Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcmineqlem12 Structured version   Visualization version   GIF version

Theorem lcmineqlem12 41402
Description: Base case for induction. (Contributed by metakunt, 12-May-2024.)
Hypothesis
Ref Expression
lcmineqlem12.1 (𝜑𝑁 ∈ ℕ)
Assertion
Ref Expression
lcmineqlem12 (𝜑 → ∫(0[,]1)((𝑡↑(1 − 1)) · ((1 − 𝑡)↑(𝑁 − 1))) d𝑡 = (1 / (1 · (𝑁C1))))
Distinct variable groups:   𝑡,𝑁   𝜑,𝑡

Proof of Theorem lcmineqlem12
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elunitcn 13443 . . . 4 (𝑡 ∈ (0[,]1) → 𝑡 ∈ ℂ)
2 1m1e0 12282 . . . . . . . 8 (1 − 1) = 0
32oveq2i 7413 . . . . . . 7 (𝑡↑(1 − 1)) = (𝑡↑0)
4 simpr 484 . . . . . . . 8 ((𝜑𝑡 ∈ ℂ) → 𝑡 ∈ ℂ)
54exp0d 14103 . . . . . . 7 ((𝜑𝑡 ∈ ℂ) → (𝑡↑0) = 1)
63, 5eqtrid 2776 . . . . . 6 ((𝜑𝑡 ∈ ℂ) → (𝑡↑(1 − 1)) = 1)
76oveq1d 7417 . . . . 5 ((𝜑𝑡 ∈ ℂ) → ((𝑡↑(1 − 1)) · ((1 − 𝑡)↑(𝑁 − 1))) = (1 · ((1 − 𝑡)↑(𝑁 − 1))))
8 1cnd 11207 . . . . . . . 8 ((𝜑𝑡 ∈ ℂ) → 1 ∈ ℂ)
98, 4subcld 11569 . . . . . . 7 ((𝜑𝑡 ∈ ℂ) → (1 − 𝑡) ∈ ℂ)
10 lcmineqlem12.1 . . . . . . . . 9 (𝜑𝑁 ∈ ℕ)
11 nnm1nn0 12511 . . . . . . . . 9 (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℕ0)
1210, 11syl 17 . . . . . . . 8 (𝜑 → (𝑁 − 1) ∈ ℕ0)
1312adantr 480 . . . . . . 7 ((𝜑𝑡 ∈ ℂ) → (𝑁 − 1) ∈ ℕ0)
149, 13expcld 14109 . . . . . 6 ((𝜑𝑡 ∈ ℂ) → ((1 − 𝑡)↑(𝑁 − 1)) ∈ ℂ)
1514mullidd 11230 . . . . 5 ((𝜑𝑡 ∈ ℂ) → (1 · ((1 − 𝑡)↑(𝑁 − 1))) = ((1 − 𝑡)↑(𝑁 − 1)))
167, 15eqtrd 2764 . . . 4 ((𝜑𝑡 ∈ ℂ) → ((𝑡↑(1 − 1)) · ((1 − 𝑡)↑(𝑁 − 1))) = ((1 − 𝑡)↑(𝑁 − 1)))
171, 16sylan2 592 . . 3 ((𝜑𝑡 ∈ (0[,]1)) → ((𝑡↑(1 − 1)) · ((1 − 𝑡)↑(𝑁 − 1))) = ((1 − 𝑡)↑(𝑁 − 1)))
1817itgeq2dv 25635 . 2 (𝜑 → ∫(0[,]1)((𝑡↑(1 − 1)) · ((1 − 𝑡)↑(𝑁 − 1))) d𝑡 = ∫(0[,]1)((1 − 𝑡)↑(𝑁 − 1)) d𝑡)
19 0red 11215 . . . . 5 (𝜑 → 0 ∈ ℝ)
20 1red 11213 . . . . 5 (𝜑 → 1 ∈ ℝ)
211, 14sylan2 592 . . . . 5 ((𝜑𝑡 ∈ (0[,]1)) → ((1 − 𝑡)↑(𝑁 − 1)) ∈ ℂ)
2219, 20, 21itgioo 25669 . . . 4 (𝜑 → ∫(0(,)1)((1 − 𝑡)↑(𝑁 − 1)) d𝑡 = ∫(0[,]1)((1 − 𝑡)↑(𝑁 − 1)) d𝑡)
23 eqidd 2725 . . . . . . 7 ((𝜑𝑡 ∈ (0(,)1)) → (𝑥 ∈ (0(,)1) ↦ ((1 − 𝑥)↑(𝑁 − 1))) = (𝑥 ∈ (0(,)1) ↦ ((1 − 𝑥)↑(𝑁 − 1))))
24 oveq2 7410 . . . . . . . . . 10 (𝑥 = 𝑡 → (1 − 𝑥) = (1 − 𝑡))
2524oveq1d 7417 . . . . . . . . 9 (𝑥 = 𝑡 → ((1 − 𝑥)↑(𝑁 − 1)) = ((1 − 𝑡)↑(𝑁 − 1)))
2625adantl 481 . . . . . . . 8 ((𝜑𝑥 = 𝑡) → ((1 − 𝑥)↑(𝑁 − 1)) = ((1 − 𝑡)↑(𝑁 − 1)))
2726adantlr 712 . . . . . . 7 (((𝜑𝑡 ∈ (0(,)1)) ∧ 𝑥 = 𝑡) → ((1 − 𝑥)↑(𝑁 − 1)) = ((1 − 𝑡)↑(𝑁 − 1)))
28 simpr 484 . . . . . . 7 ((𝜑𝑡 ∈ (0(,)1)) → 𝑡 ∈ (0(,)1))
29 1cnd 11207 . . . . . . . . 9 ((𝜑𝑡 ∈ (0(,)1)) → 1 ∈ ℂ)
30 elioore 13352 . . . . . . . . . 10 (𝑡 ∈ (0(,)1) → 𝑡 ∈ ℝ)
31 recn 11197 . . . . . . . . . 10 (𝑡 ∈ ℝ → 𝑡 ∈ ℂ)
3228, 30, 313syl 18 . . . . . . . . 9 ((𝜑𝑡 ∈ (0(,)1)) → 𝑡 ∈ ℂ)
3329, 32subcld 11569 . . . . . . . 8 ((𝜑𝑡 ∈ (0(,)1)) → (1 − 𝑡) ∈ ℂ)
3412adantr 480 . . . . . . . 8 ((𝜑𝑡 ∈ (0(,)1)) → (𝑁 − 1) ∈ ℕ0)
3533, 34expcld 14109 . . . . . . 7 ((𝜑𝑡 ∈ (0(,)1)) → ((1 − 𝑡)↑(𝑁 − 1)) ∈ ℂ)
