Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcmineqlem12 Structured version   Visualization version   GIF version

Theorem lcmineqlem12 42041
Description: Base case for induction. (Contributed by metakunt, 12-May-2024.)
Hypothesis
Ref Expression
lcmineqlem12.1 (𝜑𝑁 ∈ ℕ)
Assertion
Ref Expression
lcmineqlem12 (𝜑 → ∫(0[,]1)((𝑡↑(1 − 1)) · ((1 − 𝑡)↑(𝑁 − 1))) d𝑡 = (1 / (1 · (𝑁C1))))
Distinct variable groups:   𝑡,𝑁   𝜑,𝑡

Proof of Theorem lcmineqlem12
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elunitcn 13508 . . . 4 (𝑡 ∈ (0[,]1) → 𝑡 ∈ ℂ)
2 1m1e0 12338 . . . . . . . 8 (1 − 1) = 0
32oveq2i 7442 . . . . . . 7 (𝑡↑(1 − 1)) = (𝑡↑0)
4 simpr 484 . . . . . . . 8 ((𝜑𝑡 ∈ ℂ) → 𝑡 ∈ ℂ)
54exp0d 14180 . . . . . . 7 ((𝜑𝑡 ∈ ℂ) → (𝑡↑0) = 1)
63, 5eqtrid 2789 . . . . . 6 ((𝜑𝑡 ∈ ℂ) → (𝑡↑(1 − 1)) = 1)
76oveq1d 7446 . . . . 5 ((𝜑𝑡 ∈ ℂ) → ((𝑡↑(1 − 1)) · ((1 − 𝑡)↑(𝑁 − 1))) = (1 · ((1 − 𝑡)↑(𝑁 − 1))))
8 1cnd 11256 . . . . . . . 8 ((𝜑𝑡 ∈ ℂ) → 1 ∈ ℂ)
98, 4subcld 11620 . . . . . . 7 ((𝜑𝑡 ∈ ℂ) → (1 − 𝑡) ∈ ℂ)
10 lcmineqlem12.1 . . . . . . . . 9 (𝜑𝑁 ∈ ℕ)
11 nnm1nn0 12567 . . . . . . . . 9 (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℕ0)
1210, 11syl 17 . . . . . . . 8 (𝜑 → (𝑁 − 1) ∈ ℕ0)
1312adantr 480 . . . . . . 7 ((𝜑𝑡 ∈ ℂ) → (𝑁 − 1) ∈ ℕ0)
149, 13expcld 14186 . . . . . 6 ((𝜑𝑡 ∈ ℂ) → ((1 − 𝑡)↑(𝑁 − 1)) ∈ ℂ)
1514mullidd 11279 . . . . 5 ((𝜑𝑡 ∈ ℂ) → (1 · ((1 − 𝑡)↑(𝑁 − 1))) = ((1 − 𝑡)↑(𝑁 − 1)))
167, 15eqtrd 2777 . . . 4 ((𝜑𝑡 ∈ ℂ) → ((𝑡↑(1 − 1)) · ((1 − 𝑡)↑(𝑁 − 1))) = ((1 − 𝑡)↑(𝑁 − 1)))
171, 16sylan2 593 . . 3 ((𝜑𝑡 ∈ (0[,]1)) → ((𝑡↑(1 − 1)) · ((1 − 𝑡)↑(𝑁 − 1))) = ((1 − 𝑡)↑(𝑁 − 1)))
1817itgeq2dv 25817 . 2 (𝜑 → ∫(0[,]1)((𝑡↑(1 − 1)) · ((1 − 𝑡)↑(𝑁 − 1))) d𝑡 = ∫(0[,]1)((1 − 𝑡)↑(𝑁 − 1)) d𝑡)
19 0red 11264 . . . . 5 (𝜑 → 0 ∈ ℝ)
20 1red 11262 . . . . 5 (𝜑 → 1 ∈ ℝ)
211, 14sylan2 593 . . . . 5 ((𝜑𝑡 ∈ (0[,]1)) → ((1 − 𝑡)↑(𝑁 − 1)) ∈ ℂ)
2219, 20, 21itgioo 25851 . . . 4 (𝜑 → ∫(0(,)1)((1 − 𝑡)↑(𝑁 − 1)) d𝑡 = ∫(0[,]1)((1 − 𝑡)↑(𝑁 − 1)) d𝑡)
23 eqidd 2738 . . . . . . 7 ((𝜑𝑡 ∈ (0(,)1)) → (𝑥 ∈ (0(,)1) ↦ ((1 − 𝑥)↑(𝑁 − 1))) = (𝑥 ∈ (0(,)1) ↦ ((1 − 𝑥)↑(𝑁 − 1))))
24 oveq2 7439 . . . . . . . . . 10 (𝑥 = 𝑡 → (1 − 𝑥) = (1 − 𝑡))
2524oveq1d 7446 . . . . . . . . 9 (𝑥 = 𝑡 → ((1 − 𝑥)↑(𝑁 − 1)) = ((1 − 𝑡)↑(𝑁 − 1)))
2625adantl 481 . . . . . . . 8 ((𝜑𝑥 = 𝑡) → ((1 − 𝑥)↑(𝑁 − 1)) = ((1 − 𝑡)↑(𝑁 − 1)))
2726adantlr 715 . . . . . . 7 (((𝜑𝑡 ∈ (0(,)1)) ∧ 𝑥 = 𝑡) → ((1 − 𝑥)↑(𝑁 − 1)) = ((1 − 𝑡)↑(𝑁 − 1)))
28 simpr 484 . . . . . . 7 ((𝜑𝑡 ∈ (0(,)1)) → 𝑡 ∈ (0(,)1))
29 1cnd 11256 . . . . . . . . 9 ((𝜑𝑡 ∈ (0(,)1)) → 1 ∈ ℂ)
30 elioore 13417 . . . . . . . . . 10 (𝑡 ∈ (0(,)1) → 𝑡 ∈ ℝ)
31 recn 11245 . . . . . . . . . 10 (𝑡 ∈ ℝ → 𝑡 ∈ ℂ)
3228, 30, 313syl 18 . . . . . . . . 9 ((𝜑𝑡 ∈ (0(,)1)) → 𝑡 ∈ ℂ)
3329, 32subcld 11620 . . . . . . . 8 ((𝜑𝑡 ∈ (0(,)1)) → (1 − 𝑡) ∈ ℂ)
