| Step | Hyp | Ref
| Expression |
| 1 | | fzfid 14014 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℝ+
∧ 1 ≤ 𝐴) →
(1...(⌊‘𝐴))
∈ Fin) |
| 2 | | elfznn 13593 |
. . . . . . . . . . . 12
⊢ (𝑛 ∈
(1...(⌊‘𝐴))
→ 𝑛 ∈
ℕ) |
| 3 | 2 | adantl 481 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℝ+
∧ 1 ≤ 𝐴) ∧ 𝑛 ∈
(1...(⌊‘𝐴)))
→ 𝑛 ∈
ℕ) |
| 4 | 3 | nnrpd 13075 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℝ+
∧ 1 ≤ 𝐴) ∧ 𝑛 ∈
(1...(⌊‘𝐴)))
→ 𝑛 ∈
ℝ+) |
| 5 | 4 | relogcld 26665 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℝ+
∧ 1 ≤ 𝐴) ∧ 𝑛 ∈
(1...(⌊‘𝐴)))
→ (log‘𝑛) ∈
ℝ) |
| 6 | 5 | resqcld 14165 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℝ+
∧ 1 ≤ 𝐴) ∧ 𝑛 ∈
(1...(⌊‘𝐴)))
→ ((log‘𝑛)↑2) ∈ ℝ) |
| 7 | 1, 6 | fsumrecl 15770 |
. . . . . . 7
⊢ ((𝐴 ∈ ℝ+
∧ 1 ≤ 𝐴) →
Σ𝑛 ∈
(1...(⌊‘𝐴))((log‘𝑛)↑2) ∈ ℝ) |
| 8 | | rpre 13043 |
. . . . . . . . 9
⊢ (𝐴 ∈ ℝ+
→ 𝐴 ∈
ℝ) |
| 9 | 8 | adantr 480 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℝ+
∧ 1 ≤ 𝐴) →
𝐴 ∈
ℝ) |
| 10 | | relogcl 26617 |
. . . . . . . . . . 11
⊢ (𝐴 ∈ ℝ+
→ (log‘𝐴) ∈
ℝ) |
| 11 | 10 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℝ+
∧ 1 ≤ 𝐴) →
(log‘𝐴) ∈
ℝ) |
| 12 | 11 | resqcld 14165 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℝ+
∧ 1 ≤ 𝐴) →
((log‘𝐴)↑2)
∈ ℝ) |
| 13 | | 2re 12340 |
. . . . . . . . . 10
⊢ 2 ∈
ℝ |
| 14 | | remulcl 11240 |
. . . . . . . . . . 11
⊢ ((2
∈ ℝ ∧ (log‘𝐴) ∈ ℝ) → (2 ·
(log‘𝐴)) ∈
ℝ) |
| 15 | 13, 11, 14 | sylancr 587 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℝ+
∧ 1 ≤ 𝐴) → (2
· (log‘𝐴))
∈ ℝ) |
| 16 | | resubcl 11573 |
. . . . . . . . . 10
⊢ ((2
∈ ℝ ∧ (2 · (log‘𝐴)) ∈ ℝ) → (2 − (2
· (log‘𝐴)))
∈ ℝ) |
| 17 | 13, 15, 16 | sylancr 587 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℝ+
∧ 1 ≤ 𝐴) → (2
− (2 · (log‘𝐴))) ∈ ℝ) |
| 18 | 12, 17 | readdcld 11290 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℝ+
∧ 1 ≤ 𝐴) →
(((log‘𝐴)↑2) +
(2 − (2 · (log‘𝐴)))) ∈ ℝ) |
| 19 | 9, 18 | remulcld 11291 |
. . . . . . 7
⊢ ((𝐴 ∈ ℝ+
∧ 1 ≤ 𝐴) →
(𝐴 ·
(((log‘𝐴)↑2) +
(2 − (2 · (log‘𝐴))))) ∈ ℝ) |
| 20 | 7, 19 | resubcld 11691 |
. . . . . 6
⊢ ((𝐴 ∈ ℝ+
∧ 1 ≤ 𝐴) →
(Σ𝑛 ∈
(1...(⌊‘𝐴))((log‘𝑛)↑2) − (𝐴 · (((log‘𝐴)↑2) + (2 − (2 ·
(log‘𝐴)))))) ∈
ℝ) |
| 21 | 20 | recnd 11289 |
. . . . 5
⊢ ((𝐴 ∈ ℝ+
∧ 1 ≤ 𝐴) →
(Σ𝑛 ∈
(1...(⌊‘𝐴))((log‘𝑛)↑2) − (𝐴 · (((log‘𝐴)↑2) + (2 − (2 ·
(log‘𝐴)))))) ∈
ℂ) |
| 22 | 21 | abscld 15475 |
. . . 4
⊢ ((𝐴 ∈ ℝ+
∧ 1 ≤ 𝐴) →
(abs‘(Σ𝑛 ∈
(1...(⌊‘𝐴))((log‘𝑛)↑2) − (𝐴 · (((log‘𝐴)↑2) + (2 − (2 ·
(log‘𝐴))))))) ∈
ℝ) |
| 23 | | resubcl 11573 |
. . . 4
⊢
(((abs‘(Σ𝑛 ∈ (1...(⌊‘𝐴))((log‘𝑛)↑2) − (𝐴 · (((log‘𝐴)↑2) + (2 − (2 ·
(log‘𝐴))))))) ∈
ℝ ∧ 2 ∈ ℝ) → ((abs‘(Σ𝑛 ∈ (1...(⌊‘𝐴))((log‘𝑛)↑2) − (𝐴 · (((log‘𝐴)↑2) + (2 − (2 ·
(log‘𝐴))))))) −
2) ∈ ℝ) |
| 24 | 22, 13, 23 | sylancl 586 |
. . 3
⊢ ((𝐴 ∈ ℝ+
∧ 1 ≤ 𝐴) →
((abs‘(Σ𝑛
∈ (1...(⌊‘𝐴))((log‘𝑛)↑2) − (𝐴 · (((log‘𝐴)↑2) + (2 − (2 ·
(log‘𝐴))))))) −
2) ∈ ℝ) |
| 25 | | 2cn 12341 |
. . . . . 6
⊢ 2 ∈
ℂ |
| 26 | 25 | negcli 11577 |
. . . . 5
⊢ -2 ∈
ℂ |
| 27 | | subcl 11507 |
. . . . 5
⊢
(((Σ𝑛 ∈
(1...(⌊‘𝐴))((log‘𝑛)↑2) − (𝐴 · (((log‘𝐴)↑2) + (2 − (2 ·
(log‘𝐴)))))) ∈
ℂ ∧ -2 ∈ ℂ) → ((Σ𝑛 ∈ (1...(⌊‘𝐴))((log‘𝑛)↑2) − (𝐴 · (((log‘𝐴)↑2) + (2 − (2 ·
(log‘𝐴)))))) −
-2) ∈ ℂ) |
| 28 | 21, 26, 27 | sylancl 586 |
. . . 4
⊢ ((𝐴 ∈ ℝ+
∧ 1 ≤ 𝐴) →
((Σ𝑛 ∈
(1...(⌊‘𝐴))((log‘𝑛)↑2) − (𝐴 · (((log‘𝐴)↑2) + (2 − (2 ·
(log‘𝐴)))))) −
-2) ∈ ℂ) |
| 29 | 28 | abscld 15475 |
. . 3
⊢ ((𝐴 ∈ ℝ+
∧ 1 ≤ 𝐴) →
(abs‘((Σ𝑛
∈ (1...(⌊‘𝐴))((log‘𝑛)↑2) − (𝐴 · (((log‘𝐴)↑2) + (2 − (2 ·
(log‘𝐴)))))) −
-2)) ∈ ℝ) |
| 30 | 25 | absnegi 15439 |
. . . . . 6
⊢
(abs‘-2) = (abs‘2) |
| 31 | | 0le2 12368 |
. . . . . . 7
⊢ 0 ≤
2 |
| 32 | | absid 15335 |
. . . . . . 7
⊢ ((2
∈ ℝ ∧ 0 ≤ 2) → (abs‘2) = 2) |
