑁)))
188152, 187eqtrd 2778 . . . . . . 7 (𝜑 → ∫(0(,)1)((ℝ D (𝑥 ∈ (0[,]1) ↦ ((-1 / 𝑁) · ((1 − 𝑥)↑𝑁))))‘𝑡) d𝑡 = (0 − (-1 / 𝑁)))
189 df-neg 11208 . . . . . . . . . 10 --(1 / 𝑁) = (0 − -(1 / 𝑁))
190189a1i 11 . . . . . . . . 9 (𝜑 → --(1 / 𝑁) = (0 − -(1 / 𝑁)))
19161, 76, 77divnegd 11764 . . . . . . . . . 10 (𝜑 → -(1 / 𝑁) = (-1 / 𝑁))
192191oveq2d 7291 . . . . . . . . 9 (𝜑 → (0 − -(1 / 𝑁)) = (0 − (-1 / 𝑁)))
193190, 192eqtr2d 2779 . . . . . . . 8 (𝜑 → (0 − (-1 / 𝑁)) = --(1 / 𝑁))
19476, 77reccld 11744 . . . . . . . . 9 (𝜑 → (1 / 𝑁) ∈ ℂ)
195194negnegd 11323 . . . . . . . 8 (𝜑 → --(1 / 𝑁) = (1 / 𝑁))
196193, 195eqtrd 2778 . . . . . . 7 (𝜑 → (0 − (-1 / 𝑁)) = (1 / 𝑁))
197188, 196eqtrd 2778 . . . . . 6 (𝜑 → ∫(0(,)1)((ℝ D (𝑥 ∈ (0[,]1) ↦ ((-1 / 𝑁) · ((1 − 𝑥)↑𝑁))))‘𝑡) d𝑡 = (1 / 𝑁))
198109, 197eqtr3d 2780 . . . . 5 (𝜑 → ∫(0(,)1)((𝑥 ∈ (0(,)1) ↦ ((1 − 𝑥)↑(𝑁 − 1)))‘𝑡) d𝑡 = (1 / 𝑁))
19937, 198eqtr3d 2780 . . . 4 (𝜑 → ∫(0(,)1)((1 − 𝑡)↑(𝑁 − 1)) d𝑡 = (1 / 𝑁))
20022, 199eqtr3d 2780 . . 3 (𝜑 → ∫(0[,]1)((1 − 𝑡)↑(𝑁 − 1)) d𝑡 = (1 / 𝑁))
201 bcn1 14027 . . . . . . 7 (𝑁 ∈ ℕ0 → (𝑁C1) = 𝑁)
20244, 201syl 17 . . . . . 6 (𝜑 → (𝑁C1) = 𝑁)
203202oveq2d 7291 . . . . 5 (𝜑 → (1 · (𝑁C1)) = (1 · 𝑁))
20476mulid2d 10993 . . . . 5 (𝜑 → (1 · 𝑁) = 𝑁)
205203, 204eqtrd 2778 . . . 4 (𝜑 → (1 · (𝑁C1)) = 𝑁)
206205oveq2d 7291 . . 3 (𝜑 → (1 / (1 · (𝑁C1))) = (1 / 𝑁))
207200, 206eqtr4d 2781 . 2 (𝜑 → ∫(0[,]1)((1 − 𝑡)↑(𝑁 − 1)) d𝑡 = (1 / (1 · (𝑁C1))))
20818, 207eqtrd 2778 1 (𝜑 → ∫(0[,]1)((𝑡↑(1 − 1)) · ((1 − 𝑡)↑(𝑁 − 1))) d𝑡 = (1 / (1 · (𝑁C1))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086   = wceq 1539  wcel 2106  wne 2943  wral 3064  wss 3887  {cpr 4563   class class class wbr 5074  cmpt 5157  dom cdm 5589  cfv 6433  (class class class)co 7275  cc 10869  cr 10870  0cc0 10871  1c1 10872   · cmul 10876  cle 11010  cmin 11205  -cneg 11206   / cdiv 11632  cn 11973  0cn0 12233  cz 12319  (,)cioo 13079  [,]cicc 13082  cexp 13782  Ccbc 14016  cnccncf 24039  volcvol 24627  𝐿1cibl 24781  citg 24782   D cdv 25027
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399  ax-cc 10191  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949  ax-addf 10950  ax-mulf 10951
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-symdif 4176  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-iin 4927  df-disj 5040  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-of 7533  df-ofr 7534  df-om 7713  df-1st 7831  df-2nd 7832  df-supp 7978  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-2o 8298  df-oadd 8301  df-omul 8302  df-er 8498  df-map 8617  df-pm 8618  df-ixp 8686  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-fsupp 9129  df-fi 9170  df-sup 9201  df-inf 9202  df-oi 9269  df-dju 9659  df-card 9697  df-acn 9700  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-dec 12438  df-uz 12583  df-q 12689  df-rp 12731  df-xneg 12848  df-xadd 12849  df-xmul 12850  df-ioo 13083  df-ioc 13084  df-ico 13085  df-icc 13086  df-fz 13240  df-fzo 13383  df-fl 13512  df-mod 13590  df-seq 13722  df-exp 13783  df-fac 13988  df-bc 14017  df-hash 14045  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-clim 15197  df-rlim 15198  df-sum 15398  df-struct 16848  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-mulr 16976  df-starv 16977  df-sca 16978  df-vsca 16979  df-ip 16980  df-tset 16981  df-ple 16982  df-ds 16984  df-unif 16985  df-hom 16986  df-cco 16987  df-rest 17133  df-topn 17134  df-0g 17152  df-gsum 17153  df-topgen 17154  df-pt 17155  df-prds 17158  df-xrs 17213  df-qtop 17218  df-imas 17219  df-xps 17221  df-mre 17295  df-mrc 17296  df-acs 17298  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-submnd 18431  df-mulg 18701  df-cntz 18923  df-cmn 19388  df-psmet 20589  df-xmet 20590  df-met 20591  df-bl 20592  df-mopn 20593  df-fbas 20594  df-fg 20595  df-cnfld 20598  df-top 22043  df-topon 22060  df-topsp 22082  df-bases 22096  df-cld 22170  df-ntr 22171  df-cls 22172  df-nei 22249  df-lp 22287  df-perf 22288  df-cn 22378  df-cnp 22379  df-haus 22466  df-cmp 22538  df-tx 22713  df-hmeo 22906  df-fil 22997  df-fm 23089  df-flim 23090  df-flf 23091  df-xms 23473  df-ms 23474  df-tms 23475  df-cncf 24041  df-ovol 24628  df-vol 24629  df-mbf 24783  df-itg1 24784  df-itg2 24785  df-ibl 24786  df-itg 24787  df-0p 24834  df-limc 25030  df-dv 25031
This theorem is referenced by:  lcmineqlem13  40049
  Copyright terms: Public domain W3C validator