Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcmineqlem12 Structured version   Visualization version   GIF version

Theorem lcmineqlem12 42013
Description: Base case for induction. (Contributed by metakunt, 12-May-2024.)
Hypothesis
Ref Expression
lcmineqlem12.1 (𝜑𝑁 ∈ ℕ)
Assertion
Ref Expression
lcmineqlem12 (𝜑 → ∫(0[,]1)((𝑡↑(1 − 1)) · ((1 − 𝑡)↑(𝑁 − 1))) d𝑡 = (1 / (1 · (𝑁C1))))
Distinct variable groups:   𝑡,𝑁   𝜑,𝑡

Proof of Theorem lcmineqlem12
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elunitcn 13389 . . . 4 (𝑡 ∈ (0[,]1) → 𝑡 ∈ ℂ)
2 1m1e0 12218 . . . . . . . 8 (1 − 1) = 0
32oveq2i 7364 . . . . . . 7 (𝑡↑(1 − 1)) = (𝑡↑0)
4 simpr 484 . . . . . . . 8 ((𝜑𝑡 ∈ ℂ) → 𝑡 ∈ ℂ)
54exp0d 14065 . . . . . . 7 ((𝜑𝑡 ∈ ℂ) → (𝑡↑0) = 1)
63, 5eqtrid 2776 . . . . . 6 ((𝜑𝑡 ∈ ℂ) → (𝑡↑(1 − 1)) = 1)
76oveq1d 7368 . . . . 5 ((𝜑𝑡 ∈ ℂ) → ((𝑡↑(1 − 1)) · ((1 − 𝑡)↑(𝑁 − 1))) = (1 · ((1 − 𝑡)↑(𝑁 − 1))))
8 1cnd 11129 . . . . . . . 8 ((𝜑𝑡 ∈ ℂ) → 1 ∈ ℂ)
98, 4subcld 11493 . . . . . . 7 ((𝜑𝑡 ∈ ℂ) → (1 − 𝑡) ∈ ℂ)
10 lcmineqlem12.1 . . . . . . . . 9 (𝜑𝑁 ∈ ℕ)
11 nnm1nn0 12443 . . . . . . . . 9 (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℕ0)
1210, 11syl 17 . . . . . . . 8 (𝜑 → (𝑁 − 1) ∈ ℕ0)
1312adantr 480 . . . . . . 7 ((𝜑𝑡 ∈ ℂ) → (𝑁 − 1) ∈ ℕ0)
149, 13expcld 14071 . . . . . 6 ((𝜑𝑡 ∈ ℂ) → ((1 − 𝑡)↑(𝑁 − 1)) ∈ ℂ)
1514mullidd 11152 . . . . 5 ((𝜑𝑡 ∈ ℂ) → (1 · ((1 − 𝑡)↑(𝑁 − 1))) = ((1 − 𝑡)↑(𝑁 − 1)))
167, 15eqtrd 2764 . . . 4 ((𝜑𝑡 ∈ ℂ) → ((𝑡↑(1 − 1)) · ((1 − 𝑡)↑(𝑁 − 1))) = ((1 − 𝑡)↑(𝑁 − 1)))
171, 16sylan2 593 . . 3 ((𝜑𝑡 ∈ (0[,]1)) → ((𝑡↑(1 − 1)) · ((1 − 𝑡)↑(𝑁 − 1))) = ((1 − 𝑡)↑(𝑁 − 1)))
1817itgeq2dv 25699 . 2 (𝜑 → ∫(0[,]1)((𝑡↑(1 − 1)) · ((1 − 𝑡)↑(𝑁 − 1))) d𝑡 = ∫(0[,]1)((1 − 𝑡)↑(𝑁 − 1)) d𝑡)
19 0red 11137 . . . . 5 (𝜑 → 0 ∈ ℝ)
20 1red 11135 . . . . 5 (𝜑 → 1 ∈ ℝ)
211, 14sylan2 593 . . . . 5 ((𝜑𝑡 ∈ (0[,]1)) → ((1 − 𝑡)↑(𝑁 − 1)) ∈ ℂ)
2219, 20, 21itgioo 25733 . . . 4 (𝜑 → ∫(0(,)1)((1 − 𝑡)↑(𝑁 − 1)) d𝑡 = ∫(0[,]1)((1 − 𝑡)↑(𝑁 − 1)) d𝑡)
23 eqidd 2730 . . . . . . 7 ((𝜑𝑡 ∈ (0(,)1)) → (𝑥 ∈ (0(,)1) ↦ ((1 − 𝑥)↑(𝑁 − 1))) = (𝑥 ∈ (0(,)1) ↦ ((1 − 𝑥)↑(𝑁 − 1))))
24 oveq2 7361 . . . . . . . . . 10 (𝑥 = 𝑡 → (1 − 𝑥) = (1 − 𝑡))
2524oveq1d 7368 . . . . . . . . 9 (𝑥 = 𝑡 → ((1 − 𝑥)↑(𝑁 − 1)) = ((1 − 𝑡)↑(𝑁 − 1)))
2625adantl 481 . . . . . . . 8 ((𝜑𝑥 = 𝑡) → ((1 − 𝑥)↑(𝑁 − 1)) = ((1 − 𝑡)↑(𝑁 − 1)))
2726adantlr 715 . . . . . . 7 (((𝜑𝑡 ∈ (0(,)1)) ∧ 𝑥 = 𝑡) → ((1 − 𝑥)↑(𝑁 − 1)) = ((1 − 𝑡)↑(𝑁 − 1)))
28 simpr 484 . . . . . . 7 ((𝜑𝑡 ∈ (0(,)1)) → 𝑡 ∈ (0(,)1))
29 1cnd 11129 . . . . . . . . 9 ((𝜑𝑡 ∈ (0(,)1)) → 1 ∈ ℂ)
30 elioore 13296 . . . . . . . . . 10 (𝑡 ∈ (0(,)1) → 𝑡 ∈ ℝ)
31 recn 11118 . . . . . . . . . 10 (𝑡 ∈ ℝ → 𝑡 ∈ ℂ)
3228, 30, 313syl 18 . . . . . . . . 9 ((𝜑𝑡 ∈ (0(,)1)) → 𝑡 ∈ ℂ)
3329, 32subcld 11493 . . . . . . . 8 ((𝜑𝑡 ∈ (0(,)1)) → (1 − 𝑡) ∈ ℂ)
3412adantr 480 . . . . . . . 8 ((𝜑𝑡 ∈ (0(,)1)) → (𝑁 − 1) ∈ ℕ0)