| 33 | 13, 31, 32 | mp2an 692 |
. . . . . 6
⊢
(abs‘2) = 2 |
| 34 | 30, 33 | eqtri 2765 |
. . . . 5
⊢
(abs‘-2) = 2 |
| 35 | 34 | oveq2i 7442 |
. . . 4
⊢
((abs‘(Σ𝑛 ∈ (1...(⌊‘𝐴))((log‘𝑛)↑2) − (𝐴 · (((log‘𝐴)↑2) + (2 − (2 ·
(log‘𝐴))))))) −
(abs‘-2)) = ((abs‘(Σ𝑛 ∈ (1...(⌊‘𝐴))((log‘𝑛)↑2) − (𝐴 · (((log‘𝐴)↑2) + (2 − (2 ·
(log‘𝐴))))))) −
2) |
| 36 | | abs2dif 15371 |
. . . . 5
⊢
(((Σ𝑛 ∈
(1...(⌊‘𝐴))((log‘𝑛)↑2) − (𝐴 · (((log‘𝐴)↑2) + (2 − (2 ·
(log‘𝐴)))))) ∈
ℂ ∧ -2 ∈ ℂ) → ((abs‘(Σ𝑛 ∈ (1...(⌊‘𝐴))((log‘𝑛)↑2) − (𝐴 · (((log‘𝐴)↑2) + (2 − (2 ·
(log‘𝐴))))))) −
(abs‘-2)) ≤ (abs‘((Σ𝑛 ∈ (1...(⌊‘𝐴))((log‘𝑛)↑2) − (𝐴 · (((log‘𝐴)↑2) + (2 − (2 ·
(log‘𝐴)))))) −
-2))) |
| 37 | 21, 26, 36 | sylancl 586 |
. . . 4
⊢ ((𝐴 ∈ ℝ+
∧ 1 ≤ 𝐴) →
((abs‘(Σ𝑛
∈ (1...(⌊‘𝐴))((log‘𝑛)↑2) − (𝐴 · (((log‘𝐴)↑2) + (2 − (2 ·
(log‘𝐴))))))) −
(abs‘-2)) ≤ (abs‘((Σ𝑛 ∈ (1...(⌊‘𝐴))((log‘𝑛)↑2) − (𝐴 · (((log‘𝐴)↑2) + (2 − (2 ·
(log‘𝐴)))))) −
-2))) |
| 38 | 35, 37 | eqbrtrrid 5179 |
. . 3
⊢ ((𝐴 ∈ ℝ+
∧ 1 ≤ 𝐴) →
((abs‘(Σ𝑛
∈ (1...(⌊‘𝐴))((log‘𝑛)↑2) − (𝐴 · (((log‘𝐴)↑2) + (2 − (2 ·
(log‘𝐴))))))) −
2) ≤ (abs‘((Σ𝑛 ∈ (1...(⌊‘𝐴))((log‘𝑛)↑2) − (𝐴 · (((log‘𝐴)↑2) + (2 − (2 ·
(log‘𝐴)))))) −
-2))) |
| 39 | | fveq2 6906 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝐴 → (⌊‘𝑥) = (⌊‘𝐴)) |
| 40 | 39 | oveq2d 7447 |
. . . . . . . . . 10
⊢ (𝑥 = 𝐴 → (1...(⌊‘𝑥)) = (1...(⌊‘𝐴))) |
| 41 | 40 | sumeq1d 15736 |
. . . . . . . . 9
⊢ (𝑥 = 𝐴 → Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘𝑛)↑2) = Σ𝑛 ∈ (1...(⌊‘𝐴))((log‘𝑛)↑2)) |
| 42 | | id 22 |
. . . . . . . . . 10
⊢ (𝑥 = 𝐴 → 𝑥 = 𝐴) |
| 43 | | fveq2 6906 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝐴 → (log‘𝑥) = (log‘𝐴)) |
| 44 | 43 | oveq1d 7446 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝐴 → ((log‘𝑥)↑2) = ((log‘𝐴)↑2)) |
| 45 | 43 | oveq2d 7447 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝐴 → (2 · (log‘𝑥)) = (2 ·
(log‘𝐴))) |
| 46 | 45 | oveq2d 7447 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝐴 → (2 − (2 ·
(log‘𝑥))) = (2
− (2 · (log‘𝐴)))) |
| 47 | 44, 46 | oveq12d 7449 |
. . . . . . . . . 10
⊢ (𝑥 = 𝐴 → (((log‘𝑥)↑2) + (2 − (2 ·
(log‘𝑥)))) =
(((log‘𝐴)↑2) +
(2 − (2 · (log‘𝐴))))) |
| 48 | 42, 47 | oveq12d 7449 |
. . . . . . . . 9
⊢ (𝑥 = 𝐴 → (𝑥 · (((log‘𝑥)↑2) + (2 − (2 ·
(log‘𝑥))))) = (𝐴 · (((log‘𝐴)↑2) + (2 − (2
· (log‘𝐴)))))) |
| 49 | 41, 48 | oveq12d 7449 |
. . . . . . . 8
⊢ (𝑥 = 𝐴 → (Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘𝑛)↑2) − (𝑥 · (((log‘𝑥)↑2) + (2 − (2 ·
(log‘𝑥)))))) =
(Σ𝑛 ∈
(1...(⌊‘𝐴))((log‘𝑛)↑2) − (𝐴 · (((log‘𝐴)↑2) + (2 − (2 ·
(log‘𝐴))))))) |
| 50 | | eqid 2737 |
. . . . . . . 8
⊢ (𝑥 ∈ ℝ+
↦ (Σ𝑛 ∈
(1...(⌊‘𝑥))((log‘𝑛)↑2) − (𝑥 · (((log‘𝑥)↑2) + (2 − (2 ·
(log‘𝑥))))))) =
(𝑥 ∈
ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘𝑛)↑2) − (𝑥 · (((log‘𝑥)↑2) + (2 − (2 ·
(log‘𝑥))))))) |
| 51 | | ovex 7464 |
. . . . . . . 8
⊢
(Σ𝑛 ∈
(1...(⌊‘𝑥))((log‘𝑛)↑2) − (𝑥 · (((log‘𝑥)↑2) + (2 − (2 ·
(log‘𝑥)))))) ∈
V |
| 52 | 49, 50, 51 | fvmpt3i 7021 |
. . . . . . 7
⊢ (𝐴 ∈ ℝ+
→ ((𝑥 ∈
ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘𝑛)↑2) − (𝑥 · (((log‘𝑥)↑2) + (2 − (2 ·
(log‘𝑥)))))))‘𝐴) = (Σ𝑛 ∈ (1...(⌊‘𝐴))((log‘𝑛)↑2) − (𝐴 · (((log‘𝐴)↑2) + (2 − (2 ·
(log‘𝐴))))))) |
| 53 | 52 | adantr 480 |
. . . . . 6
⊢ ((𝐴 ∈ ℝ+
∧ 1 ≤ 𝐴) →
((𝑥 ∈
ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘𝑛)↑2) − (𝑥 · (((log‘𝑥)↑2) + (2 − (2 ·
(log‘𝑥)))))))‘𝐴) = (Σ𝑛 ∈ (1...(⌊‘𝐴))((log‘𝑛)↑2) − (𝐴 · (((log‘𝐴)↑2) + (2 − (2 ·
(log‘𝐴))))))) |
| 54 | | 1rp 13038 |
. . . . . . 7
⊢ 1 ∈
ℝ+ |
| 55 | | fveq2 6906 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 1 → (⌊‘𝑥) =
(⌊‘1)) |
| 56 | | 1z 12647 |
. . . . . . . . . . . . . . 15
⊢ 1 ∈
ℤ |
| 57 | | flid 13848 |