3623, 27, 28, 35fvmptd 6996 . . . . . 6 ((𝜑𝑡 ∈ (0(,)1)) → ((𝑥 ∈ (0(,)1) ↦ ((1 − 𝑥)↑(𝑁 − 1)))‘𝑡) = ((1 − 𝑡)↑(𝑁 − 1)))
3736itgeq2dv 25635 . . . . 5 (𝜑 → ∫(0(,)1)((𝑥 ∈ (0(,)1) ↦ ((1 − 𝑥)↑(𝑁 − 1)))‘𝑡) d𝑡 = ∫(0(,)1)((1 − 𝑡)↑(𝑁 − 1)) d𝑡)
38 cnelprrecn 11200 . . . . . . . . . . . . 13 ℂ ∈ {ℝ, ℂ}
3938a1i 11 . . . . . . . . . . . 12 (𝜑 → ℂ ∈ {ℝ, ℂ})
40 1cnd 11207 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ℂ) → 1 ∈ ℂ)
41 simpr 484 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ℂ) → 𝑥 ∈ ℂ)
4240, 41subcld 11569 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ℂ) → (1 − 𝑥) ∈ ℂ)
43 nnnn0 12477 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
4410, 43syl 17 . . . . . . . . . . . . . 14 (𝜑𝑁 ∈ ℕ0)
4544adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ℂ) → 𝑁 ∈ ℕ0)
4642, 45expcld 14109 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℂ) → ((1 − 𝑥)↑𝑁) ∈ ℂ)
4745nn0cnd 12532 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ℂ) → 𝑁 ∈ ℂ)
4812adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ ℂ) → (𝑁 − 1) ∈ ℕ0)
4942, 48expcld 14109 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ℂ) → ((1 − 𝑥)↑(𝑁 − 1)) ∈ ℂ)
5047, 49mulcld 11232 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ℂ) → (𝑁 · ((1 − 𝑥)↑(𝑁 − 1))) ∈ ℂ)
5140negcld 11556 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ℂ) → -1 ∈ ℂ)
5250, 51mulcld 11232 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℂ) → ((𝑁 · ((1 − 𝑥)↑(𝑁 − 1))) · -1) ∈ ℂ)
53 simpr 484 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ ℂ) → 𝑦 ∈ ℂ)
5444adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ ℂ) → 𝑁 ∈ ℕ0)
5553, 54expcld 14109 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ ℂ) → (𝑦𝑁) ∈ ℂ)
5654nn0cnd 12532 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ ℂ) → 𝑁 ∈ ℂ)
5712adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑦 ∈ ℂ) → (𝑁 − 1) ∈ ℕ0)
5853, 57expcld 14109 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ ℂ) → (𝑦↑(𝑁 − 1)) ∈ ℂ)
5956, 58mulcld 11232 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ ℂ) → (𝑁 · (𝑦↑(𝑁 − 1))) ∈ ℂ)
60 0cnd 11205 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ ℂ) → 0 ∈ ℂ)
61 1cnd 11207 . . . . . . . . . . . . . . . 16 (𝜑 → 1 ∈ ℂ)
6239, 61dvmptc 25814 . . . . . . . . . . . . . . 15 (𝜑 → (ℂ D (𝑥 ∈ ℂ ↦ 1)) = (𝑥 ∈ ℂ ↦ 0))
6339dvmptid 25813 . . . . . . . . . . . . . . 15 (𝜑 → (ℂ D (𝑥 ∈ ℂ ↦ 𝑥)) = (𝑥 ∈ ℂ ↦ 1))
6439, 40, 60, 62, 41, 40, 63dvmptsub 25823 . . . . . . . . . . . . . 14 (𝜑 → (ℂ D (𝑥 ∈ ℂ ↦ (1 − 𝑥))) = (𝑥 ∈ ℂ ↦ (0 − 1)))
65 df-neg 11445 . . . . . . . . . . . . . . . 16 -1 = (0 − 1)
6665a1i 11 . . . . . . . . . . . . . . 15 (𝜑 → -1 = (0 − 1))
6766mpteq2dv 5241 . . . . . . . . . . . . . 14 (𝜑 → (𝑥 ∈ ℂ ↦ -1) = (𝑥 ∈ ℂ ↦ (0 − 1)))
6864, 67eqtr4d 2767 . . . . . . . . . . . . 13 (𝜑 → (ℂ D (𝑥 ∈ ℂ ↦ (1 − 𝑥))) = (𝑥 ∈ ℂ ↦ -1))
69 dvexp 25809 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ → (ℂ D (𝑦 ∈ ℂ ↦ (𝑦𝑁))) = (𝑦 ∈ ℂ ↦ (𝑁 · (𝑦↑(𝑁 − 1)))))