3533, 34expcld 14071 . . . . . . 7 ((𝜑𝑡 ∈ (0(,)1)) → ((1 − 𝑡)↑(𝑁 − 1)) ∈ ℂ)
3623, 27, 28, 35fvmptd 6941 . . . . . 6 ((𝜑𝑡 ∈ (0(,)1)) → ((𝑥 ∈ (0(,)1) ↦ ((1 − 𝑥)↑(𝑁 − 1)))‘𝑡) = ((1 − 𝑡)↑(𝑁 − 1)))
3736itgeq2dv 25699 . . . . 5 (𝜑 → ∫(0(,)1)((𝑥 ∈ (0(,)1) ↦ ((1 − 𝑥)↑(𝑁 − 1)))‘𝑡) d𝑡 = ∫(0(,)1)((1 − 𝑡)↑(𝑁 − 1)) d𝑡)
38 cnelprrecn 11121 . . . . . . . . . . . . 13 ℂ ∈ {ℝ, ℂ}
3938a1i 11 . . . . . . . . . . . 12 (𝜑 → ℂ ∈ {ℝ, ℂ})
40 1cnd 11129 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ℂ) → 1 ∈ ℂ)
41 simpr 484 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ℂ) → 𝑥 ∈ ℂ)
4240, 41subcld 11493 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ℂ) → (1 − 𝑥) ∈ ℂ)
43 nnnn0 12409 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
4410, 43syl 17 . . . . . . . . . . . . . 14 (𝜑𝑁 ∈ ℕ0)
4544adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ℂ) → 𝑁 ∈ ℕ0)
4642, 45expcld 14071 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℂ) → ((1 − 𝑥)↑𝑁) ∈ ℂ)
4745nn0cnd 12465 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ℂ) → 𝑁 ∈ ℂ)
4812adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ ℂ) → (𝑁 − 1) ∈ ℕ0)
4942, 48expcld 14071 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ℂ) → ((1 − 𝑥)↑(𝑁 − 1)) ∈ ℂ)
5047, 49mulcld 11154 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ℂ) → (𝑁 · ((1 − 𝑥)↑(𝑁 − 1))) ∈ ℂ)
5140negcld 11480 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ℂ) → -1 ∈ ℂ)
5250, 51mulcld 11154 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℂ) → ((𝑁 · ((1 − 𝑥)↑(𝑁 − 1))) · -1) ∈ ℂ)
53 simpr 484 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ ℂ) → 𝑦 ∈ ℂ)
5444adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ ℂ) → 𝑁 ∈ ℕ0)
5553, 54expcld 14071 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ ℂ) → (𝑦𝑁) ∈ ℂ)
5654nn0cnd 12465 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ ℂ) → 𝑁 ∈ ℂ)
5712adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑦 ∈ ℂ) → (𝑁 − 1) ∈ ℕ0)
5853, 57expcld 14071 . . . . . . . . . . . . . 14 ((𝜑𝑦 ∈ ℂ) → (𝑦↑(𝑁 − 1)) ∈ ℂ)
5956, 58mulcld 11154 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ ℂ) → (𝑁 · (𝑦↑(𝑁 − 1))) ∈ ℂ)
60 0cnd 11127 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ ℂ) → 0 ∈ ℂ)
61 1cnd 11129 . . . . . . . . . . . . . . . 16 (𝜑 → 1 ∈ ℂ)
6239, 61dvmptc 25878 . . . . . . . . . . . . . . 15 (𝜑 → (ℂ D (𝑥 ∈ ℂ ↦ 1)) = (𝑥 ∈ ℂ ↦ 0))
6339dvmptid 25877 . . . . . . . . . . . . . . 15 (𝜑 → (ℂ D (𝑥 ∈ ℂ ↦ 𝑥)) = (𝑥 ∈ ℂ ↦ 1))
6439, 40, 60, 62, 41, 40, 63dvmptsub 25887 . . . . . . . . . . . . . 14 (𝜑 → (ℂ D (𝑥 ∈ ℂ ↦ (1 − 𝑥))) = (𝑥 ∈ ℂ ↦ (0 − 1)))
65 df-neg 11368 . . . . . . . . . . . . . . . 16 -1 = (0 − 1)
6665a1i 11 . . . . . . . . . . . . . . 15 (𝜑 → -1 = (0 − 1))
6766mpteq2dv 5189 . . . . . . . . . . . . . 14 (𝜑 → (𝑥 ∈ ℂ ↦ -1) = (𝑥 ∈ ℂ ↦ (0 − 1)))