. . . . . . . . . . . . . . 15
⊢ (1 ∈
ℤ → (⌊‘1) = 1) |
| 58 | 56, 57 | ax-mp 5 |
. . . . . . . . . . . . . 14
⊢
(⌊‘1) = 1 |
| 59 | 55, 58 | eqtrdi 2793 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 1 → (⌊‘𝑥) = 1) |
| 60 | 59 | oveq2d 7447 |
. . . . . . . . . . . 12
⊢ (𝑥 = 1 →
(1...(⌊‘𝑥)) =
(1...1)) |
| 61 | 60 | sumeq1d 15736 |
. . . . . . . . . . 11
⊢ (𝑥 = 1 → Σ𝑛 ∈
(1...(⌊‘𝑥))((log‘𝑛)↑2) = Σ𝑛 ∈ (1...1)((log‘𝑛)↑2)) |
| 62 | | 0cn 11253 |
. . . . . . . . . . . 12
⊢ 0 ∈
ℂ |
| 63 | | fveq2 6906 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 = 1 → (log‘𝑛) =
(log‘1)) |
| 64 | | log1 26627 |
. . . . . . . . . . . . . . 15
⊢
(log‘1) = 0 |
| 65 | 63, 64 | eqtrdi 2793 |
. . . . . . . . . . . . . 14
⊢ (𝑛 = 1 → (log‘𝑛) = 0) |
| 66 | 65 | sq0id 14233 |
. . . . . . . . . . . . 13
⊢ (𝑛 = 1 → ((log‘𝑛)↑2) = 0) |
| 67 | 66 | fsum1 15783 |
. . . . . . . . . . . 12
⊢ ((1
∈ ℤ ∧ 0 ∈ ℂ) → Σ𝑛 ∈ (1...1)((log‘𝑛)↑2) = 0) |
| 68 | 56, 62, 67 | mp2an 692 |
. . . . . . . . . . 11
⊢
Σ𝑛 ∈
(1...1)((log‘𝑛)↑2) = 0 |
| 69 | 61, 68 | eqtrdi 2793 |
. . . . . . . . . 10
⊢ (𝑥 = 1 → Σ𝑛 ∈
(1...(⌊‘𝑥))((log‘𝑛)↑2) = 0) |
| 70 | | id 22 |
. . . . . . . . . . . 12
⊢ (𝑥 = 1 → 𝑥 = 1) |
| 71 | | fveq2 6906 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = 1 → (log‘𝑥) =
(log‘1)) |
| 72 | 71, 64 | eqtrdi 2793 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = 1 → (log‘𝑥) = 0) |
| 73 | 72 | sq0id 14233 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 1 → ((log‘𝑥)↑2) = 0) |
| 74 | 72 | oveq2d 7447 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 = 1 → (2 ·
(log‘𝑥)) = (2
· 0)) |
| 75 | | 2t0e0 12435 |
. . . . . . . . . . . . . . . . 17
⊢ (2
· 0) = 0 |
| 76 | 74, 75 | eqtrdi 2793 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = 1 → (2 ·
(log‘𝑥)) =
0) |
| 77 | 76 | oveq2d 7447 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = 1 → (2 − (2
· (log‘𝑥))) =
(2 − 0)) |
| 78 | 25 | subid1i 11581 |
. . . . . . . . . . . . . . 15
⊢ (2
− 0) = 2 |
| 79 | 77, 78 | eqtrdi 2793 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 1 → (2 − (2
· (log‘𝑥))) =
2) |
| 80 | 73, 79 | oveq12d 7449 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 1 → (((log‘𝑥)↑2) + (2 − (2
· (log‘𝑥)))) =
(0 + 2)) |
| 81 | 25 | addlidi 11449 |
. . . . . . . . . . . . 13
⊢ (0 + 2) =
2 |
| 82 | 80, 81 | eqtrdi 2793 |
. . . . . . . . . . . 12
⊢ (𝑥 = 1 → (((log‘𝑥)↑2) + (2 − (2
· (log‘𝑥)))) =
2) |
| 83 | 70, 82 | oveq12d 7449 |
. . . . . . . . . . 11
⊢ (𝑥 = 1 → (𝑥 · (((log‘𝑥)↑2) + (2 − (2 ·
(log‘𝑥))))) = (1
· 2)) |
| 84 | 25 | mullidi 11266 |
. . . . . . . . . . 11
⊢ (1
· 2) = 2 |
| 85 | 83, 84 | eqtrdi 2793 |
. . . . . . . . . 10
⊢ (𝑥 = 1 → (𝑥 · (((log‘𝑥)↑2) + (2 − (2 ·
(log‘𝑥))))) =
2) |
| 86 | 69, 85 | oveq12d 7449 |
. . . . . . . . 9
⊢ (𝑥 = 1 → (Σ𝑛 ∈
(1...(⌊‘𝑥))((log‘𝑛)↑2) − (𝑥 · (((log‘𝑥)↑2) + (2 − (2 ·
(log‘𝑥)))))) = (0
− 2)) |
| 87 | | df-neg 11495 |
. . . . . . . . 9
⊢ -2 = (0
− 2) |
| 88 | 86, 87 | eqtr4di 2795 |
. . . . . . . 8
⊢ (𝑥 = 1 → (Σ𝑛 ∈
(1...(⌊‘𝑥))((log‘𝑛)↑2) − (𝑥 · (((log‘𝑥)↑2) + (2 − (2 ·
(log‘𝑥)))))) =
-2) |
| 89 | 88, 50, 51 | fvmpt3i 7021 |
. . . . . . 7
⊢ (1 ∈
ℝ+ → ((𝑥 ∈ ℝ+ ↦
(Σ𝑛 ∈
(1...(⌊‘𝑥))((log‘𝑛)↑2) − (𝑥 · (((log‘𝑥)↑2) + (2 − (2 ·
(log‘𝑥)))))))‘1) = -2) |
| 90 | 54, 89 | mp1i 13 |
. . . . . 6
⊢ ((𝐴 ∈ ℝ+
∧ 1 ≤ 𝐴) →
((𝑥 ∈
ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘𝑛)↑2) − (𝑥 · (((log‘𝑥)↑2) + (2 − (2 ·
(log‘𝑥)))))))‘1) = -2) |
| 91 | 53, 90 | oveq12d 7449 |
. . . . 5
⊢ ((𝐴 ∈ ℝ+
∧ 1 ≤ 𝐴) →
(((𝑥 ∈
ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘𝑛)↑2) − (𝑥 · (((log‘𝑥)↑2) + (2 − (2 ·
(log‘𝑥)))))))‘𝐴) − ((𝑥 ∈ ℝ+ ↦
(Σ𝑛 ∈
(1...(⌊‘𝑥))((log‘𝑛)↑2) − (𝑥 · (((log‘𝑥)↑2) + (2 − (2 ·