7010, 69syl 17 . . . . . . . . . . . . 13 (𝜑 → (ℂ D (𝑦 ∈ ℂ ↦ (𝑦𝑁))) = (𝑦 ∈ ℂ ↦ (𝑁 · (𝑦↑(𝑁 − 1)))))
71 oveq1 7409 . . . . . . . . . . . . 13 (𝑦 = (1 − 𝑥) → (𝑦𝑁) = ((1 − 𝑥)↑𝑁))
72 oveq1 7409 . . . . . . . . . . . . . 14 (𝑦 = (1 − 𝑥) → (𝑦↑(𝑁 − 1)) = ((1 − 𝑥)↑(𝑁 − 1)))
7372oveq2d 7418 . . . . . . . . . . . . 13 (𝑦 = (1 − 𝑥) → (𝑁 · (𝑦↑(𝑁 − 1))) = (𝑁 · ((1 − 𝑥)↑(𝑁 − 1))))
7439, 39, 42, 51, 55, 59, 68, 70, 71, 73dvmptco 25828 . . . . . . . . . . . 12 (𝜑 → (ℂ D (𝑥 ∈ ℂ ↦ ((1 − 𝑥)↑𝑁))) = (𝑥 ∈ ℂ ↦ ((𝑁 · ((1 − 𝑥)↑(𝑁 − 1))) · -1)))
7561negcld 11556 . . . . . . . . . . . . 13 (𝜑 → -1 ∈ ℂ)
7610nncnd 12226 . . . . . . . . . . . . 13 (𝜑𝑁 ∈ ℂ)
7710nnne0d 12260 . . . . . . . . . . . . 13 (𝜑𝑁 ≠ 0)
7875, 76, 77divcld 11988 . . . . . . . . . . . 12 (𝜑 → (-1 / 𝑁) ∈ ℂ)
7939, 46, 52, 74, 78dvmptcmul 25820 . . . . . . . . . . 11 (𝜑 → (ℂ D (𝑥 ∈ ℂ ↦ ((-1 / 𝑁) · ((1 − 𝑥)↑𝑁)))) = (𝑥 ∈ ℂ ↦ ((-1 / 𝑁) · ((𝑁 · ((1 − 𝑥)↑(𝑁 − 1))) · -1))))
8078adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ ℂ) → (-1 / 𝑁) ∈ ℂ)
8180, 50, 51mulassd 11235 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ ℂ) → (((-1 / 𝑁) · (𝑁 · ((1 − 𝑥)↑(𝑁 − 1)))) · -1) = ((-1 / 𝑁) · ((𝑁 · ((1 − 𝑥)↑(𝑁 − 1))) · -1)))
8281eqcomd 2730 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ ℂ) → ((-1 / 𝑁) · ((𝑁 · ((1 − 𝑥)↑(𝑁 − 1))) · -1)) = (((-1 / 𝑁) · (𝑁 · ((1 − 𝑥)↑(𝑁 − 1)))) · -1))
8380, 47, 49mulassd 11235 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ ℂ) → (((-1 / 𝑁) · 𝑁) · ((1 − 𝑥)↑(𝑁 − 1))) = ((-1 / 𝑁) · (𝑁 · ((1 − 𝑥)↑(𝑁 − 1)))))
8483oveq1d 7417 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ ℂ) → ((((-1 / 𝑁) · 𝑁) · ((1 − 𝑥)↑(𝑁 − 1))) · -1) = (((-1 / 𝑁) · (𝑁 · ((1 − 𝑥)↑(𝑁 − 1)))) · -1))
8584eqcomd 2730 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ ℂ) → (((-1 / 𝑁) · (𝑁 · ((1 − 𝑥)↑(𝑁 − 1)))) · -1) = ((((-1 / 𝑁) · 𝑁) · ((1 − 𝑥)↑(𝑁 − 1))) · -1))
8682, 85eqtrd 2764 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ ℂ) → ((-1 / 𝑁) · ((𝑁 · ((1 − 𝑥)↑(𝑁 − 1))) · -1)) = ((((-1 / 𝑁) · 𝑁) · ((1 − 𝑥)↑(𝑁 − 1))) · -1))
8777adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ ℂ) → 𝑁 ≠ 0)
8851, 47, 87divcan1d 11989 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ ℂ) → ((-1 / 𝑁) · 𝑁) = -1)
8988oveq1d 7417 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ ℂ) → (((-1 / 𝑁) · 𝑁) · ((1 − 𝑥)↑(𝑁 − 1))) = (-1 · ((1 − 𝑥)↑(𝑁 − 1))))
9089oveq1d 7417 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ ℂ) → ((((-1 / 𝑁) · 𝑁) · ((1 − 𝑥)↑(𝑁 − 1))) · -1) = ((-1 · ((1 − 𝑥)↑(𝑁 − 1))) · -1))
9186, 90eqtrd 2764 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ℂ) → ((-1 / 𝑁) · ((𝑁 · ((1 − 𝑥)↑(𝑁 − 1))) · -1)) = ((-1 · ((1 − 𝑥)↑(𝑁 − 1))) · -1))
9251, 51, 49mul32d 11422 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ ℂ) → ((-1 · -1) · ((1 − 𝑥)↑(𝑁 − 1))) = ((-1 · ((1 − 𝑥)↑(𝑁 − 1))) · -1))
9392eqcomd 2730 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ℂ) → ((-1 · ((1 − 𝑥)↑(𝑁 − 1))) · -1) = ((-1 · -1) · ((1 − 𝑥)↑(𝑁 − 1))))