6864, 67eqtr4d 2767 . . . . . . . . . . . . 13 (𝜑 → (ℂ D (𝑥 ∈ ℂ ↦ (1 − 𝑥))) = (𝑥 ∈ ℂ ↦ -1))
69 dvexp 25873 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ → (ℂ D (𝑦 ∈ ℂ ↦ (𝑦𝑁))) = (𝑦 ∈ ℂ ↦ (𝑁 · (𝑦↑(𝑁 − 1)))))
7010, 69syl 17 . . . . . . . . . . . . 13 (𝜑 → (ℂ D (𝑦 ∈ ℂ ↦ (𝑦𝑁))) = (𝑦 ∈ ℂ ↦ (𝑁 · (𝑦↑(𝑁 − 1)))))
71 oveq1 7360 . . . . . . . . . . . . 13 (𝑦 = (1 − 𝑥) → (𝑦𝑁) = ((1 − 𝑥)↑𝑁))
72 oveq1 7360 . . . . . . . . . . . . . 14 (𝑦 = (1 − 𝑥) → (𝑦↑(𝑁 − 1)) = ((1 − 𝑥)↑(𝑁 − 1)))
7372oveq2d 7369 . . . . . . . . . . . . 13 (𝑦 = (1 − 𝑥) → (𝑁 · (𝑦↑(𝑁 − 1))) = (𝑁 · ((1 − 𝑥)↑(𝑁 − 1))))
7439, 39, 42, 51, 55, 59, 68, 70, 71, 73dvmptco 25892 . . . . . . . . . . . 12 (𝜑 → (ℂ D (𝑥 ∈ ℂ ↦ ((1 − 𝑥)↑𝑁))) = (𝑥 ∈ ℂ ↦ ((𝑁 · ((1 − 𝑥)↑(𝑁 − 1))) · -1)))
7561negcld 11480 . . . . . . . . . . . . 13 (𝜑 → -1 ∈ ℂ)
7610nncnd 12162 . . . . . . . . . . . . 13 (𝜑𝑁 ∈ ℂ)
7710nnne0d 12196 . . . . . . . . . . . . 13 (𝜑𝑁 ≠ 0)
7875, 76, 77divcld 11918 . . . . . . . . . . . 12 (𝜑 → (-1 / 𝑁) ∈ ℂ)
7939, 46, 52, 74, 78dvmptcmul 25884 . . . . . . . . . . 11 (𝜑 → (ℂ D (𝑥 ∈ ℂ ↦ ((-1 / 𝑁) · ((1 − 𝑥)↑𝑁)))) = (𝑥 ∈ ℂ ↦ ((-1 / 𝑁) · ((𝑁 · ((1 − 𝑥)↑(𝑁 − 1))) · -1))))
8078adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ ℂ) → (-1 / 𝑁) ∈ ℂ)
8180, 50, 51mulassd 11157 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ ℂ) → (((-1 / 𝑁) · (𝑁 · ((1 − 𝑥)↑(𝑁 − 1)))) · -1) = ((-1 / 𝑁) · ((𝑁 · ((1 − 𝑥)↑(𝑁 − 1))) · -1)))
8281eqcomd 2735 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ ℂ) → ((-1 / 𝑁) · ((𝑁 · ((1 − 𝑥)↑(𝑁 − 1))) · -1)) = (((-1 / 𝑁) · (𝑁 · ((1 − 𝑥)↑(𝑁 − 1)))) · -1))
8380, 47, 49mulassd 11157 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ ℂ) → (((-1 / 𝑁) · 𝑁) · ((1 − 𝑥)↑(𝑁 − 1))) = ((-1 / 𝑁) · (𝑁 · ((1 − 𝑥)↑(𝑁 − 1)))))
8483oveq1d 7368 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ ℂ) → ((((-1 / 𝑁) · 𝑁) · ((1 − 𝑥)↑(𝑁 − 1))) · -1) = (((-1 / 𝑁) · (𝑁 · ((1 − 𝑥)↑(𝑁 − 1)))) · -1))
8584eqcomd 2735 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ ℂ) → (((-1 / 𝑁) · (𝑁 · ((1 − 𝑥)↑(𝑁 − 1)))) · -1) = ((((-1 / 𝑁) · 𝑁) · ((1 − 𝑥)↑(𝑁 − 1))) · -1))
8682, 85eqtrd 2764 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ ℂ) → ((-1 / 𝑁) · ((𝑁 · ((1 − 𝑥)↑(𝑁 − 1))) · -1)) = ((((-1 / 𝑁) · 𝑁) · ((1 − 𝑥)↑(𝑁 − 1))) · -1))
8777adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ ℂ) → 𝑁 ≠ 0)
8851, 47, 87divcan1d 11919 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ ℂ) → ((-1 / 𝑁) · 𝑁) = -1)
8988oveq1d 7368 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ ℂ) → (((-1 / 𝑁) · 𝑁) · ((1 − 𝑥)↑(𝑁 − 1))) = (-1 · ((1 − 𝑥)↑(𝑁 − 1))))
9089oveq1d 7368 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ ℂ) → ((((-1 / 𝑁) · 𝑁) · ((1 − 𝑥)↑(𝑁 − 1))) · -1) = ((-1 · ((1 − 𝑥)↑(𝑁 − 1))) · -1))