(log‘𝑥)))))))‘1)) = ((Σ𝑛 ∈
(1...(⌊‘𝐴))((log‘𝑛)↑2) − (𝐴 · (((log‘𝐴)↑2) + (2 − (2 ·
(log‘𝐴)))))) −
-2)) |
| 92 | 91 | fveq2d 6910 |
. . . 4
⊢ ((𝐴 ∈ ℝ+
∧ 1 ≤ 𝐴) →
(abs‘(((𝑥 ∈
ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘𝑛)↑2) − (𝑥 · (((log‘𝑥)↑2) + (2 − (2 ·
(log‘𝑥)))))))‘𝐴) − ((𝑥 ∈ ℝ+ ↦
(Σ𝑛 ∈
(1...(⌊‘𝑥))((log‘𝑛)↑2) − (𝑥 · (((log‘𝑥)↑2) + (2 − (2 ·
(log‘𝑥)))))))‘1))) =
(abs‘((Σ𝑛
∈ (1...(⌊‘𝐴))((log‘𝑛)↑2) − (𝐴 · (((log‘𝐴)↑2) + (2 − (2 ·
(log‘𝐴)))))) −
-2))) |
| 93 | | ioorp 13465 |
. . . . . 6
⊢
(0(,)+∞) = ℝ+ |
| 94 | 93 | eqcomi 2746 |
. . . . 5
⊢
ℝ+ = (0(,)+∞) |
| 95 | | nnuz 12921 |
. . . . 5
⊢ ℕ =
(ℤ≥‘1) |
| 96 | 56 | a1i 11 |
. . . . 5
⊢ ((𝐴 ∈ ℝ+
∧ 1 ≤ 𝐴) → 1
∈ ℤ) |
| 97 | | 1red 11262 |
. . . . 5
⊢ ((𝐴 ∈ ℝ+
∧ 1 ≤ 𝐴) → 1
∈ ℝ) |
| 98 | | pnfxr 11315 |
. . . . . 6
⊢ +∞
∈ ℝ* |
| 99 | 98 | a1i 11 |
. . . . 5
⊢ ((𝐴 ∈ ℝ+
∧ 1 ≤ 𝐴) →
+∞ ∈ ℝ*) |
| 100 | | 1re 11261 |
. . . . . . 7
⊢ 1 ∈
ℝ |
| 101 | | 1nn0 12542 |
. . . . . . 7
⊢ 1 ∈
ℕ0 |
| 102 | 100, 101 | nn0addge1i 12574 |
. . . . . 6
⊢ 1 ≤ (1
+ 1) |
| 103 | 102 | a1i 11 |
. . . . 5
⊢ ((𝐴 ∈ ℝ+
∧ 1 ≤ 𝐴) → 1
≤ (1 + 1)) |
| 104 | | 0red 11264 |
. . . . 5
⊢ ((𝐴 ∈ ℝ+
∧ 1 ≤ 𝐴) → 0
∈ ℝ) |
| 105 | | rpre 13043 |
. . . . . . 7
⊢ (𝑥 ∈ ℝ+
→ 𝑥 ∈
ℝ) |
| 106 | 105 | adantl 481 |
. . . . . 6
⊢ (((𝐴 ∈ ℝ+
∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+)
→ 𝑥 ∈
ℝ) |
| 107 | | simpr 484 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℝ+
∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+)
→ 𝑥 ∈
ℝ+) |
| 108 | 107 | relogcld 26665 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℝ+
∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+)
→ (log‘𝑥) ∈
ℝ) |
| 109 | 108 | resqcld 14165 |
. . . . . . 7
⊢ (((𝐴 ∈ ℝ+
∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+)
→ ((log‘𝑥)↑2) ∈ ℝ) |
| 110 | | remulcl 11240 |
. . . . . . . . 9
⊢ ((2
∈ ℝ ∧ (log‘𝑥) ∈ ℝ) → (2 ·
(log‘𝑥)) ∈
ℝ) |
| 111 | 13, 108, 110 | sylancr 587 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℝ+
∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+)
→ (2 · (log‘𝑥)) ∈ ℝ) |
| 112 | | resubcl 11573 |
. . . . . . . 8
⊢ ((2
∈ ℝ ∧ (2 · (log‘𝑥)) ∈ ℝ) → (2 − (2
· (log‘𝑥)))
∈ ℝ) |
| 113 | 13, 111, 112 | sylancr 587 |
. . . . . . 7
⊢ (((𝐴 ∈ ℝ+
∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+)
→ (2 − (2 · (log‘𝑥))) ∈ ℝ) |
| 114 | 109, 113 | readdcld 11290 |
. . . . . 6
⊢ (((𝐴 ∈ ℝ+
∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+)
→ (((log‘𝑥)↑2) + (2 − (2 ·
(log‘𝑥)))) ∈
ℝ) |
| 115 | 106, 114 | remulcld 11291 |
. . . . 5
⊢ (((𝐴 ∈ ℝ+
∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+)
→ (𝑥 ·
(((log‘𝑥)↑2) +
(2 − (2 · (log‘𝑥))))) ∈ ℝ) |
| 116 | | nnrp 13046 |
. . . . . 6
⊢ (𝑥 ∈ ℕ → 𝑥 ∈
ℝ+) |
| 117 | 116, 109 | sylan2 593 |
. . . . 5
⊢ (((𝐴 ∈ ℝ+
∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ ℕ) →
((log‘𝑥)↑2)
∈ ℝ) |
| 118 | | reelprrecn 11247 |
. . . . . . . 8
⊢ ℝ
∈ {ℝ, ℂ} |
| 119 | 118 | a1i 11 |
. . . . . . 7
⊢ ((𝐴 ∈ ℝ+
∧ 1 ≤ 𝐴) →
ℝ ∈ {ℝ, ℂ}) |
| 120 | 106 | recnd 11289 |
. . . . . . 7
⊢ (((𝐴 ∈ ℝ+
∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+)
→ 𝑥 ∈
ℂ) |
| 121 | | 1red 11262 |
. . . . . . 7
⊢ (((𝐴 ∈ ℝ+
∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+)
→ 1 ∈ ℝ) |
| 122 | | recn 11245 |
. . . . . . . . 9
⊢ (𝑥 ∈ ℝ → 𝑥 ∈
ℂ) |
| 123 | 122 | adantl 481 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℝ+
∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ ℝ) → 𝑥 ∈
ℂ) |
| 124 | | 1red 11262 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℝ+
∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ ℝ) → 1 ∈
ℝ) |
| 125 | 119 | dvmptid 25995 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℝ+