9491, 93eqtrd 2764 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ℂ) → ((-1 / 𝑁) · ((𝑁 · ((1 − 𝑥)↑(𝑁 − 1))) · -1)) = ((-1 · -1) · ((1 − 𝑥)↑(𝑁 − 1))))
9540, 40mul2negd 11667 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ ℂ) → (-1 · -1) = (1 · 1))
96 1t1e1 12372 . . . . . . . . . . . . . . . 16 (1 · 1) = 1
9795, 96eqtrdi 2780 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ ℂ) → (-1 · -1) = 1)
9897oveq1d 7417 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ℂ) → ((-1 · -1) · ((1 − 𝑥)↑(𝑁 − 1))) = (1 · ((1 − 𝑥)↑(𝑁 − 1))))
9949mullidd 11230 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ℂ) → (1 · ((1 − 𝑥)↑(𝑁 − 1))) = ((1 − 𝑥)↑(𝑁 − 1)))
10098, 99eqtrd 2764 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ℂ) → ((-1 · -1) · ((1 − 𝑥)↑(𝑁 − 1))) = ((1 − 𝑥)↑(𝑁 − 1)))
10194, 100eqtrd 2764 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℂ) → ((-1 / 𝑁) · ((𝑁 · ((1 − 𝑥)↑(𝑁 − 1))) · -1)) = ((1 − 𝑥)↑(𝑁 − 1)))
102101mpteq2dva 5239 . . . . . . . . . . 11 (𝜑 → (𝑥 ∈ ℂ ↦ ((-1 / 𝑁) · ((𝑁 · ((1 − 𝑥)↑(𝑁 − 1))) · -1))) = (𝑥 ∈ ℂ ↦ ((1 − 𝑥)↑(𝑁 − 1))))
10379, 102eqtrd 2764 . . . . . . . . . 10 (𝜑 → (ℂ D (𝑥 ∈ ℂ ↦ ((-1 / 𝑁) · ((1 − 𝑥)↑𝑁)))) = (𝑥 ∈ ℂ ↦ ((1 − 𝑥)↑(𝑁 − 1))))
10480, 46mulcld 11232 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℂ) → ((-1 / 𝑁) · ((1 − 𝑥)↑𝑁)) ∈ ℂ)
105103, 104, 49resdvopclptsd 41390 . . . . . . . . 9 (𝜑 → (ℝ D (𝑥 ∈ (0[,]1) ↦ ((-1 / 𝑁) · ((1 − 𝑥)↑𝑁)))) = (𝑥 ∈ (0(,)1) ↦ ((1 − 𝑥)↑(𝑁 − 1))))
106105fveq1d 6884 . . . . . . . 8 (𝜑 → ((ℝ D (𝑥 ∈ (0[,]1) ↦ ((-1 / 𝑁) · ((1 − 𝑥)↑𝑁))))‘𝑡) = ((𝑥 ∈ (0(,)1) ↦ ((1 − 𝑥)↑(𝑁 − 1)))‘𝑡))
107106ralrimivw 3142 . . . . . . 7 (𝜑 → ∀𝑡 ∈ (0(,)1)((ℝ D (𝑥 ∈ (0[,]1) ↦ ((-1 / 𝑁) · ((1 − 𝑥)↑𝑁))))‘𝑡) = ((𝑥 ∈ (0(,)1) ↦ ((1 − 𝑥)↑(𝑁 − 1)))‘𝑡))
108 itgeq2 25631 . . . . . . 7 (∀𝑡 ∈ (0(,)1)((ℝ D (𝑥 ∈ (0[,]1) ↦ ((-1 / 𝑁) · ((1 − 𝑥)↑𝑁))))‘𝑡) = ((𝑥 ∈ (0(,)1) ↦ ((1 − 𝑥)↑(𝑁 − 1)))‘𝑡) → ∫(0(,)1)((ℝ D (𝑥 ∈ (0[,]1) ↦ ((-1 / 𝑁) · ((1 − 𝑥)↑𝑁))))‘𝑡) d𝑡 = ∫(0(,)1)((𝑥 ∈ (0(,)1) ↦ ((1 − 𝑥)↑(𝑁 − 1)))‘𝑡) d𝑡)
109107, 108syl 17 . . . . . 6 (𝜑 → ∫(0(,)1)((ℝ D (𝑥 ∈ (0[,]1) ↦ ((-1 / 𝑁) · ((1 − 𝑥)↑𝑁))))‘𝑡) d𝑡 = ∫(0(,)1)((𝑥 ∈ (0(,)1) ↦ ((1 − 𝑥)↑(𝑁 − 1)))‘𝑡) d𝑡)
110 0le1 11735 . . . . . . . . . 10 0 ≤ 1
111110a1i 11 . . . . . . . . 9 (𝜑 → 0 ≤ 1)
112 nfv 1909 . . . . . . . . . . . 12 𝑥𝜑
113 ax-1cn 11165 . . . . . . . . . . . . . . 15 1 ∈ ℂ
114 ssid 3997 . . . . . . . . . . . . . . 15 ℂ ⊆ ℂ
115 cncfmptc 24756 . . . . . . . . . . . . . . 15 ((1 ∈ ℂ ∧ ℂ ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑥 ∈ ℂ ↦ 1) ∈ (ℂ–cn→ℂ))
116113, 114, 114, 115mp3an 1457 . . . . . . . . . . . . . 14 (𝑥 ∈ ℂ ↦ 1) ∈ (ℂ–cn→ℂ)
117116a1i 11 . . . . . . . . . . . . 13 (𝜑 → (𝑥 ∈ ℂ ↦ 1) ∈ (ℂ–cn→ℂ))
118 cncfmptid 24757 . . . . . . . . . . . . . . 15 ((ℂ ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑥 ∈ ℂ ↦ 𝑥) ∈ (ℂ–cn→ℂ))
119114, 114, 118mp2an 689 . . . . . . . . . . . . . 14 (𝑥 ∈ ℂ ↦ 𝑥) ∈ (ℂ–cn→ℂ)
120119a1i 11 . . . . . . . . . . . . 13 (𝜑 → (𝑥 ∈ ℂ ↦ 𝑥) ∈ (ℂ–cn→ℂ))