9186, 90eqtrd 2764 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ℂ) → ((-1 / 𝑁) · ((𝑁 · ((1 − 𝑥)↑(𝑁 − 1))) · -1)) = ((-1 · ((1 − 𝑥)↑(𝑁 − 1))) · -1))
9251, 51, 49mul32d 11344 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ ℂ) → ((-1 · -1) · ((1 − 𝑥)↑(𝑁 − 1))) = ((-1 · ((1 − 𝑥)↑(𝑁 − 1))) · -1))
9392eqcomd 2735 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ℂ) → ((-1 · ((1 − 𝑥)↑(𝑁 − 1))) · -1) = ((-1 · -1) · ((1 − 𝑥)↑(𝑁 − 1))))
9491, 93eqtrd 2764 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ℂ) → ((-1 / 𝑁) · ((𝑁 · ((1 − 𝑥)↑(𝑁 − 1))) · -1)) = ((-1 · -1) · ((1 − 𝑥)↑(𝑁 − 1))))
9540, 40mul2negd 11593 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ ℂ) → (-1 · -1) = (1 · 1))
96 1t1e1 12303 . . . . . . . . . . . . . . . 16 (1 · 1) = 1
9795, 96eqtrdi 2780 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ ℂ) → (-1 · -1) = 1)
9897oveq1d 7368 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ℂ) → ((-1 · -1) · ((1 − 𝑥)↑(𝑁 − 1))) = (1 · ((1 − 𝑥)↑(𝑁 − 1))))
9949mullidd 11152 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ℂ) → (1 · ((1 − 𝑥)↑(𝑁 − 1))) = ((1 − 𝑥)↑(𝑁 − 1)))
10098, 99eqtrd 2764 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ℂ) → ((-1 · -1) · ((1 − 𝑥)↑(𝑁 − 1))) = ((1 − 𝑥)↑(𝑁 − 1)))
10194, 100eqtrd 2764 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℂ) → ((-1 / 𝑁) · ((𝑁 · ((1 − 𝑥)↑(𝑁 − 1))) · -1)) = ((1 − 𝑥)↑(𝑁 − 1)))
102101mpteq2dva 5188 . . . . . . . . . . 11 (𝜑 → (𝑥 ∈ ℂ ↦ ((-1 / 𝑁) · ((𝑁 · ((1 − 𝑥)↑(𝑁 − 1))) · -1))) = (𝑥 ∈ ℂ ↦ ((1 − 𝑥)↑(𝑁 − 1))))
10379, 102eqtrd 2764 . . . . . . . . . 10 (𝜑 → (ℂ D (𝑥 ∈ ℂ ↦ ((-1 / 𝑁) · ((1 − 𝑥)↑𝑁)))) = (𝑥 ∈ ℂ ↦ ((1 − 𝑥)↑(𝑁 − 1))))
10480, 46mulcld 11154 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℂ) → ((-1 / 𝑁) · ((1 − 𝑥)↑𝑁)) ∈ ℂ)
105103, 104, 49resdvopclptsd 42001 . . . . . . . . 9 (𝜑 → (ℝ D (𝑥 ∈ (0[,]1) ↦ ((-1 / 𝑁) · ((1 − 𝑥)↑𝑁)))) = (𝑥 ∈ (0(,)1) ↦ ((1 − 𝑥)↑(𝑁 − 1))))
106105fveq1d 6828 . . . . . . . 8 (𝜑 → ((ℝ D (𝑥 ∈ (0[,]1) ↦ ((-1 / 𝑁) · ((1 − 𝑥)↑𝑁))))‘𝑡) = ((𝑥 ∈ (0(,)1) ↦ ((1 − 𝑥)↑(𝑁 − 1)))‘𝑡))
107106ralrimivw 3125 . . . . . . 7 (𝜑 → ∀𝑡 ∈ (0(,)1)((ℝ D (𝑥 ∈ (0[,]1) ↦ ((-1 / 𝑁) · ((1 − 𝑥)↑𝑁))))‘𝑡) = ((𝑥 ∈ (0(,)1) ↦ ((1 − 𝑥)↑(𝑁 − 1)))‘𝑡))
108 itgeq2 25695 . . . . . . 7 (∀𝑡 ∈ (0(,)1)((ℝ D (𝑥 ∈ (0[,]1) ↦ ((-1 / 𝑁) · ((1 − 𝑥)↑𝑁))))‘𝑡) = ((𝑥 ∈ (0(,)1) ↦ ((1 − 𝑥)↑(𝑁 − 1)))‘𝑡) → ∫(0(,)1)((ℝ D (𝑥 ∈ (0[,]1) ↦ ((-1 / 𝑁) · ((1 − 𝑥)↑𝑁))))‘𝑡) d𝑡 = ∫(0(,)1)((𝑥 ∈ (0(,)1) ↦ ((1 − 𝑥)↑(𝑁 − 1)))‘𝑡) d𝑡)
109107, 108syl 17 . . . . . 6 (𝜑 → ∫(0(,)1)((ℝ D (𝑥 ∈ (0[,]1) ↦ ((-1 / 𝑁) · ((1 − 𝑥)↑𝑁))))‘𝑡) d𝑡 = ∫(0(,)1)((𝑥 ∈ (0(,)1) ↦ ((1 − 𝑥)↑(𝑁 − 1)))‘𝑡) d𝑡)
110 0le1 11661 . . . . . . . . . 10 0 ≤ 1
111110a1i 11 . . . . . . . . 9 (𝜑 → 0 ≤ 1)
112 nfv 1914 . . . . . . . . . . . 12 𝑥𝜑
113 ax-1cn 11086 . . . . . . . . . . . . . . 15 1 ∈ ℂ
114 ssid 3960 . . . . . . . . . . . . . . 15 ℂ ⊆ ℂ