∧ 1 ≤ 𝐴) →
(ℝ D (𝑥 ∈
ℝ ↦ 𝑥)) =
(𝑥 ∈ ℝ ↦
1)) |
| 126 | | rpssre 13042 |
. . . . . . . . 9
⊢
ℝ+ ⊆ ℝ |
| 127 | 126 | a1i 11 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℝ+
∧ 1 ≤ 𝐴) →
ℝ+ ⊆ ℝ) |
| 128 | | tgioo4 24826 |
. . . . . . . 8
⊢
(topGen‘ran (,)) = ((TopOpen‘ℂfld)
↾t ℝ) |
| 129 | | eqid 2737 |
. . . . . . . 8
⊢
(TopOpen‘ℂfld) =
(TopOpen‘ℂfld) |
| 130 | | iooretop 24786 |
. . . . . . . . . 10
⊢
(0(,)+∞) ∈ (topGen‘ran (,)) |
| 131 | 93, 130 | eqeltrri 2838 |
. . . . . . . . 9
⊢
ℝ+ ∈ (topGen‘ran (,)) |
| 132 | 131 | a1i 11 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℝ+
∧ 1 ≤ 𝐴) →
ℝ+ ∈ (topGen‘ran (,))) |
| 133 | 119, 123,
124, 125, 127, 128, 129, 132 | dvmptres 26001 |
. . . . . . 7
⊢ ((𝐴 ∈ ℝ+
∧ 1 ≤ 𝐴) →
(ℝ D (𝑥 ∈
ℝ+ ↦ 𝑥)) = (𝑥 ∈ ℝ+ ↦
1)) |
| 134 | 114 | recnd 11289 |
. . . . . . 7
⊢ (((𝐴 ∈ ℝ+
∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+)
→ (((log‘𝑥)↑2) + (2 − (2 ·
(log‘𝑥)))) ∈
ℂ) |
| 135 | | resubcl 11573 |
. . . . . . . . 9
⊢ (((2
· (log‘𝑥))
∈ ℝ ∧ 2 ∈ ℝ) → ((2 · (log‘𝑥)) − 2) ∈
ℝ) |
| 136 | 111, 13, 135 | sylancl 586 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℝ+
∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+)
→ ((2 · (log‘𝑥)) − 2) ∈
ℝ) |
| 137 | 136, 107 | rerpdivcld 13108 |
. . . . . . 7
⊢ (((𝐴 ∈ ℝ+
∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+)
→ (((2 · (log‘𝑥)) − 2) / 𝑥) ∈ ℝ) |
| 138 | 109 | recnd 11289 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℝ+
∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+)
→ ((log‘𝑥)↑2) ∈ ℂ) |
| 139 | 111 | recnd 11289 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℝ+
∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+)
→ (2 · (log‘𝑥)) ∈ ℂ) |
| 140 | 107 | rpreccld 13087 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℝ+
∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+)
→ (1 / 𝑥) ∈
ℝ+) |
| 141 | 140 | rpcnd 13079 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℝ+
∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+)
→ (1 / 𝑥) ∈
ℂ) |
| 142 | 139, 141 | mulcld 11281 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℝ+
∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+)
→ ((2 · (log‘𝑥)) · (1 / 𝑥)) ∈ ℂ) |
| 143 | | cnelprrecn 11248 |
. . . . . . . . . . 11
⊢ ℂ
∈ {ℝ, ℂ} |
| 144 | 143 | a1i 11 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℝ+
∧ 1 ≤ 𝐴) →
ℂ ∈ {ℝ, ℂ}) |
| 145 | 108 | recnd 11289 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℝ+
∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+)
→ (log‘𝑥) ∈
ℂ) |
| 146 | | sqcl 14158 |
. . . . . . . . . . 11
⊢ (𝑦 ∈ ℂ → (𝑦↑2) ∈
ℂ) |
| 147 | 146 | adantl 481 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℝ+
∧ 1 ≤ 𝐴) ∧ 𝑦 ∈ ℂ) → (𝑦↑2) ∈
ℂ) |
| 148 | | simpr 484 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℝ+
∧ 1 ≤ 𝐴) ∧ 𝑦 ∈ ℂ) → 𝑦 ∈
ℂ) |
| 149 | | mulcl 11239 |
. . . . . . . . . . 11
⊢ ((2
∈ ℂ ∧ 𝑦
∈ ℂ) → (2 · 𝑦) ∈ ℂ) |
| 150 | 25, 148, 149 | sylancr 587 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℝ+
∧ 1 ≤ 𝐴) ∧ 𝑦 ∈ ℂ) → (2
· 𝑦) ∈
ℂ) |
| 151 | | relogf1o 26608 |
. . . . . . . . . . . . . . 15
⊢ (log
↾ ℝ+):ℝ+–1-1-onto→ℝ |
| 152 | | f1of 6848 |
. . . . . . . . . . . . . . 15
⊢ ((log
↾ ℝ+):ℝ+–1-1-onto→ℝ → (log ↾
ℝ+):ℝ+⟶ℝ) |
| 153 | 151, 152 | mp1i 13 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ∈ ℝ+
∧ 1 ≤ 𝐴) → (log
↾
ℝ+):ℝ+⟶ℝ) |
| 154 | 153 | feqmptd 6977 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ ℝ+
∧ 1 ≤ 𝐴) → (log
↾ ℝ+) = (𝑥 ∈ ℝ+ ↦ ((log
↾ ℝ+)‘𝑥))) |
| 155 | | fvres 6925 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ∈ ℝ+
→ ((log ↾ ℝ+)‘𝑥) = (log‘𝑥)) |