3412adantr 480 . . . . . . . 8 ((𝜑𝑡 ∈ (0(,)1)) → (𝑁 − 1) ∈ ℕ0)
3533, 34expcld 14186 . . . . . . 7 ((𝜑𝑡 ∈ (0(,)1)) → ((1 − 𝑡)↑(𝑁 − 1)) ∈ ℂ)
3623, 27, 28, 35fvmptd 7023 . . . . . 6 ((𝜑𝑡 ∈ (0(,)1)) → ((𝑥 ∈ (0(,)1) ↦ ((1 − 𝑥)↑(𝑁 − 1)))‘𝑡) = ((1 − 𝑡)↑(𝑁 − 1)))
3736itgeq2dv 25817 . . . . 5 (𝜑 → ∫(0(,)1)((𝑥 ∈ (0(,)1) ↦ ((1 − 𝑥)↑(𝑁 − 1)))‘𝑡) d𝑡 = ∫(0(,)1)((1 − 𝑡)↑(𝑁 − 1)) d𝑡)
38 cnelprrecn 11248 . . . . . . . . . . . . 13 ℂ ∈ {ℝ, ℂ}
3938a1i 11 . . . . . . . . . . . 12 (𝜑 → ℂ ∈ {ℝ, ℂ})
40 1cnd 11256 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ℂ) → 1 ∈ ℂ)
41 simpr 484 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ℂ) → 𝑥 ∈ ℂ)
4240, 41subcld 11620 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ℂ) → (1 − 𝑥) ∈ ℂ)
43 nnnn0 12533 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
4410, 43syl 17 . . . . . . . . . . . . . 14 (𝜑𝑁 ∈ ℕ0)
4544adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ℂ) → 𝑁 ∈ ℕ0)
4642, 45expcld 14186 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℂ) → ((1 − 𝑥)↑𝑁) ∈ ℂ)
4745nn0cnd 12589 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ℂ) → 𝑁 ∈ ℂ)
4812adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ ℂ) → (𝑁 − 1) ∈ ℕ0)
4942, 48expcld 14186 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ℂ) → ((1 − 𝑥)↑(𝑁 − 1)) ∈ ℂ)
5047, 49mulcld 11281 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ℂ) → (𝑁 · ((1 − 𝑥)↑(𝑁 − 1))) ∈ ℂ)
5140negcld 11607 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ℂ) → -1 ∈ ℂ)
5250, 51mulcld 11281 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℂ) → ((𝑁 · ((1 − 𝑥)↑(𝑁 − 1))) · -1) ∈ ℂ)
53 simpr 484 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ ℂ) → 𝑦 ∈ ℂ)
5444adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ ℂ) → 𝑁 ∈ ℕ0)
5553, 54expcld 14186 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ ℂ) → (𝑦𝑁) ∈ ℂ)
5654nn0cnd 12589 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ ℂ) → 𝑁 ∈ ℂ)
5712adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑦 ∈ ℂ) → (𝑁 − 1) ∈ ℕ0)
5853, 57expcld 14186 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ ℂ) → (𝑦↑(𝑁 − 1)) ∈ ℂ)
5956, 58mulcld 11281 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ ℂ) → (𝑁 · (𝑦↑(𝑁 − 1))) ∈ ℂ)
60 0cnd 11254 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ ℂ) → 0 ∈ ℂ)
61 1cnd 11256 . . . . . . . . . . . . . . . 16 (𝜑 → 1 ∈ ℂ)
6239, 61dvmptc 25996 . . . . . . . . . . . . . . 15 (𝜑 → (ℂ D (𝑥 ∈ ℂ ↦ 1)) = (𝑥 ∈ ℂ ↦ 0))
6339dvmptid 25995 . . . . . . . . . . . . . . 15 (𝜑 → (ℂ D (𝑥 ∈ ℂ ↦ 𝑥)) = (𝑥 ∈ ℂ ↦ 1))
6439, 40, 60, 62, 41, 40, 63dvmptsub 26005 . . . . . . . . . . . . . 14 (𝜑 → (ℂ D (𝑥 ∈ ℂ ↦ (1 − 𝑥))) = (𝑥 ∈ ℂ ↦ (0 − 1)))
65 df-neg 11495 . . . . . . . . . . . . . . . 16 -1 = (0 − 1)
6665a1i 11 . . . . . . . . . . . . . . 15 (𝜑 → -1 = (0 − 1))