115 cncfmptc 24821 . . . . . . . . . . . . . . 15 ((1 ∈ ℂ ∧ ℂ ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑥 ∈ ℂ ↦ 1) ∈ (ℂ–cn→ℂ))
116113, 114, 114, 115mp3an 1463 . . . . . . . . . . . . . 14 (𝑥 ∈ ℂ ↦ 1) ∈ (ℂ–cn→ℂ)
117116a1i 11 . . . . . . . . . . . . 13 (𝜑 → (𝑥 ∈ ℂ ↦ 1) ∈ (ℂ–cn→ℂ))
118 cncfmptid 24822 . . . . . . . . . . . . . . 15 ((ℂ ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑥 ∈ ℂ ↦ 𝑥) ∈ (ℂ–cn→ℂ))
119114, 114, 118mp2an 692 . . . . . . . . . . . . . 14 (𝑥 ∈ ℂ ↦ 𝑥) ∈ (ℂ–cn→ℂ)
120119a1i 11 . . . . . . . . . . . . 13 (𝜑 → (𝑥 ∈ ℂ ↦ 𝑥) ∈ (ℂ–cn→ℂ))
121117, 120subcncf 25361 . . . . . . . . . . . 12 (𝜑 → (𝑥 ∈ ℂ ↦ (1 − 𝑥)) ∈ (ℂ–cn→ℂ))
122 expcncf 24836 . . . . . . . . . . . . 13 ((𝑁 − 1) ∈ ℕ0 → (𝑦 ∈ ℂ ↦ (𝑦↑(𝑁 − 1))) ∈ (ℂ–cn→ℂ))
12312, 122syl 17 . . . . . . . . . . . 12 (𝜑 → (𝑦 ∈ ℂ ↦ (𝑦↑(𝑁 − 1))) ∈ (ℂ–cn→ℂ))
124 ssidd 3961 . . . . . . . . . . . 12 (𝜑 → ℂ ⊆ ℂ)
125112, 121, 123, 124, 72cncfcompt2 24817 . . . . . . . . . . 11 (𝜑 → (𝑥 ∈ ℂ ↦ ((1 − 𝑥)↑(𝑁 − 1))) ∈ (ℂ–cn→ℂ))
126125resopunitintvd 41999 . . . . . . . . . 10 (𝜑 → (𝑥 ∈ (0(,)1) ↦ ((1 − 𝑥)↑(𝑁 − 1))) ∈ ((0(,)1)–cn→ℂ))
127105eleq1d 2813 . . . . . . . . . 10 (𝜑 → ((ℝ D (𝑥 ∈ (0[,]1) ↦ ((-1 / 𝑁) · ((1 − 𝑥)↑𝑁)))) ∈ ((0(,)1)–cn→ℂ) ↔ (𝑥 ∈ (0(,)1) ↦ ((1 − 𝑥)↑(𝑁 − 1))) ∈ ((0(,)1)–cn→ℂ)))
128126, 127mpbird 257 . . . . . . . . 9 (𝜑 → (ℝ D (𝑥 ∈ (0[,]1) ↦ ((-1 / 𝑁) · ((1 − 𝑥)↑𝑁)))) ∈ ((0(,)1)–cn→ℂ))
129 ioossicc 13354 . . . . . . . . . . . 12 (0(,)1) ⊆ (0[,]1)
130129a1i 11 . . . . . . . . . . 11 (𝜑 → (0(,)1) ⊆ (0[,]1))
131 ioombl 25482 . . . . . . . . . . . 12 (0(,)1) ∈ dom vol
132131a1i 11 . . . . . . . . . . 11 (𝜑 → (0(,)1) ∈ dom vol)
133 elunitcn 13389 . . . . . . . . . . . 12 (𝑥 ∈ (0[,]1) → 𝑥 ∈ ℂ)
134133, 49sylan2 593 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (0[,]1)) → ((1 − 𝑥)↑(𝑁 − 1)) ∈ ℂ)
135114a1i 11 . . . . . . . . . . . . . . 15 (𝜑 → ℂ ⊆ ℂ)
136112, 121, 123, 135, 72cncfcompt2 24817 . . . . . . . . . . . . . 14 (𝜑 → (𝑥 ∈ ℂ ↦ ((1 − 𝑥)↑(𝑁 − 1))) ∈ (ℂ–cn→ℂ))
137136resclunitintvd 42000 . . . . . . . . . . . . 13 (𝜑 → (𝑥 ∈ (0[,]1) ↦ ((1 − 𝑥)↑(𝑁 − 1))) ∈ ((0[,]1)–cn→ℂ))
13819, 20, 1373jca 1128 . . . . . . . . . . . 12 (𝜑 → (0 ∈ ℝ ∧ 1 ∈ ℝ ∧ (𝑥 ∈ (0[,]1) ↦ ((1 − 𝑥)↑(𝑁 − 1))) ∈ ((0[,]1)–cn→ℂ)))
139 cnicciblnc 25760 . . . . . . . . . . . 12 ((0 ∈ ℝ ∧ 1 ∈ ℝ ∧ (𝑥 ∈ (0[,]1) ↦ ((1 − 𝑥)↑(𝑁 − 1))) ∈ ((0[,]1)–cn→ℂ)) → (𝑥 ∈ (0[,]1) ↦ ((1 − 𝑥)↑(𝑁 − 1))) ∈ 𝐿1)
140138, 139syl 17 . . . . . . . . . . 11 (𝜑 → (𝑥 ∈ (0[,]1) ↦ ((1 − 𝑥)↑(𝑁 − 1))) ∈ 𝐿1)
141130, 132, 134, 140iblss 25722 . . . . . . . . . 10 (𝜑 → (𝑥 ∈ (0(,)1) ↦ ((1 − 𝑥)↑(𝑁 − 1))) ∈ 𝐿1)
142105, 141eqeltrd 2828 . . . . . . . . 9 (𝜑 → (ℝ D (𝑥 ∈ (0[,]1) ↦ ((-1 / 𝑁) · ((1 − 𝑥)↑𝑁)))) ∈ 𝐿1)
143 cncfmptc 24821 . . . . . . . . . . . . 13 (((-1 / 𝑁) ∈ ℂ ∧ ℂ ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑥 ∈ ℂ ↦ (-1 / 𝑁)) ∈ (ℂ–cn→ℂ))