121117, 120subcncf 25297 . . . . . . . . . . . 12 (𝜑 → (𝑥 ∈ ℂ ↦ (1 − 𝑥)) ∈ (ℂ–cn→ℂ))
122 expcncf 24771 . . . . . . . . . . . . 13 ((𝑁 − 1) ∈ ℕ0 → (𝑦 ∈ ℂ ↦ (𝑦↑(𝑁 − 1))) ∈ (ℂ–cn→ℂ))
12312, 122syl 17 . . . . . . . . . . . 12 (𝜑 → (𝑦 ∈ ℂ ↦ (𝑦↑(𝑁 − 1))) ∈ (ℂ–cn→ℂ))
124 ssidd 3998 . . . . . . . . . . . 12 (𝜑 → ℂ ⊆ ℂ)
125112, 121, 123, 124, 72cncfcompt2 24752 . . . . . . . . . . 11 (𝜑 → (𝑥 ∈ ℂ ↦ ((1 − 𝑥)↑(𝑁 − 1))) ∈ (ℂ–cn→ℂ))
126125resopunitintvd 41388 . . . . . . . . . 10 (𝜑 → (𝑥 ∈ (0(,)1) ↦ ((1 − 𝑥)↑(𝑁 − 1))) ∈ ((0(,)1)–cn→ℂ))
127105eleq1d 2810 . . . . . . . . . 10 (𝜑 → ((ℝ D (𝑥 ∈ (0[,]1) ↦ ((-1 / 𝑁) · ((1 − 𝑥)↑𝑁)))) ∈ ((0(,)1)–cn→ℂ) ↔ (𝑥 ∈ (0(,)1) ↦ ((1 − 𝑥)↑(𝑁 − 1))) ∈ ((0(,)1)–cn→ℂ)))
128126, 127mpbird 257 . . . . . . . . 9 (𝜑 → (ℝ D (𝑥 ∈ (0[,]1) ↦ ((-1 / 𝑁) · ((1 − 𝑥)↑𝑁)))) ∈ ((0(,)1)–cn→ℂ))
129 ioossicc 13408 . . . . . . . . . . . 12 (0(,)1) ⊆ (0[,]1)
130129a1i 11 . . . . . . . . . . 11 (𝜑 → (0(,)1) ⊆ (0[,]1))
131 ioombl 25418 . . . . . . . . . . . 12 (0(,)1) ∈ dom vol
132131a1i 11 . . . . . . . . . . 11 (𝜑 → (0(,)1) ∈ dom vol)
133 elunitcn 13443 . . . . . . . . . . . 12 (𝑥 ∈ (0[,]1) → 𝑥 ∈ ℂ)
134133, 49sylan2 592 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (0[,]1)) → ((1 − 𝑥)↑(𝑁 − 1)) ∈ ℂ)
135114a1i 11 . . . . . . . . . . . . . . 15 (𝜑 → ℂ ⊆ ℂ)
136112, 121, 123, 135, 72cncfcompt2 24752 . . . . . . . . . . . . . 14 (𝜑 → (𝑥 ∈ ℂ ↦ ((1 − 𝑥)↑(𝑁 − 1))) ∈ (ℂ–cn→ℂ))
137136resclunitintvd 41389 . . . . . . . . . . . . 13 (𝜑 → (𝑥 ∈ (0[,]1) ↦ ((1 − 𝑥)↑(𝑁 − 1))) ∈ ((0[,]1)–cn→ℂ))
13819, 20, 1373jca 1125 . . . . . . . . . . . 12 (𝜑 → (0 ∈ ℝ ∧ 1 ∈ ℝ ∧ (𝑥 ∈ (0[,]1) ↦ ((1 − 𝑥)↑(𝑁 − 1))) ∈ ((0[,]1)–cn→ℂ)))
139 cnicciblnc 25696 . . . . . . . . . . . 12 ((0 ∈ ℝ ∧ 1 ∈ ℝ ∧ (𝑥 ∈ (0[,]1) ↦ ((1 − 𝑥)↑(𝑁 − 1))) ∈ ((0[,]1)–cn→ℂ)) → (𝑥 ∈ (0[,]1) ↦ ((1 − 𝑥)↑(𝑁 − 1))) ∈ 𝐿1)
140138, 139syl 17 . . . . . . . . . . 11 (𝜑 → (𝑥 ∈ (0[,]1) ↦ ((1 − 𝑥)↑(𝑁 − 1))) ∈ 𝐿1)
141130, 132, 134, 140iblss 25658 . . . . . . . . . 10 (𝜑 → (𝑥 ∈ (0(,)1) ↦ ((1 − 𝑥)↑(𝑁 − 1))) ∈ 𝐿1)
142105, 141eqeltrd 2825 . . . . . . . . 9 (𝜑 → (ℝ D (𝑥 ∈ (0[,]1) ↦ ((-1 / 𝑁) · ((1 − 𝑥)↑𝑁)))) ∈ 𝐿1)
143 cncfmptc 24756 . . . . . . . . . . . . 13 (((-1 / 𝑁) ∈ ℂ ∧ ℂ ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑥 ∈ ℂ ↦ (-1 / 𝑁)) ∈ (ℂ–cn→ℂ))
144114, 114, 143mp3an23 1449 . . . . . . . . . . . 12 ((-1 / 𝑁) ∈ ℂ → (𝑥 ∈ ℂ ↦ (-1 / 𝑁)) ∈ (ℂ–cn→ℂ))
14578, 144syl 17 . . . . . . . . . . 11 (𝜑 → (𝑥 ∈ ℂ ↦ (-1 / 𝑁)) ∈ (ℂ–cn→ℂ))
146145resclunitintvd 41389 . . . . . . . . . 10 (𝜑 → (𝑥 ∈ (0[,]1) ↦ (-1 / 𝑁)) ∈ ((0[,]1)–cn→ℂ))
147 expcncf 24771 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ0 → (𝑦 ∈ ℂ ↦ (𝑦𝑁)) ∈ (ℂ–cn→ℂ))
14844, 147syl 17 . . . . . . . . . . . 12 (𝜑 → (𝑦 ∈ ℂ ↦ (𝑦𝑁)) ∈ (ℂ–cn→ℂ))
149112, 121, 148, 124, 71cncfcompt2 24752 . . . . . . . . . . 11 (𝜑 → (𝑥 ∈ ℂ ↦ ((1 − 𝑥)↑𝑁)) ∈ (ℂ–cn→ℂ))
150149resclunitintvd 41389 . . . . . . . . . 10 (𝜑 → (𝑥 ∈ (0[,]1) ↦ ((1 − 𝑥)↑𝑁)) ∈ ((0[,]1)–cn→ℂ))