6766mpteq2dv 5244 . . . . . . . . . . . . . 14 (𝜑 → (𝑥 ∈ ℂ ↦ -1) = (𝑥 ∈ ℂ ↦ (0 − 1)))
6864, 67eqtr4d 2780 . . . . . . . . . . . . 13 (𝜑 → (ℂ D (𝑥 ∈ ℂ ↦ (1 − 𝑥))) = (𝑥 ∈ ℂ ↦ -1))
69 dvexp 25991 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ → (ℂ D (𝑦 ∈ ℂ ↦ (𝑦𝑁))) = (𝑦 ∈ ℂ ↦ (𝑁 · (𝑦↑(𝑁 − 1)))))
7010, 69syl 17 . . . . . . . . . . . . 13 (𝜑 → (ℂ D (𝑦 ∈ ℂ ↦ (𝑦𝑁))) = (𝑦 ∈ ℂ ↦ (𝑁 · (𝑦↑(𝑁 − 1)))))
71 oveq1 7438 . . . . . . . . . . . . 13 (𝑦 = (1 − 𝑥) → (𝑦𝑁) = ((1 − 𝑥)↑𝑁))
72 oveq1 7438 . . . . . . . . . . . . . 14 (𝑦 = (1 − 𝑥) → (𝑦↑(𝑁 − 1)) = ((1 − 𝑥)↑(𝑁 − 1)))
7372oveq2d 7447 . . . . . . . . . . . . 13 (𝑦 = (1 − 𝑥) → (𝑁 · (𝑦↑(𝑁 − 1))) = (𝑁 · ((1 − 𝑥)↑(𝑁 − 1))))
7439, 39, 42, 51, 55, 59, 68, 70, 71, 73dvmptco 26010 . . . . . . . . . . . 12 (𝜑 → (ℂ D (𝑥 ∈ ℂ ↦ ((1 − 𝑥)↑𝑁))) = (𝑥 ∈ ℂ ↦ ((𝑁 · ((1 − 𝑥)↑(𝑁 − 1))) · -1)))
7561negcld 11607 . . . . . . . . . . . . 13 (𝜑 → -1 ∈ ℂ)
7610nncnd 12282 . . . . . . . . . . . . 13 (𝜑𝑁 ∈ ℂ)
7710nnne0d 12316 . . . . . . . . . . . . 13 (𝜑𝑁 ≠ 0)
7875, 76, 77divcld 12043 . . . . . . . . . . . 12 (𝜑 → (-1 / 𝑁) ∈ ℂ)
7939, 46, 52, 74, 78dvmptcmul 26002 . . . . . . . . . . 11 (𝜑 → (ℂ D (𝑥 ∈ ℂ ↦ ((-1 / 𝑁) · ((1 − 𝑥)↑𝑁)))) = (𝑥 ∈ ℂ ↦ ((-1 / 𝑁) · ((𝑁 · ((1 − 𝑥)↑(𝑁 − 1))) · -1))))
8078adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ ℂ) → (-1 / 𝑁) ∈ ℂ)
8180, 50, 51mulassd 11284 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ ℂ) → (((-1 / 𝑁) · (𝑁 · ((1 − 𝑥)↑(𝑁 − 1)))) · -1) = ((-1 / 𝑁) · ((𝑁 · ((1 − 𝑥)↑(𝑁 − 1))) · -1)))
8281eqcomd 2743 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ ℂ) → ((-1 / 𝑁) · ((𝑁 · ((1 − 𝑥)↑(𝑁 − 1))) · -1)) = (((-1 / 𝑁) · (𝑁 · ((1 − 𝑥)↑(𝑁 − 1)))) · -1))
8380, 47, 49mulassd 11284 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ ℂ) → (((-1 / 𝑁) · 𝑁) · ((1 − 𝑥)↑(𝑁 − 1))) = ((-1 / 𝑁) · (𝑁 · ((1 − 𝑥)↑(𝑁 − 1)))))
8483oveq1d 7446 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ ℂ) → ((((-1 / 𝑁) · 𝑁) · ((1 − 𝑥)↑(𝑁 − 1))) · -1) = (((-1 / 𝑁) · (𝑁 · ((1 − 𝑥)↑(𝑁 − 1)))) · -1))
8584eqcomd 2743 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ ℂ) → (((-1 / 𝑁) · (𝑁 · ((1 − 𝑥)↑(𝑁 − 1)))) · -1) = ((((-1 / 𝑁) · 𝑁) · ((1 − 𝑥)↑(𝑁 − 1))) · -1))
8682, 85eqtrd 2777 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ ℂ) → ((-1 / 𝑁) · ((𝑁 · ((1 − 𝑥)↑(𝑁 − 1))) · -1)) = ((((-1 / 𝑁) · 𝑁) · ((1 − 𝑥)↑(𝑁 − 1))) · -1))
8777adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ ℂ) → 𝑁 ≠ 0)
8851, 47, 87divcan1d 12044 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ ℂ) → ((-1 / 𝑁) · 𝑁) = -1)
8988oveq1d 7446 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ ℂ) → (((-1 / 𝑁) · 𝑁) · ((1 − 𝑥)↑(𝑁 − 1))) = (-1 · ((1 − 𝑥)↑(𝑁 − 1))))
9089oveq1d 7446 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ ℂ) → ((((-1 / 𝑁) · 𝑁) · ((1 − 𝑥)↑(𝑁 − 1))) · -1) = ((-1 · ((1 − 𝑥)↑(𝑁 − 1))) · -1))