144114, 114, 143mp3an23 1455 . . . . . . . . . . . 12 ((-1 / 𝑁) ∈ ℂ → (𝑥 ∈ ℂ ↦ (-1 / 𝑁)) ∈ (ℂ–cn→ℂ))
14578, 144syl 17 . . . . . . . . . . 11 (𝜑 → (𝑥 ∈ ℂ ↦ (-1 / 𝑁)) ∈ (ℂ–cn→ℂ))
146145resclunitintvd 42000 . . . . . . . . . 10 (𝜑 → (𝑥 ∈ (0[,]1) ↦ (-1 / 𝑁)) ∈ ((0[,]1)–cn→ℂ))
147 expcncf 24836 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ0 → (𝑦 ∈ ℂ ↦ (𝑦𝑁)) ∈ (ℂ–cn→ℂ))
14844, 147syl 17 . . . . . . . . . . . 12 (𝜑 → (𝑦 ∈ ℂ ↦ (𝑦𝑁)) ∈ (ℂ–cn→ℂ))
149112, 121, 148, 124, 71cncfcompt2 24817 . . . . . . . . . . 11 (𝜑 → (𝑥 ∈ ℂ ↦ ((1 − 𝑥)↑𝑁)) ∈ (ℂ–cn→ℂ))
150149resclunitintvd 42000 . . . . . . . . . 10 (𝜑 → (𝑥 ∈ (0[,]1) ↦ ((1 − 𝑥)↑𝑁)) ∈ ((0[,]1)–cn→ℂ))
151146, 150mulcncf 25362 . . . . . . . . 9 (𝜑 → (𝑥 ∈ (0[,]1) ↦ ((-1 / 𝑁) · ((1 − 𝑥)↑𝑁))) ∈ ((0[,]1)–cn→ℂ))
15219, 20, 111, 128, 142, 151ftc2 25967 . . . . . . . 8 (𝜑 → ∫(0(,)1)((ℝ D (𝑥 ∈ (0[,]1) ↦ ((-1 / 𝑁) · ((1 − 𝑥)↑𝑁))))‘𝑡) d𝑡 = (((𝑥 ∈ (0[,]1) ↦ ((-1 / 𝑁) · ((1 − 𝑥)↑𝑁)))‘1) − ((𝑥 ∈ (0[,]1) ↦ ((-1 / 𝑁) · ((1 − 𝑥)↑𝑁)))‘0)))
153 eqidd 2730 . . . . . . . . . 10 (𝜑 → (𝑥 ∈ (0[,]1) ↦ ((-1 / 𝑁) · ((1 − 𝑥)↑𝑁))) = (𝑥 ∈ (0[,]1) ↦ ((-1 / 𝑁) · ((1 − 𝑥)↑𝑁))))
154 simpr 484 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 = 1) → 𝑥 = 1)
155154oveq2d 7369 . . . . . . . . . . . . . . 15 ((𝜑𝑥 = 1) → (1 − 𝑥) = (1 − 1))
156155, 2eqtrdi 2780 . . . . . . . . . . . . . 14 ((𝜑𝑥 = 1) → (1 − 𝑥) = 0)
157156oveq1d 7368 . . . . . . . . . . . . 13 ((𝜑𝑥 = 1) → ((1 − 𝑥)↑𝑁) = (0↑𝑁))
158 0exp 14022 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℕ → (0↑𝑁) = 0)
15910, 158syl 17 . . . . . . . . . . . . . 14 (𝜑 → (0↑𝑁) = 0)
160159adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑥 = 1) → (0↑𝑁) = 0)
161157, 160eqtrd 2764 . . . . . . . . . . . 12 ((𝜑𝑥 = 1) → ((1 − 𝑥)↑𝑁) = 0)
162161oveq2d 7369 . . . . . . . . . . 11 ((𝜑𝑥 = 1) → ((-1 / 𝑁) · ((1 − 𝑥)↑𝑁)) = ((-1 / 𝑁) · 0))
16378mul01d 11333 . . . . . . . . . . . 12 (𝜑 → ((-1 / 𝑁) · 0) = 0)
164163adantr 480 . . . . . . . . . . 11 ((𝜑𝑥 = 1) → ((-1 / 𝑁) · 0) = 0)
165162, 164eqtrd 2764 . . . . . . . . . 10 ((𝜑𝑥 = 1) → ((-1 / 𝑁) · ((1 − 𝑥)↑𝑁)) = 0)
166 1elunit 13391 . . . . . . . . . . 11 1 ∈ (0[,]1)
167166a1i 11 . . . . . . . . . 10 (𝜑 → 1 ∈ (0[,]1))
168 0cnd 11127 . . . . . . . . . 10 (𝜑 → 0 ∈ ℂ)
169153, 165, 167, 168fvmptd 6941 . . . . . . . . 9 (𝜑 → ((𝑥 ∈ (0[,]1) ↦ ((-1 / 𝑁) · ((1 − 𝑥)↑𝑁)))‘1) = 0)
170 simpr 484 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 = 0) → 𝑥 = 0)
171170oveq2d 7369 . . . . . . . . . . . . . . 15 ((𝜑𝑥 = 0) → (1 − 𝑥) = (1 − 0))
172 1m0e1 12262 . . . . . . . . . . . . . . 15 (1 − 0) = 1
173171, 172eqtrdi 2780 . . . . . . . . . . . . . 14 ((𝜑𝑥 = 0) → (1 − 𝑥) = 1)
174173oveq1d 7368 . . . . . . . . . . . . 13 ((𝜑𝑥 = 0) → ((1 − 𝑥)↑𝑁) = (1↑𝑁))
17544nn0zd 12515 . . . . . . . . . . . . . . 15 (𝜑𝑁 ∈ ℤ)
176 1exp 14016 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℤ → (1↑𝑁) = 1)