151146, 150mulcncf 25298 . . . . . . . . 9 (𝜑 → (𝑥 ∈ (0[,]1) ↦ ((-1 / 𝑁) · ((1 − 𝑥)↑𝑁))) ∈ ((0[,]1)–cn→ℂ))
15219, 20, 111, 128, 142, 151ftc2 25903 . . . . . . . 8 (𝜑 → ∫(0(,)1)((ℝ D (𝑥 ∈ (0[,]1) ↦ ((-1 / 𝑁) · ((1 − 𝑥)↑𝑁))))‘𝑡) d𝑡 = (((𝑥 ∈ (0[,]1) ↦ ((-1 / 𝑁) · ((1 − 𝑥)↑𝑁)))‘1) − ((𝑥 ∈ (0[,]1) ↦ ((-1 / 𝑁) · ((1 − 𝑥)↑𝑁)))‘0)))
153 eqidd 2725 . . . . . . . . . 10 (𝜑 → (𝑥 ∈ (0[,]1) ↦ ((-1 / 𝑁) · ((1 − 𝑥)↑𝑁))) = (𝑥 ∈ (0[,]1) ↦ ((-1 / 𝑁) · ((1 − 𝑥)↑𝑁))))
154 simpr 484 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 = 1) → 𝑥 = 1)
155154oveq2d 7418 . . . . . . . . . . . . . . 15 ((𝜑𝑥 = 1) → (1 − 𝑥) = (1 − 1))
156155, 2eqtrdi 2780 . . . . . . . . . . . . . 14 ((𝜑𝑥 = 1) → (1 − 𝑥) = 0)
157156oveq1d 7417 . . . . . . . . . . . . 13 ((𝜑𝑥 = 1) → ((1 − 𝑥)↑𝑁) = (0↑𝑁))
158 0exp 14061 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℕ → (0↑𝑁) = 0)
15910, 158syl 17 . . . . . . . . . . . . . 14 (𝜑 → (0↑𝑁) = 0)
160159adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑥 = 1) → (0↑𝑁) = 0)
161157, 160eqtrd 2764 . . . . . . . . . . . 12 ((𝜑𝑥 = 1) → ((1 − 𝑥)↑𝑁) = 0)
162161oveq2d 7418 . . . . . . . . . . 11 ((𝜑𝑥 = 1) → ((-1 / 𝑁) · ((1 − 𝑥)↑𝑁)) = ((-1 / 𝑁) · 0))
16378mul01d 11411 . . . . . . . . . . . 12 (𝜑 → ((-1 / 𝑁) · 0) = 0)
164163adantr 480 . . . . . . . . . . 11 ((𝜑𝑥 = 1) → ((-1 / 𝑁) · 0) = 0)
165162, 164eqtrd 2764 . . . . . . . . . 10 ((𝜑𝑥 = 1) → ((-1 / 𝑁) · ((1 − 𝑥)↑𝑁)) = 0)
166 1elunit 13445 . . . . . . . . . . 11 1 ∈ (0[,]1)
167166a1i 11 . . . . . . . . . 10 (𝜑 → 1 ∈ (0[,]1))
168 0cnd 11205 . . . . . . . . . 10 (𝜑 → 0 ∈ ℂ)
169153, 165, 167, 168fvmptd 6996 . . . . . . . . 9 (𝜑 → ((𝑥 ∈ (0[,]1) ↦ ((-1 / 𝑁) · ((1 − 𝑥)↑𝑁)))‘1) = 0)
170 simpr 484 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 = 0) → 𝑥 = 0)
171170oveq2d 7418 . . . . . . . . . . . . . . 15 ((𝜑𝑥 = 0) → (1 − 𝑥) = (1 − 0))
172 1m0e1 12331 . . . . . . . . . . . . . . 15 (1 − 0) = 1
173171, 172eqtrdi 2780 . . . . . . . . . . . . . 14 ((𝜑𝑥 = 0) → (1 − 𝑥) = 1)
174173oveq1d 7417 . . . . . . . . . . . . 13 ((𝜑𝑥 = 0) → ((1 − 𝑥)↑𝑁) = (1↑𝑁))
17544nn0zd 12582 . . . . . . . . . . . . . . 15 (𝜑𝑁 ∈ ℤ)
176 1exp 14055 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℤ → (1↑𝑁) = 1)
177175, 176syl 17 . . . . . . . . . . . . . 14 (𝜑 → (1↑𝑁) = 1)
178177adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑥 = 0) → (1↑𝑁) = 1)
179174, 178eqtrd 2764 . . . . . . . . . . . 12 ((𝜑𝑥 = 0) → ((1 − 𝑥)↑𝑁) = 1)
180179oveq2d 7418 . . . . . . . . . . 11 ((𝜑𝑥 = 0) → ((-1 / 𝑁) · ((1 − 𝑥)↑𝑁)) = ((-1 / 𝑁) · 1))
18178adantr 480 . . . . . . . . . . . 12 ((𝜑𝑥 = 0) → (-1 / 𝑁) ∈ ℂ)
182181mulridd 11229 . . . . . . . . . . 11 ((𝜑𝑥 = 0) → ((-1 / 𝑁) · 1) = (-1 / 𝑁))
183180, 182eqtrd 2764 . . . . . . . . . 10 ((𝜑𝑥 = 0) → ((-1 / 𝑁) · ((1 − 𝑥)↑𝑁)) = (-1 / 𝑁))
184 0elunit 13444 . . . . . . . . . . 11 0 ∈ (0[,]1)
185184a1i 11 . . . . . . . . . 10 (𝜑 → 0 ∈ (0[,]1))
186153, 183, 185, 78fvmptd 6996 . . . . . . . . 9 (𝜑 → ((𝑥 ∈ (0[,]1) ↦ ((-1 / 𝑁) · ((1 − 𝑥)↑𝑁)))‘0) = (-1 / 𝑁))