9186, 90eqtrd 2777 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ℂ) → ((-1 / 𝑁) · ((𝑁 · ((1 − 𝑥)↑(𝑁 − 1))) · -1)) = ((-1 · ((1 − 𝑥)↑(𝑁 − 1))) · -1))
9251, 51, 49mul32d 11471 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ ℂ) → ((-1 · -1) · ((1 − 𝑥)↑(𝑁 − 1))) = ((-1 · ((1 − 𝑥)↑(𝑁 − 1))) · -1))
9392eqcomd 2743 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ℂ) → ((-1 · ((1 − 𝑥)↑(𝑁 − 1))) · -1) = ((-1 · -1) · ((1 − 𝑥)↑(𝑁 − 1))))
9491, 93eqtrd 2777 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ℂ) → ((-1 / 𝑁) · ((𝑁 · ((1 − 𝑥)↑(𝑁 − 1))) · -1)) = ((-1 · -1) · ((1 − 𝑥)↑(𝑁 − 1))))
9540, 40mul2negd 11718 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ ℂ) → (-1 · -1) = (1 · 1))
96 1t1e1 12428 . . . . . . . . . . . . . . . 16 (1 · 1) = 1
9795, 96eqtrdi 2793 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ ℂ) → (-1 · -1) = 1)
9897oveq1d 7446 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ℂ) → ((-1 · -1) · ((1 − 𝑥)↑(𝑁 − 1))) = (1 · ((1 − 𝑥)↑(𝑁 − 1))))
9949mullidd 11279 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ℂ) → (1 · ((1 − 𝑥)↑(𝑁 − 1))) = ((1 − 𝑥)↑(𝑁 − 1)))
10098, 99eqtrd 2777 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ℂ) → ((-1 · -1) · ((1 − 𝑥)↑(𝑁 − 1))) = ((1 − 𝑥)↑(𝑁 − 1)))
10194, 100eqtrd 2777 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℂ) → ((-1 / 𝑁) · ((𝑁 · ((1 − 𝑥)↑(𝑁 − 1))) · -1)) = ((1 − 𝑥)↑(𝑁 − 1)))
102101mpteq2dva 5242 . . . . . . . . . . 11 (𝜑 → (𝑥 ∈ ℂ ↦ ((-1 / 𝑁) · ((𝑁 · ((1 − 𝑥)↑(𝑁 − 1))) · -1))) = (𝑥 ∈ ℂ ↦ ((1 − 𝑥)↑(𝑁 − 1))))
10379, 102eqtrd 2777 . . . . . . . . . 10 (𝜑 → (ℂ D (𝑥 ∈ ℂ ↦ ((-1 / 𝑁) · ((1 − 𝑥)↑𝑁)))) = (𝑥 ∈ ℂ ↦ ((1 − 𝑥)↑(𝑁 − 1))))
10480, 46mulcld 11281 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℂ) → ((-1 / 𝑁) · ((1 − 𝑥)↑𝑁)) ∈ ℂ)
105103, 104, 49resdvopclptsd 42029 . . . . . . . . 9 (𝜑 → (ℝ D (𝑥 ∈ (0[,]1) ↦ ((-1 / 𝑁) · ((1 − 𝑥)↑𝑁)))) = (𝑥 ∈ (0(,)1) ↦ ((1 − 𝑥)↑(𝑁 − 1))))
106105fveq1d 6908 . . . . . . . 8 (𝜑 → ((ℝ D (𝑥 ∈ (0[,]1) ↦ ((-1 / 𝑁) · ((1 − 𝑥)↑𝑁))))‘𝑡) = ((𝑥 ∈ (0(,)1) ↦ ((1 − 𝑥)↑(𝑁 − 1)))‘𝑡))
107106ralrimivw 3150 . . . . . . 7 (𝜑 → ∀𝑡 ∈ (0(,)1)((ℝ D (𝑥 ∈ (0[,]1) ↦ ((-1 / 𝑁) · ((1 − 𝑥)↑𝑁))))‘𝑡) = ((𝑥 ∈ (0(,)1) ↦ ((1 − 𝑥)↑(𝑁 − 1)))‘𝑡))
108 itgeq2 25813 . . . . . . 7 (∀𝑡 ∈ (0(,)1)((ℝ D (𝑥 ∈ (0[,]1) ↦ ((-1 / 𝑁) · ((1 − 𝑥)↑𝑁))))‘𝑡) = ((𝑥 ∈ (0(,)1) ↦ ((1 − 𝑥)↑(𝑁 − 1)))‘𝑡) → ∫(0(,)1)((ℝ D (𝑥 ∈ (0[,]1) ↦ ((-1 / 𝑁) · ((1 − 𝑥)↑𝑁))))‘𝑡) d𝑡 = ∫(0(,)1)((𝑥 ∈ (0(,)1) ↦ ((1 − 𝑥)↑(𝑁 − 1)))‘𝑡) d𝑡)
109107, 108syl 17 . . . . . 6 (𝜑 → ∫(0(,)1)((ℝ D (𝑥 ∈ (0[,]1) ↦ ((-1 / 𝑁) · ((1 − 𝑥)↑𝑁))))‘𝑡) d𝑡 = ∫(0(,)1)((𝑥 ∈ (0(,)1) ↦ ((1 − 𝑥)↑(𝑁 − 1)))‘𝑡) d𝑡)
110 0le1 11786 . . . . . . . . . 10 0 ≤ 1
111110a1i 11 . . . . . . . . 9 (𝜑 → 0 ≤ 1)
112 nfv 1914 . . . . . . . . . . . 12 𝑥𝜑