177175, 176syl 17 . . . . . . . . . . . . . 14 (𝜑 → (1↑𝑁) = 1)
178177adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑥 = 0) → (1↑𝑁) = 1)
179174, 178eqtrd 2764 . . . . . . . . . . . 12 ((𝜑𝑥 = 0) → ((1 − 𝑥)↑𝑁) = 1)
180179oveq2d 7369 . . . . . . . . . . 11 ((𝜑𝑥 = 0) → ((-1 / 𝑁) · ((1 − 𝑥)↑𝑁)) = ((-1 / 𝑁) · 1))
18178adantr 480 . . . . . . . . . . . 12 ((𝜑𝑥 = 0) → (-1 / 𝑁) ∈ ℂ)
182181mulridd 11151 . . . . . . . . . . 11 ((𝜑𝑥 = 0) → ((-1 / 𝑁) · 1) = (-1 / 𝑁))
183180, 182eqtrd 2764 . . . . . . . . . 10 ((𝜑𝑥 = 0) → ((-1 / 𝑁) · ((1 − 𝑥)↑𝑁)) = (-1 / 𝑁))
184 0elunit 13390 . . . . . . . . . . 11 0 ∈ (0[,]1)
185184a1i 11 . . . . . . . . . 10 (𝜑 → 0 ∈ (0[,]1))
186153, 183, 185, 78fvmptd 6941 . . . . . . . . 9 (𝜑 → ((𝑥 ∈ (0[,]1) ↦ ((-1 / 𝑁) · ((1 − 𝑥)↑𝑁)))‘0) = (-1 / 𝑁))
187169, 186oveq12d 7371 . . . . . . . 8 (𝜑 → (((𝑥 ∈ (0[,]1) ↦ ((-1 / 𝑁) · ((1 − 𝑥)↑𝑁)))‘1) − ((𝑥 ∈ (0[,]1) ↦ ((-1 / 𝑁) · ((1 − 𝑥)↑𝑁)))‘0)) = (0 − (-1 / 𝑁)))
188152, 187eqtrd 2764 . . . . . . 7 (𝜑 → ∫(0(,)1)((ℝ D (𝑥 ∈ (0[,]1) ↦ ((-1 / 𝑁) · ((1 − 𝑥)↑𝑁))))‘𝑡) d𝑡 = (0 − (-1 / 𝑁)))
189 df-neg 11368 . . . . . . . . . 10 --(1 / 𝑁) = (0 − -(1 / 𝑁))
190189a1i 11 . . . . . . . . 9 (𝜑 → --(1 / 𝑁) = (0 − -(1 / 𝑁)))
19161, 76, 77divnegd 11931 . . . . . . . . . 10 (𝜑 → -(1 / 𝑁) = (-1 / 𝑁))
192191oveq2d 7369 . . . . . . . . 9 (𝜑 → (0 − -(1 / 𝑁)) = (0 − (-1 / 𝑁)))
193190, 192eqtr2d 2765 . . . . . . . 8 (𝜑 → (0 − (-1 / 𝑁)) = --(1 / 𝑁))
19476, 77reccld 11911 . . . . . . . . 9 (𝜑 → (1 / 𝑁) ∈ ℂ)
195194negnegd 11484 . . . . . . . 8 (𝜑 → --(1 / 𝑁) = (1 / 𝑁))
196193, 195eqtrd 2764 . . . . . . 7 (𝜑 → (0 − (-1 / 𝑁)) = (1 / 𝑁))
197188, 196eqtrd 2764 . . . . . 6 (𝜑 → ∫(0(,)1)((ℝ D (𝑥 ∈ (0[,]1) ↦ ((-1 / 𝑁) · ((1 − 𝑥)↑𝑁))))‘𝑡) d𝑡 = (1 / 𝑁))
198109, 197eqtr3d 2766 . . . . 5 (𝜑 → ∫(0(,)1)((𝑥 ∈ (0(,)1) ↦ ((1 − 𝑥)↑(𝑁 − 1)))‘𝑡) d𝑡 = (1 / 𝑁))
19937, 198eqtr3d 2766 . . . 4 (𝜑 → ∫(0(,)1)((1 − 𝑡)↑(𝑁 − 1)) d𝑡 = (1 / 𝑁))
20022, 199eqtr3d 2766 . . 3 (𝜑 → ∫(0[,]1)((1 − 𝑡)↑(𝑁 − 1)) d𝑡 = (1 / 𝑁))
201 bcn1 14238 . . . . . . 7 (𝑁 ∈ ℕ0 → (𝑁C1) = 𝑁)
20244, 201syl 17 . . . . . 6 (𝜑 → (𝑁C1) = 𝑁)
203202oveq2d 7369 . . . . 5 (𝜑 → (1 · (𝑁C1)) = (1 · 𝑁))
20476mullidd 11152 . . . . 5 (𝜑 → (1 · 𝑁) = 𝑁)
205203, 204eqtrd 2764 . . . 4 (𝜑 → (1 · (𝑁C1)) = 𝑁)
206205oveq2d 7369 . . 3 (𝜑 → (1 / (1 · (𝑁C1))) = (1 / 𝑁))
207200, 206eqtr4d 2767 . 2 (𝜑 → ∫(0[,]1)((1 − 𝑡)↑(𝑁 − 1)) d𝑡 = (1 / (1 · (𝑁C1))))
20818, 207eqtrd 2764 1 (𝜑 → ∫(0[,]1)((𝑡↑(1 − 1)) · ((1 − 𝑡)↑(𝑁 − 1))) d𝑡 = (1 / (1 · (𝑁C1))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wral 3044  wss 3905  {cpr 4581   class class class wbr 5095  cmpt 5176  dom cdm 5623  cfv 6486  (class class class)co 7353  cc 11026  cr 11027  0cc0 11028  1c1 11029   · cmul 11033  cle 11169  cmin 11365  -cneg 11366   / cdiv 11795  cn 12146  0cn0 12402  cz 12489  (,)cioo 13266  [,]cicc 13269  cexp 13986  Ccbc 14227  cnccncf 24785  volcvol 25380  𝐿1cibl 25534  citg 25535   D cdv 25780