187169, 186oveq12d 7420 . . . . . . . 8 (𝜑 → (((𝑥 ∈ (0[,]1) ↦ ((-1 / 𝑁) · ((1 − 𝑥)↑𝑁)))‘1) − ((𝑥 ∈ (0[,]1) ↦ ((-1 / 𝑁) · ((1 − 𝑥)↑𝑁)))‘0)) = (0 − (-1 / 𝑁)))
188152, 187eqtrd 2764 . . . . . . 7 (𝜑 → ∫(0(,)1)((ℝ D (𝑥 ∈ (0[,]1) ↦ ((-1 / 𝑁) · ((1 − 𝑥)↑𝑁))))‘𝑡) d𝑡 = (0 − (-1 / 𝑁)))
189 df-neg 11445 . . . . . . . . . 10 --(1 / 𝑁) = (0 − -(1 / 𝑁))
190189a1i 11 . . . . . . . . 9 (𝜑 → --(1 / 𝑁) = (0 − -(1 / 𝑁)))
19161, 76, 77divnegd 12001 . . . . . . . . . 10 (𝜑 → -(1 / 𝑁) = (-1 / 𝑁))
192191oveq2d 7418 . . . . . . . . 9 (𝜑 → (0 − -(1 / 𝑁)) = (0 − (-1 / 𝑁)))
193190, 192eqtr2d 2765 . . . . . . . 8 (𝜑 → (0 − (-1 / 𝑁)) = --(1 / 𝑁))
19476, 77reccld 11981 . . . . . . . . 9 (𝜑 → (1 / 𝑁) ∈ ℂ)
195194negnegd 11560 . . . . . . . 8 (𝜑 → --(1 / 𝑁) = (1 / 𝑁))
196193, 195eqtrd 2764 . . . . . . 7 (𝜑 → (0 − (-1 / 𝑁)) = (1 / 𝑁))
197188, 196eqtrd 2764 . . . . . 6 (𝜑 → ∫(0(,)1)((ℝ D (𝑥 ∈ (0[,]1) ↦ ((-1 / 𝑁) · ((1 − 𝑥)↑𝑁))))‘𝑡) d𝑡 = (1 / 𝑁))
198109, 197eqtr3d 2766 . . . . 5 (𝜑 → ∫(0(,)1)((𝑥 ∈ (0(,)1) ↦ ((1 − 𝑥)↑(𝑁 − 1)))‘𝑡) d𝑡 = (1 / 𝑁))
19937, 198eqtr3d 2766 . . . 4 (𝜑 → ∫(0(,)1)((1 − 𝑡)↑(𝑁 − 1)) d𝑡 = (1 / 𝑁))
20022, 199eqtr3d 2766 . . 3 (𝜑 → ∫(0[,]1)((1 − 𝑡)↑(𝑁 − 1)) d𝑡 = (1 / 𝑁))
201 bcn1 14271 . . . . . . 7 (𝑁 ∈ ℕ0 → (𝑁C1) = 𝑁)
20244, 201syl 17 . . . . . 6 (𝜑 → (𝑁C1) = 𝑁)
203202oveq2d 7418 . . . . 5 (𝜑 → (1 · (𝑁C1)) = (1 · 𝑁))
20476mullidd 11230 . . . . 5 (𝜑 → (1 · 𝑁) = 𝑁)
205203, 204eqtrd 2764 . . . 4 (𝜑 → (1 · (𝑁C1)) = 𝑁)
206205oveq2d 7418 . . 3 (𝜑 → (1 / (1 · (𝑁C1))) = (1 / 𝑁))
207200, 206eqtr4d 2767 . 2 (𝜑 → ∫(0[,]1)((1 − 𝑡)↑(𝑁 − 1)) d𝑡 = (1 / (1 · (𝑁C1))))
20818, 207eqtrd 2764 1 (𝜑 → ∫(0[,]1)((𝑡↑(1 − 1)) · ((1 − 𝑡)↑(𝑁 − 1))) d𝑡 = (1 / (1 · (𝑁C1))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1084   = wceq 1533  wcel 2098  wne 2932  wral 3053  wss 3941  {cpr 4623   class class class wbr 5139  cmpt 5222  dom cdm 5667  cfv 6534  (class class class)co 7402  cc 11105  cr 11106  0cc0 11107  1c1 11108   · cmul 11112  cle 11247  cmin 11442  -cneg 11443   / cdiv 11869  cn 12210  0cn0 12470  cz 12556  (,)cioo 13322  [,]cicc 13325  cexp 14025  Ccbc 14260  cnccncf 24720  volcvol 25316  𝐿1cibl 25470  citg 25471   D cdv 25716
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5276  ax-sep 5290  ax-nul 5297  ax-pow 5354  ax-pr 5418  ax-un 7719  ax-inf2 9633  ax-cc 10427  ax-cnex 11163  ax-resscn 11164  ax-1cn 11165  ax-icn 11166  ax-addcl 11167  ax-addrcl 11168  ax-mulcl 11169  ax-mulrcl 11170  ax-mulcom 11171  ax-addass 11172  ax-mulass 11173  ax-distr 11174  ax-i2m1 11175  ax-1ne0 11176  ax-1rid 11177  ax-rnegex 11178  ax-rrecex 11179  ax-cnre 11180  ax-pre-lttri 11181  ax-pre-lttrn 11182  ax-pre-ltadd 11183  ax-pre-mulgt0 11184  ax-pre-sup 11185  ax-addf 11186