113 ax-1cn 11213 . . . . . . . . . . . . . . 15 1 ∈ ℂ
114 ssid 4006 . . . . . . . . . . . . . . 15 ℂ ⊆ ℂ
115 cncfmptc 24938 . . . . . . . . . . . . . . 15 ((1 ∈ ℂ ∧ ℂ ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑥 ∈ ℂ ↦ 1) ∈ (ℂ–cn→ℂ))
116113, 114, 114, 115mp3an 1463 . . . . . . . . . . . . . 14 (𝑥 ∈ ℂ ↦ 1) ∈ (ℂ–cn→ℂ)
117116a1i 11 . . . . . . . . . . . . 13 (𝜑 → (𝑥 ∈ ℂ ↦ 1) ∈ (ℂ–cn→ℂ))
118 cncfmptid 24939 . . . . . . . . . . . . . . 15 ((ℂ ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑥 ∈ ℂ ↦ 𝑥) ∈ (ℂ–cn→ℂ))
119114, 114, 118mp2an 692 . . . . . . . . . . . . . 14 (𝑥 ∈ ℂ ↦ 𝑥) ∈ (ℂ–cn→ℂ)
120119a1i 11 . . . . . . . . . . . . 13 (𝜑 → (𝑥 ∈ ℂ ↦ 𝑥) ∈ (ℂ–cn→ℂ))
121117, 120subcncf 25479 . . . . . . . . . . . 12 (𝜑 → (𝑥 ∈ ℂ ↦ (1 − 𝑥)) ∈ (ℂ–cn→ℂ))
122 expcncf 24953 . . . . . . . . . . . . 13 ((𝑁 − 1) ∈ ℕ0 → (𝑦 ∈ ℂ ↦ (𝑦↑(𝑁 − 1))) ∈ (ℂ–cn→ℂ))
12312, 122syl 17 . . . . . . . . . . . 12 (𝜑 → (𝑦 ∈ ℂ ↦ (𝑦↑(𝑁 − 1))) ∈ (ℂ–cn→ℂ))
124 ssidd 4007 . . . . . . . . . . . 12 (𝜑 → ℂ ⊆ ℂ)
125112, 121, 123, 124, 72cncfcompt2 24934 . . . . . . . . . . 11 (𝜑 → (𝑥 ∈ ℂ ↦ ((1 − 𝑥)↑(𝑁 − 1))) ∈ (ℂ–cn→ℂ))
126125resopunitintvd 42027 . . . . . . . . . 10 (𝜑 → (𝑥 ∈ (0(,)1) ↦ ((1 − 𝑥)↑(𝑁 − 1))) ∈ ((0(,)1)–cn→ℂ))
127105eleq1d 2826 . . . . . . . . . 10 (𝜑 → ((ℝ D (𝑥 ∈ (0[,]1) ↦ ((-1 / 𝑁) · ((1 − 𝑥)↑𝑁)))) ∈ ((0(,)1)–cn→ℂ) ↔ (𝑥 ∈ (0(,)1) ↦ ((1 − 𝑥)↑(𝑁 − 1))) ∈ ((0(,)1)–cn→ℂ)))
128126, 127mpbird 257 . . . . . . . . 9 (𝜑 → (ℝ D (𝑥 ∈ (0[,]1) ↦ ((-1 / 𝑁) · ((1 − 𝑥)↑𝑁)))) ∈ ((0(,)1)–cn→ℂ))
129 ioossicc 13473 . . . . . . . . . . . 12 (0(,)1) ⊆ (0[,]1)
130129a1i 11 . . . . . . . . . . 11 (𝜑 → (0(,)1) ⊆ (0[,]1))
131 ioombl 25600 . . . . . . . . . . . 12 (0(,)1) ∈ dom vol
132131a1i 11 . . . . . . . . . . 11 (𝜑 → (0(,)1) ∈ dom vol)
133 elunitcn 13508 . . . . . . . . . . . 12 (𝑥 ∈ (0[,]1) → 𝑥 ∈ ℂ)
134133, 49sylan2 593 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (0[,]1)) → ((1 − 𝑥)↑(𝑁 − 1)) ∈ ℂ)
135114a1i 11 . . . . . . . . . . . . . . 15 (𝜑 → ℂ ⊆ ℂ)
136112, 121, 123, 135, 72cncfcompt2 24934 . . . . . . . . . . . . . 14 (𝜑 → (𝑥 ∈ ℂ ↦ ((1 − 𝑥)↑(𝑁 − 1))) ∈ (ℂ–cn→ℂ))
137136resclunitintvd 42028 . . . . . . . . . . . . 13 (𝜑 → (𝑥 ∈ (0[,]1) ↦ ((1 − 𝑥)↑(𝑁 − 1))) ∈ ((0[,]1)–cn→ℂ))
13819, 20, 1373jca 1129 . . . . . . . . . . . 12 (𝜑 → (0 ∈ ℝ ∧ 1 ∈ ℝ ∧ (𝑥 ∈ (0[,]1) ↦ ((1 − 𝑥)↑(𝑁 − 1))) ∈ ((0[,]1)–cn→ℂ)))
139 cnicciblnc 25878 . . . . . . . . . . . 12 ((0 ∈ ℝ ∧ 1 ∈ ℝ ∧ (𝑥 ∈ (0[,]1) ↦ ((1 − 𝑥)↑(𝑁 − 1))) ∈ ((0[,]1)–cn→ℂ)) → (𝑥 ∈ (0[,]1) ↦ ((1 − 𝑥)↑(𝑁 − 1))) ∈ 𝐿1)
140138, 139syl 17 . . . . . . . . . . 11 (𝜑 → (𝑥 ∈ (0[,]1) ↦ ((1 − 𝑥)↑(𝑁 − 1))) ∈ 𝐿1)
141130, 132, 134, 140iblss 25840 . . . . . . . . . 10 (𝜑 → (𝑥 ∈ (0(,)1) ↦ ((1 − 𝑥)↑(𝑁 − 1))) ∈ 𝐿1)
142105, 141eqeltrd 2841 . . . . . . . . 9 (𝜑 → (ℝ D (𝑥 ∈ (0[,]1) ↦ ((-1 / 𝑁) · ((1 − 𝑥)↑𝑁)))) ∈ 𝐿1)