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-inf2 9556  ax-cc 10348  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106  ax-addf 11107
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-symdif 4206  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-iin 4947  df-disj 5063  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-se 5577  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-of 7617  df-ofr 7618  df-om 7807  df-1st 7931  df-2nd 7932  df-supp 8101  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-2o 8396  df-oadd 8399  df-omul 8400  df-er 8632  df-map 8762  df-pm 8763  df-ixp 8832  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-fsupp 9271  df-fi 9320  df-sup 9351  df-inf 9352  df-oi 9421  df-dju 9816  df-card 9854  df-acn 9857  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-div 11796  df-nn 12147  df-2 12209  df-3 12210  df-4 12211  df-5 12212  df-6 12213  df-7 12214  df-8 12215  df-9 12216  df-n0 12403  df-z 12490  df-dec 12610  df-uz 12754  df-q 12868  df-rp 12912  df-xneg 13032  df-xadd 13033  df-xmul 13034  df-ioo 13270  df-ioc 13271  df-ico 13272  df-icc 13273  df-fz 13429  df-fzo 13576  df-fl 13714  df-mod 13792  df-seq 13927  df-exp 13987  df-fac 14199  df-bc 14228  df-hash 14256  df-cj 15024  df-re 15025  df-im 15026  df-sqrt 15160  df-abs 15161  df-clim 15413  df-rlim 15414  df-sum 15612  df-struct 17076  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17139  df-ress 17160  df-plusg 17192  df-mulr 17193  df-starv 17194  df-sca 17195  df-vsca 17196  df-ip 17197  df-tset 17198  df-ple 17199  df-ds 17201  df-unif 17202  df-hom 17203  df-cco 17204  df-rest 17344  df-topn 17345  df-0g 17363  df-gsum 17364  df-topgen 17365  df-pt 17366  df-prds 17369  df-xrs 17424  df-qtop 17429  df-imas 17430  df-xps 17432  df-mre 17506  df-mrc 17507  df-acs 17509  df-mgm 18532  df-sgrp 18611  df-mnd 18627  df-submnd 18676  df-mulg 18965  df-cntz 19214  df-cmn 19679  df-psmet 21271  df-xmet 21272  df-met 21273  df-bl 21274  df-mopn 21275  df-fbas 21276  df-fg 21277  df-cnfld 21280  df-top 22797  df-topon 22814  df-topsp 22836  df-bases 22849  df-cld 22922  df-ntr 22923  df-cls 22924  df-nei 23001  df-lp 23039  df-perf 23040  df-cn 23130  df-cnp 23131  df-haus 23218  df-cmp 23290  df-tx 23465  df-hmeo 23658  df-fil 23749  df-fm 23841  df-flim 23842  df-flf 23843  df-xms 24224  df-ms 24225  df-tms 24226  df-cncf 24787  df-ovol 25381  df-vol 25382  df-mbf 25536  df-itg1 25537  df-itg2 25538  df-ibl 25539  df-itg 25540  df-0p 25587  df-limc 25783  df-dv 25784
This theorem is referenced by:  lcmineqlem13  42014
  Copyright terms: Public domain W3C validator