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-nel 3039  df-ral 3054  df-rex 3063  df-rmo 3368  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3771  df-csb 3887  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-pss 3960  df-symdif 4235  df-nul 4316  df-if 4522  df-pw 4597  df-sn 4622  df-pr 4624  df-tp 4626  df-op 4628  df-uni 4901  df-int 4942  df-iun 4990  df-iin 4991  df-disj 5105  df-br 5140  df-opab 5202  df-mpt 5223  df-tr 5257  df-id 5565  df-eprel 5571  df-po 5579  df-so 5580  df-fr 5622  df-se 5623  df-we 5624  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-pred 6291  df-ord 6358  df-on 6359  df-lim 6360  df-suc 6361  df-iota 6486  df-fun 6536  df-fn 6537  df-f 6538  df-f1 6539  df-fo 6540  df-f1o 6541  df-fv 6542  df-isom 6543  df-riota 7358  df-ov 7405  df-oprab 7406  df-mpo 7407  df-of 7664  df-ofr 7665  df-om 7850  df-1st 7969  df-2nd 7970  df-supp 8142  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-2o 8463  df-oadd 8466  df-omul 8467  df-er 8700  df-map 8819  df-pm 8820  df-ixp 8889  df-en 8937  df-dom 8938  df-sdom 8939  df-fin 8940  df-fsupp 9359  df-fi 9403  df-sup 9434  df-inf 9435  df-oi 9502  df-dju 9893  df-card 9931  df-acn 9934  df-pnf 11248  df-mnf 11249  df-xr 11250  df-ltxr 11251  df-le 11252  df-sub 11444  df-neg 11445  df-div 11870  df-nn 12211  df-2 12273  df-3 12274  df-4 12275  df-5 12276  df-6 12277  df-7 12278  df-8 12279  df-9 12280  df-n0 12471  df-z 12557  df-dec 12676  df-uz 12821  df-q 12931  df-rp 12973  df-xneg 13090  df-xadd 13091  df-xmul 13092  df-ioo 13326  df-ioc 13327  df-ico 13328  df-icc 13329  df-fz 13483  df-fzo 13626  df-fl 13755  df-mod 13833  df-seq 13965  df-exp 14026  df-fac 14232  df-bc 14261  df-hash 14289  df-cj 15044  df-re 15045  df-im 15046  df-sqrt 15180  df-abs 15181  df-clim 15430  df-rlim 15431  df-sum 15631  df-struct 17081  df-sets 17098  df-slot 17116  df-ndx 17128  df-base 17146  df-ress 17175  df-plusg 17211  df-mulr 17212  df-starv 17213  df-sca 17214  df-vsca 17215  df-ip 17216  df-tset 17217  df-ple 17218  df-ds 17220  df-unif 17221  df-hom 17222  df-cco 17223  df-rest 17369  df-topn 17370  df-0g 17388  df-gsum 17389  df-topgen 17390  df-pt 17391  df-prds 17394  df-xrs 17449  df-qtop 17454  df-imas 17455  df-xps 17457  df-mre 17531  df-mrc 17532  df-acs 17534  df-mgm 18565  df-sgrp 18644  df-mnd 18660  df-submnd 18706  df-mulg 18988  df-cntz 19225  df-cmn 19694  df-psmet 21222  df-xmet 21223  df-met 21224  df-bl 21225  df-mopn 21226  df-fbas 21227  df-fg 21228  df-cnfld 21231  df-top 22720  df-topon 22737  df-topsp 22759  df-bases 22773  df-cld 22847  df-ntr 22848  df-cls 22849  df-nei 22926  df-lp 22964  df-perf 22965  df-cn 23055  df-cnp 23056  df-haus 23143  df-cmp 23215  df-tx 23390  df-hmeo 23583  df-fil 23674  df-fm 23766  df-flim 23767  df-flf 23768  df-xms 24150  df-ms 24151  df-tms 24152  df-cncf 24722  df-ovol 25317  df-vol 25318  df-mbf 25472  df-itg1 25473  df-itg2 25474  df-ibl 25475  df-itg 25476  df-0p 25523  df-limc 25719  df-dv 25720
This theorem is referenced by:  lcmineqlem13  41403
  Copyright terms: Public domain W3C validator