143 cncfmptc 24938 . . . . . . . . . . . . 13 (((-1 / 𝑁) ∈ ℂ ∧ ℂ ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑥 ∈ ℂ ↦ (-1 / 𝑁)) ∈ (ℂ–cn→ℂ))
144114, 114, 143mp3an23 1455 . . . . . . . . . . . 12 ((-1 / 𝑁) ∈ ℂ → (𝑥 ∈ ℂ ↦ (-1 / 𝑁)) ∈ (ℂ–cn→ℂ))
14578, 144syl 17 . . . . . . . . . . 11 (𝜑 → (𝑥 ∈ ℂ ↦ (-1 / 𝑁)) ∈ (ℂ–cn→ℂ))
146145resclunitintvd 42028 . . . . . . . . . 10 (𝜑 → (𝑥 ∈ (0[,]1) ↦ (-1 / 𝑁)) ∈ ((0[,]1)–cn→ℂ))
147 expcncf 24953 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ0 → (𝑦 ∈ ℂ ↦ (𝑦𝑁)) ∈ (ℂ–cn→ℂ))
14844, 147syl 17 . . . . . . . . . . . 12 (𝜑 → (𝑦 ∈ ℂ ↦ (𝑦𝑁)) ∈ (ℂ–cn→ℂ))
149112, 121, 148, 124, 71cncfcompt2 24934 . . . . . . . . . . 11 (𝜑 → (𝑥 ∈ ℂ ↦ ((1 − 𝑥)↑𝑁)) ∈ (ℂ–cn→ℂ))
150149resclunitintvd 42028 . . . . . . . . . 10 (𝜑 → (𝑥 ∈ (0[,]1) ↦ ((1 − 𝑥)↑𝑁)) ∈ ((0[,]1)–cn→ℂ))
151146, 150mulcncf 25480 . . . . . . . . 9 (𝜑 → (𝑥 ∈ (0[,]1) ↦ ((-1 / 𝑁) · ((1 − 𝑥)↑𝑁))) ∈ ((0[,]1)–cn→ℂ))
15219, 20, 111, 128, 142, 151ftc2 26085 . . . . . . . 8 (𝜑 → ∫(0(,)1)((ℝ D (𝑥 ∈ (0[,]1) ↦ ((-1 / 𝑁) · ((1 − 𝑥)↑𝑁))))‘𝑡) d𝑡 = (((𝑥 ∈ (0[,]1) ↦ ((-1 / 𝑁) · ((1 − 𝑥)↑𝑁)))‘1) − ((𝑥 ∈ (0[,]1) ↦ ((-1 / 𝑁) · ((1 − 𝑥)↑𝑁)))‘0)))
153 eqidd 2738 . . . . . . . . . 10 (𝜑 → (𝑥 ∈ (0[,]1) ↦ ((-1 / 𝑁) · ((1 − 𝑥)↑𝑁))) = (𝑥 ∈ (0[,]1) ↦ ((-1 / 𝑁) · ((1 − 𝑥)↑𝑁))))
154 simpr 484 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 = 1) → 𝑥 = 1)
155154oveq2d 7447 . . . . . . . . . . . . . . 15 ((𝜑𝑥 = 1) → (1 − 𝑥) = (1 − 1))
156155, 2eqtrdi 2793 . . . . . . . . . . . . . 14 ((𝜑𝑥 = 1) → (1 − 𝑥) = 0)
157156oveq1d 7446 . . . . . . . . . . . . 13 ((𝜑𝑥 = 1) → ((1 − 𝑥)↑𝑁) = (0↑𝑁))
158 0exp 14138 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℕ → (0↑𝑁) = 0)
15910, 158syl 17 . . . . . . . . . . . . . 14 (𝜑 → (0↑𝑁) = 0)
160159adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑥 = 1) → (0↑𝑁) = 0)
161157, 160eqtrd 2777 . . . . . . . . . . . 12 ((𝜑𝑥 = 1) → ((1 − 𝑥)↑𝑁) = 0)
162161oveq2d 7447 . . . . . . . . . . 11 ((𝜑𝑥 = 1) → ((-1 / 𝑁) · ((1 − 𝑥)↑𝑁)) = ((-1 / 𝑁) · 0))
16378mul01d 11460 . . . . . . . . . . . 12 (𝜑 → ((-1 / 𝑁) · 0) = 0)
164163adantr 480 . . . . . . . . . . 11 ((𝜑𝑥 = 1) → ((-1 / 𝑁) · 0) = 0)
165162, 164eqtrd 2777 . . . . . . . . . 10 ((𝜑𝑥 = 1) → ((-1 / 𝑁) · ((1 − 𝑥)↑𝑁)) = 0)
166 1elunit 13510 . . . . . . . . . . 11 1 ∈ (0[,]1)
167166a1i 11 . . . . . . . . . 10 (𝜑 → 1 ∈ (0[,]1))
168 0cnd 11254 . . . . . . . . . 10 (𝜑 → 0 ∈ ℂ)
169153, 165, 167, 168fvmptd 7023 . . . . . . . . 9 (𝜑 → ((𝑥 ∈ (0[,]1) ↦ ((-1 / 𝑁) · ((1 − 𝑥)↑𝑁)))‘1) = 0)
170 simpr 484 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 = 0) → 𝑥 = 0)
171170oveq2d 7447 . . . . . . . . . . . . . . 15 ((𝜑𝑥 = 0) → (1 − 𝑥) = (1 − 0))
172 1m0e1 12387 . . . . . . . . . . . . . . 15 (1 − 0) = 1
173171, 172eqtrdi 2793 . . . . . . . . . . . . . 14 ((𝜑𝑥 = 0) → (1 − 𝑥) = 1)