| 156 | 155 | mpteq2ia 5245 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ ℝ+
↦ ((log ↾ ℝ+)‘𝑥)) = (𝑥 ∈ ℝ+ ↦
(log‘𝑥)) |
| 157 | 154, 156 | eqtrdi 2793 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ ℝ+
∧ 1 ≤ 𝐴) → (log
↾ ℝ+) = (𝑥 ∈ ℝ+ ↦
(log‘𝑥))) |
| 158 | 157 | oveq2d 7447 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℝ+
∧ 1 ≤ 𝐴) →
(ℝ D (log ↾ ℝ+)) = (ℝ D (𝑥 ∈ ℝ+ ↦
(log‘𝑥)))) |
| 159 | | dvrelog 26679 |
. . . . . . . . . . 11
⊢ (ℝ
D (log ↾ ℝ+)) = (𝑥 ∈ ℝ+ ↦ (1 /
𝑥)) |
| 160 | 158, 159 | eqtr3di 2792 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℝ+
∧ 1 ≤ 𝐴) →
(ℝ D (𝑥 ∈
ℝ+ ↦ (log‘𝑥))) = (𝑥 ∈ ℝ+ ↦ (1 /
𝑥))) |
| 161 | | 2nn 12339 |
. . . . . . . . . . . 12
⊢ 2 ∈
ℕ |
| 162 | | dvexp 25991 |
. . . . . . . . . . . 12
⊢ (2 ∈
ℕ → (ℂ D (𝑦 ∈ ℂ ↦ (𝑦↑2))) = (𝑦 ∈ ℂ ↦ (2 · (𝑦↑(2 −
1))))) |
| 163 | 161, 162 | mp1i 13 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℝ+
∧ 1 ≤ 𝐴) →
(ℂ D (𝑦 ∈
ℂ ↦ (𝑦↑2))) = (𝑦 ∈ ℂ ↦ (2 · (𝑦↑(2 −
1))))) |
| 164 | | 2m1e1 12392 |
. . . . . . . . . . . . . . 15
⊢ (2
− 1) = 1 |
| 165 | 164 | oveq2i 7442 |
. . . . . . . . . . . . . 14
⊢ (𝑦↑(2 − 1)) = (𝑦↑1) |
| 166 | | exp1 14108 |
. . . . . . . . . . . . . 14
⊢ (𝑦 ∈ ℂ → (𝑦↑1) = 𝑦) |
| 167 | 165, 166 | eqtrid 2789 |
. . . . . . . . . . . . 13
⊢ (𝑦 ∈ ℂ → (𝑦↑(2 − 1)) = 𝑦) |
| 168 | 167 | oveq2d 7447 |
. . . . . . . . . . . 12
⊢ (𝑦 ∈ ℂ → (2
· (𝑦↑(2 −
1))) = (2 · 𝑦)) |
| 169 | 168 | mpteq2ia 5245 |
. . . . . . . . . . 11
⊢ (𝑦 ∈ ℂ ↦ (2
· (𝑦↑(2 −
1)))) = (𝑦 ∈ ℂ
↦ (2 · 𝑦)) |
| 170 | 163, 169 | eqtrdi 2793 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℝ+
∧ 1 ≤ 𝐴) →
(ℂ D (𝑦 ∈
ℂ ↦ (𝑦↑2))) = (𝑦 ∈ ℂ ↦ (2 · 𝑦))) |
| 171 | | oveq1 7438 |
. . . . . . . . . 10
⊢ (𝑦 = (log‘𝑥) → (𝑦↑2) = ((log‘𝑥)↑2)) |
| 172 | | oveq2 7439 |
. . . . . . . . . 10
⊢ (𝑦 = (log‘𝑥) → (2 · 𝑦) = (2 · (log‘𝑥))) |
| 173 | 119, 144,
145, 140, 147, 150, 160, 170, 171, 172 | dvmptco 26010 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℝ+
∧ 1 ≤ 𝐴) →
(ℝ D (𝑥 ∈
ℝ+ ↦ ((log‘𝑥)↑2))) = (𝑥 ∈ ℝ+ ↦ ((2
· (log‘𝑥))
· (1 / 𝑥)))) |
| 174 | 113 | recnd 11289 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℝ+
∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+)
→ (2 − (2 · (log‘𝑥))) ∈ ℂ) |
| 175 | | ovexd 7466 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℝ+
∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+)
→ (0 − (2 · (1 / 𝑥))) ∈ V) |
| 176 | | 2cnd 12344 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℝ+
∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+)
→ 2 ∈ ℂ) |
| 177 | | 0red 11264 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℝ+
∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+)
→ 0 ∈ ℝ) |
| 178 | | 2cnd 12344 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℝ+
∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ ℝ) → 2 ∈
ℂ) |
| 179 | | 0red 11264 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℝ+
∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ ℝ) → 0 ∈
ℝ) |
| 180 | | 2cnd 12344 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ ℝ+
∧ 1 ≤ 𝐴) → 2
∈ ℂ) |
| 181 | 119, 180 | dvmptc 25996 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℝ+
∧ 1 ≤ 𝐴) →
(ℝ D (𝑥 ∈
ℝ ↦ 2)) = (𝑥
∈ ℝ ↦ 0)) |
| 182 | 119, 178,
179, 181, 127, 128, 129, 132 | dvmptres 26001 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℝ+
∧ 1 ≤ 𝐴) →
(ℝ D (𝑥 ∈
ℝ+ ↦ 2)) = (𝑥 ∈ ℝ+ ↦
0)) |
| 183 | | mulcl 11239 |
. . . . . . . . . . 11
⊢ ((2
∈ ℂ ∧ (1 / 𝑥) ∈ ℂ) → (2 · (1 /
𝑥)) ∈
ℂ) |
| 184 | 25, 141, 183 | sylancr 587 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℝ+
∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+)
→ (2 · (1 / 𝑥))
∈ ℂ) |
| 185 | 119, 145,