174173oveq1d 7446 . . . . . . . . . . . . 13 ((𝜑𝑥 = 0) → ((1 − 𝑥)↑𝑁) = (1↑𝑁))
17544nn0zd 12639 . . . . . . . . . . . . . . 15 (𝜑𝑁 ∈ ℤ)
176 1exp 14132 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℤ → (1↑𝑁) = 1)
177175, 176syl 17 . . . . . . . . . . . . . 14 (𝜑 → (1↑𝑁) = 1)
178177adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑥 = 0) → (1↑𝑁) = 1)
179174, 178eqtrd 2777 . . . . . . . . . . . 12 ((𝜑𝑥 = 0) → ((1 − 𝑥)↑𝑁) = 1)
180179oveq2d 7447 . . . . . . . . . . 11 ((𝜑𝑥 = 0) → ((-1 / 𝑁) · ((1 − 𝑥)↑𝑁)) = ((-1 / 𝑁) · 1))
18178adantr 480 . . . . . . . . . . . 12 ((𝜑𝑥 = 0) → (-1 / 𝑁) ∈ ℂ)
182181mulridd 11278 . . . . . . . . . . 11 ((𝜑𝑥 = 0) → ((-1 / 𝑁) · 1) = (-1 / 𝑁))
183180, 182eqtrd 2777 . . . . . . . . . 10 ((𝜑𝑥 = 0) → ((-1 / 𝑁) · ((1 − 𝑥)↑𝑁)) = (-1 / 𝑁))
184 0elunit 13509 . . . . . . . . . . 11 0 ∈ (0[,]1)
185184a1i 11 . . . . . . . . . 10 (𝜑 → 0 ∈ (0[,]1))
186153, 183, 185, 78fvmptd 7023 . . . . . . . . 9 (𝜑 → ((𝑥 ∈ (0[,]1) ↦ ((-1 / 𝑁) · ((1 − 𝑥)↑𝑁)))‘0) = (-1 / 𝑁))
187169, 186oveq12d 7449 . . . . . . . 8 (𝜑 → (((𝑥 ∈ (0[,]1) ↦ ((-1 / 𝑁) · ((1 − 𝑥)↑𝑁)))‘1) − ((𝑥 ∈ (0[,]1) ↦ ((-1 / 𝑁) · ((1 − 𝑥)↑𝑁)))‘0)) = (0 − (-1 / 𝑁)))
188152, 187eqtrd 2777 . . . . . . 7 (𝜑 → ∫(0(,)1)((ℝ D (𝑥 ∈ (0[,]1) ↦ ((-1 / 𝑁) · ((1 − 𝑥)↑𝑁))))‘𝑡) d𝑡 = (0 − (-1 / 𝑁)))
189 df-neg 11495 . . . . . . . . . 10 --(1 / 𝑁) = (0 − -(1 / 𝑁))
190189a1i 11 . . . . . . . . 9 (𝜑 → --(1 / 𝑁) = (0 − -(1 / 𝑁)))
19161, 76, 77divnegd 12056 . . . . . . . . . 10 (𝜑 → -(1 / 𝑁) = (-1 / 𝑁))
192191oveq2d 7447 . . . . . . . . 9 (𝜑 → (0 − -(1 / 𝑁)) = (0 − (-1 / 𝑁)))
193190, 192eqtr2d 2778 . . . . . . . 8 (𝜑 → (0 − (-1 / 𝑁)) = --(1 / 𝑁))
19476, 77reccld 12036 . . . . . . . . 9 (𝜑 → (1 / 𝑁) ∈ ℂ)
195194negnegd 11611 . . . . . . . 8 (𝜑 → --(1 / 𝑁) = (1 / 𝑁))
196193, 195eqtrd 2777 . . . . . . 7 (𝜑 → (0 − (-1 / 𝑁)) = (1 / 𝑁))
197188, 196eqtrd 2777 . . . . . 6 (𝜑 → ∫(0(,)1)((ℝ D (𝑥 ∈ (0[,]1) ↦ ((-1 / 𝑁) · ((1 − 𝑥)↑𝑁))))‘𝑡) d𝑡 = (1 / 𝑁))
198109, 197eqtr3d 2779 . . . . 5 (𝜑 → ∫(0(,)1)((𝑥 ∈ (0(,)1) ↦ ((1 − 𝑥)↑(𝑁 − 1)))‘𝑡) d𝑡 = (1 / 𝑁))
19937, 198eqtr3d 2779 . . . 4 (𝜑 → ∫(0(,)1)((1 − 𝑡)↑(𝑁 − 1)) d𝑡 = (1 / 𝑁))
20022, 199eqtr3d 2779 . . 3 (𝜑 → ∫(0[,]1)((1 − 𝑡)↑(𝑁 − 1)) d𝑡 = (1 / 𝑁))
201 bcn1 14352 . . . . . . 7 (𝑁 ∈ ℕ0 → (𝑁C1) = 𝑁)
20244, 201syl 17 . . . . . 6 (𝜑 → (𝑁C1) = 𝑁)
203202oveq2d 7447 . . . . 5 (𝜑 → (1 · (𝑁C1)) = (1 · 𝑁))
20476mullidd 11279 . . . . 5 (𝜑 → (1 · 𝑁) = 𝑁)
205203, 204eqtrd 2777 . . . 4 (𝜑 → (1 · (𝑁C1)) = 𝑁)
206205oveq2d 7447 . . 3 (𝜑 → (1 / (1 · (𝑁C1))) = (1 / 𝑁))
207200, 206eqtr4d 2780 . 2 (𝜑 → ∫(0[,]1)((1 − 𝑡)↑(𝑁 − 1)) d𝑡 = (1 / (1 · (𝑁C1))))
20818, 207eqtrd 2777 1 (𝜑 → ∫(0[,]1)((𝑡↑(1 − 1)) · ((1 − 𝑡)↑(𝑁 − 1))) d𝑡 = (1 / (1 · (𝑁C1))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1540  wcel 2108  wne 2940  wral 3061  wss 3951  {cpr 4628   class class class wbr 5143  cmpt 5225  dom cdm 5685  cfv 6561  (class class class)co 7431  cc 11153  cr 11154  0cc0 11155  1c1 11156   · cmul 11160  cle 11296  cmin 11492  -cneg 11493   / cdiv 11920  cn 12266  0cn0 12526  cz 12613  (,)cioo 13387  [,]cicc 13390  cexp 14102  Ccbc 14341  cnccncf 24902  volcvol 25498  𝐿1cibl 25652  citg 25653   D cdv 25898
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-inf2 9681  ax-cc 10475  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233  ax-addf 11234
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-symdif 4253  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-iin 4994  df-disj 5111  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-ofr 7698  df-om 7888  df-1st 8014  df-2nd 8015  df-supp 8186  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-oadd 8510  df-omul 8511  df-er 8745  df-map 8868  df-pm 8869  df-ixp 8938  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-fsupp 9402  df-fi 9451  df-sup 9482  df-inf 9483  df-oi 9550  df-dju 9941  df-card 9979  df-acn 9982  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-z 12614  df-dec 12734  df-uz 12879  df-q 12991  df-rp 13035  df-xneg 13154  df-xadd 13155  df-xmul 13156  df-ioo 13391  df-ioc 13392  df-ico 13393  df-icc 13394  df-fz 13548  df-fzo 13695  df-fl 13832  df-mod 13910  df-seq 14043  df-exp 14103  df-fac 14313  df-bc 14342  df-hash 14370  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-clim 15524  df-rlim 15525  df-sum 15723  df-struct 17184  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-mulr 17311  df-starv 17312  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ds 17319  df-unif 17320  df-hom 17321  df-cco 17322  df-rest 17467  df-topn 17468  df-0g 17486  df-gsum 17487  df-topgen 17488  df-pt 17489  df-prds 17492  df-xrs 17547  df-qtop 17552  df-imas 17553  df-xps 17555  df-mre 17629  df-mrc 17630  df-acs 17632  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-submnd 18797  df-mulg 19086  df-cntz 19335  df-cmn 19800  df-psmet 21356  df-xmet 21357  df-met 21358  df-bl 21359  df-mopn 21360  df-fbas 21361  df-fg 21362  df-cnfld 21365  df-top 22900  df-topon 22917  df-topsp 22939  df-bases 22953  df-cld 23027  df-ntr 23028  df-cls 23029  df-nei 23106  df-lp 23144  df-perf 23145  df-cn 23235  df-cnp 23236  df-haus 23323  df-cmp 23395  df-tx 23570  df-hmeo 23763  df-fil 23854  df-fm 23946  df-flim 23947  df-flf 23948  df-xms 24330  df-ms 24331  df-tms 24332  df-cncf 24904  df-ovol 25499  df-vol 25500  df-mbf 25654  df-itg1 25655  df-itg2 25656  df-ibl 25657  df-itg 25658  df-0p 25705  df-limc 25901  df-dv 25902
This theorem is referenced by:  lcmineqlem13  42042
  Copyright terms: Public domain W3C validator