140, 160, 180 | dvmptcmul 26002 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℝ+
∧ 1 ≤ 𝐴) →
(ℝ D (𝑥 ∈
ℝ+ ↦ (2 · (log‘𝑥)))) = (𝑥 ∈ ℝ+ ↦ (2
· (1 / 𝑥)))) |
| 186 | 119, 176,
177, 182, 139, 184, 185 | dvmptsub 26005 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℝ+
∧ 1 ≤ 𝐴) →
(ℝ D (𝑥 ∈
ℝ+ ↦ (2 − (2 · (log‘𝑥))))) = (𝑥 ∈ ℝ+ ↦ (0
− (2 · (1 / 𝑥))))) |
| 187 | 119, 138,
142, 173, 174, 175, 186 | dvmptadd 25998 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℝ+
∧ 1 ≤ 𝐴) →
(ℝ D (𝑥 ∈
ℝ+ ↦ (((log‘𝑥)↑2) + (2 − (2 ·
(log‘𝑥)))))) = (𝑥 ∈ ℝ+
↦ (((2 · (log‘𝑥)) · (1 / 𝑥)) + (0 − (2 · (1 / 𝑥)))))) |
| 188 | 139, 176,
141 | subdird 11720 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℝ+
∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+)
→ (((2 · (log‘𝑥)) − 2) · (1 / 𝑥)) = (((2 ·
(log‘𝑥)) · (1
/ 𝑥)) − (2 ·
(1 / 𝑥)))) |
| 189 | 136 | recnd 11289 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℝ+
∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+)
→ ((2 · (log‘𝑥)) − 2) ∈
ℂ) |
| 190 | | rpne0 13051 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ ℝ+
→ 𝑥 ≠
0) |
| 191 | 190 | adantl 481 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℝ+
∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+)
→ 𝑥 ≠
0) |
| 192 | 189, 120,
191 | divrecd 12046 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℝ+
∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+)
→ (((2 · (log‘𝑥)) − 2) / 𝑥) = (((2 · (log‘𝑥)) − 2) · (1 /
𝑥))) |
| 193 | | df-neg 11495 |
. . . . . . . . . . . 12
⊢ -(2
· (1 / 𝑥)) = (0
− (2 · (1 / 𝑥))) |
| 194 | 193 | oveq2i 7442 |
. . . . . . . . . . 11
⊢ (((2
· (log‘𝑥))
· (1 / 𝑥)) + -(2
· (1 / 𝑥))) = (((2
· (log‘𝑥))
· (1 / 𝑥)) + (0
− (2 · (1 / 𝑥)))) |
| 195 | 142, 184 | negsubd 11626 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℝ+
∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+)
→ (((2 · (log‘𝑥)) · (1 / 𝑥)) + -(2 · (1 / 𝑥))) = (((2 · (log‘𝑥)) · (1 / 𝑥)) − (2 · (1 /
𝑥)))) |
| 196 | 194, 195 | eqtr3id 2791 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℝ+
∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+)
→ (((2 · (log‘𝑥)) · (1 / 𝑥)) + (0 − (2 · (1 / 𝑥)))) = (((2 ·
(log‘𝑥)) · (1
/ 𝑥)) − (2 ·
(1 / 𝑥)))) |
| 197 | 188, 192,
196 | 3eqtr4rd 2788 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℝ+
∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+)
→ (((2 · (log‘𝑥)) · (1 / 𝑥)) + (0 − (2 · (1 / 𝑥)))) = (((2 ·
(log‘𝑥)) − 2) /
𝑥)) |
| 198 | 197 | mpteq2dva 5242 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℝ+
∧ 1 ≤ 𝐴) →
(𝑥 ∈
ℝ+ ↦ (((2 · (log‘𝑥)) · (1 / 𝑥)) + (0 − (2 · (1 / 𝑥))))) = (𝑥 ∈ ℝ+ ↦ (((2
· (log‘𝑥))
− 2) / 𝑥))) |
| 199 | 187, 198 | eqtrd 2777 |
. . . . . . 7
⊢ ((𝐴 ∈ ℝ+
∧ 1 ≤ 𝐴) →
(ℝ D (𝑥 ∈
ℝ+ ↦ (((log‘𝑥)↑2) + (2 − (2 ·
(log‘𝑥)))))) = (𝑥 ∈ ℝ+
↦ (((2 · (log‘𝑥)) − 2) / 𝑥))) |
| 200 | 119, 120,
121, 133, 134, 137, 199 | dvmptmul 25999 |
. . . . . 6
⊢ ((𝐴 ∈ ℝ+
∧ 1 ≤ 𝐴) →
(ℝ D (𝑥 ∈
ℝ+ ↦ (𝑥 · (((log‘𝑥)↑2) + (2 − (2 ·
(log‘𝑥))))))) =
(𝑥 ∈
ℝ+ ↦ ((1 · (((log‘𝑥)↑2) + (2 − (2 ·
(log‘𝑥))))) + ((((2
· (log‘𝑥))
− 2) / 𝑥) ·
𝑥)))) |
| 201 | 134 | mullidd 11279 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℝ+
∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+)
→ (1 · (((log‘𝑥)↑2) + (2 − (2 ·
(log‘𝑥))))) =
(((log‘𝑥)↑2) +
(2 − (2 · (log‘𝑥))))) |
| 202 | 138, 139,
176 | subsub2d 11649 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℝ+
∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+)
→ (((log‘𝑥)↑2) − ((2 ·
(log‘𝑥)) − 2))
= (((log‘𝑥)↑2) +
(2 − (2 · (log‘𝑥))))) |
| 203 | 201, 202 | eqtr4d 2780 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℝ+
∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+)
→ (1 · (((log‘𝑥)↑2) + (2 − (2 ·
(log‘𝑥))))) =
(((log‘𝑥)↑2)
− ((2 · (log‘𝑥)) − 2))) |
| 204 | 189, 120,
191 | divcan1d 12044 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℝ+
∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+)
→ ((((2 · (log‘𝑥)) − 2) / 𝑥) · 𝑥) = ((2 · (log‘𝑥)) − 2)) |
| 205 | 203, 204 | oveq12d 7449 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℝ+
∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+)
→ ((1 · (((log‘𝑥)↑2) + (2 − (2 ·
(log‘𝑥))))) + ((((2
· (log‘𝑥))
− 2) / 𝑥) ·
𝑥)) = ((((log‘𝑥)↑2) − ((2 ·
(log‘𝑥)) − 2))
+ ((2 · (log‘𝑥)) − 2))) |
| 206 | 138, 189 | npcand 11624 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℝ+
∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+)
→ ((((log‘𝑥)↑2) − ((2 ·
(log‘𝑥)) − 2))
+ ((2 · (log‘𝑥)) − 2)) = ((log‘𝑥)↑2)) |
| 207 | 205, 206 | eqtrd 2777 |
. . . . . . 7
⊢ (((𝐴 ∈ ℝ+
∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+)
→ ((1 · (((log‘𝑥)↑2) + (2 − (2 ·
(log‘𝑥))))) + ((((2
· (log‘𝑥))
− 2) / 𝑥) ·
𝑥)) = ((log‘𝑥)↑2)) |
| 208 | 207 | mpteq2dva 5242 |
. . . . . 6
⊢ ((𝐴 ∈ ℝ+
∧ 1 ≤ 𝐴) →
(𝑥 ∈
ℝ+ ↦ ((1 · (((log‘𝑥)↑2) + (2 − (2 ·
(log‘𝑥))))) + ((((2
· (log‘𝑥))
− 2) / 𝑥) ·
𝑥))) = (𝑥 ∈ ℝ+ ↦
((log‘𝑥)↑2))) |
| 209 | 200, 208 | eqtrd 2777 |
. . . . 5
⊢ ((𝐴 ∈ ℝ+
∧ 1 ≤ 𝐴) →
(ℝ D (𝑥 ∈
ℝ+ ↦ (𝑥 · (((log‘𝑥)↑2) + (2 − (2 ·
(log‘𝑥))))))) =
(𝑥 ∈
ℝ+ ↦ ((log‘𝑥)↑2))) |
| 210 | | fveq2 6906 |
. . . . . 6
⊢ (𝑥 = 𝑛 → (log‘𝑥) = (log‘𝑛)) |
| 211 | 210 | oveq1d 7446 |
. . . . 5
⊢ (𝑥 = 𝑛 → ((log‘𝑥)↑2) = ((log‘𝑛)↑2)) |
| 212 | | simp32 1211 |
. . . . . . 7
⊢ (((𝐴 ∈ ℝ+
∧ 1 ≤ 𝐴) ∧
(𝑥 ∈
ℝ+ ∧ 𝑛
∈ ℝ+) ∧ (1 ≤ 𝑥 ∧ 𝑥 ≤ 𝑛 ∧ 𝑛 ≤ +∞)) → 𝑥 ≤ 𝑛) |
| 213 | | simp2l 1200 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℝ+
∧ 1 ≤ 𝐴) ∧
(𝑥 ∈
ℝ+ ∧ 𝑛
∈ ℝ+) ∧ (1 ≤ 𝑥 ∧ 𝑥 ≤ 𝑛 ∧ 𝑛 ≤ +∞)) → 𝑥 ∈ ℝ+) |
| 214 | | simp2r 1201 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℝ+
∧ 1 ≤ 𝐴) ∧
(𝑥 ∈
ℝ+ ∧ 𝑛
∈ ℝ+) ∧ (1 ≤ 𝑥 ∧ 𝑥 ≤ 𝑛 ∧ 𝑛 ≤ +∞)) → 𝑛 ∈ ℝ+) |
| 215 | 213, 214 | logled 26669 |
. . . . . . 7
⊢ (((𝐴 ∈ ℝ+
∧ 1 ≤ 𝐴) ∧
(𝑥 ∈
ℝ+ ∧ 𝑛
∈ ℝ+) ∧ (1 ≤ 𝑥 ∧ 𝑥 ≤ 𝑛 ∧ 𝑛 ≤ +∞)) → (𝑥 ≤ 𝑛 ↔ (log‘𝑥) ≤ (log‘𝑛))) |
| 216 | 212, 215 | mpbid 232 |
. . . . . 6
⊢ (((𝐴 ∈ ℝ+
∧ 1 ≤ 𝐴) ∧
(𝑥 ∈
ℝ+ ∧ 𝑛
∈ ℝ+) ∧ (1 ≤ 𝑥 ∧ 𝑥 ≤ 𝑛 ∧ 𝑛 ≤ +∞)) → (log‘𝑥) ≤ (log‘𝑛)) |
| 217 | 213 | relogcld 26665 |
. . . . . . 7
⊢ (((𝐴 ∈ ℝ+
∧ 1 ≤ 𝐴) ∧
(𝑥 ∈
ℝ+ ∧ 𝑛
∈ ℝ+) ∧ (1 ≤ 𝑥 ∧ 𝑥 ≤ 𝑛 ∧ 𝑛 ≤ +∞)) → (log‘𝑥) ∈
ℝ) |
| 218 | 214 | relogcld 26665 |
. . . . . . 7
⊢ (((𝐴 ∈ ℝ+
∧ 1 ≤ 𝐴) ∧
(𝑥 ∈
ℝ+ ∧ 𝑛
∈ ℝ+) ∧ (1 ≤ 𝑥 ∧ 𝑥 ≤ 𝑛 ∧ 𝑛 ≤ +∞)) → (log‘𝑛) ∈
ℝ) |
| 219 | | simp31 1210 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℝ+
∧ 1 ≤ 𝐴) ∧
(𝑥 ∈
ℝ+ ∧ 𝑛
∈ ℝ+) ∧ (1 ≤ 𝑥 ∧ 𝑥 ≤ 𝑛 ∧ 𝑛 ≤ +∞)) → 1 ≤ 𝑥) |
| 220 | | logleb 26645 |
. . . . . . . . . 10
⊢ ((1
∈ ℝ+ ∧ 𝑥 ∈ ℝ+) → (1 ≤
𝑥 ↔ (log‘1) ≤
(log‘𝑥))) |
| 221 | 54, 213, 220 | sylancr 587 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℝ+
∧ 1 ≤ 𝐴) ∧
(𝑥 ∈
ℝ+ ∧ 𝑛
∈ ℝ+) ∧ (1 ≤ 𝑥 ∧ 𝑥 ≤ 𝑛 ∧ 𝑛 ≤ +∞)) → (1 ≤ 𝑥 ↔ (log‘1) ≤
(log‘𝑥))) |
| 222 | 219, 221 | mpbid 232 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℝ+
∧ 1 ≤ 𝐴) ∧
(𝑥 ∈
ℝ+ ∧ 𝑛
∈ ℝ+) ∧ (1 ≤ 𝑥 ∧ 𝑥 ≤ 𝑛 ∧ 𝑛 ≤ +∞)) → (log‘1) ≤
(log‘𝑥)) |
| 223 | 64, 222 | eqbrtrrid 5179 |
. . . . . . 7
⊢ (((𝐴 ∈ ℝ+
∧ 1 ≤ 𝐴) ∧
(𝑥 ∈
ℝ+ ∧ 𝑛
∈ ℝ+) ∧ (1 ≤ 𝑥 ∧ 𝑥 ≤ 𝑛 ∧ 𝑛 ≤ +∞)) → 0 ≤
(log‘𝑥)) |
| 224 | 214 | rpred 13077 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℝ+
∧ 1 ≤ 𝐴) ∧
(𝑥 ∈
ℝ+ ∧ 𝑛
∈ ℝ+) ∧ (1 ≤ 𝑥 ∧ 𝑥 ≤ 𝑛 ∧ 𝑛 ≤ +∞)) → 𝑛 ∈ ℝ) |
| 225 | | 1red 11262 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℝ+
∧ 1 ≤ 𝐴) ∧
(𝑥 ∈
ℝ+ ∧ 𝑛
∈ ℝ+) ∧ (1 ≤ 𝑥 ∧ 𝑥 ≤ 𝑛 ∧ 𝑛 ≤ +∞)) → 1 ∈
ℝ) |
| 226 | 213 | rpred 13077 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℝ+
∧ 1 ≤ 𝐴) ∧
(𝑥 ∈
ℝ+ ∧ 𝑛
∈ ℝ+) ∧ (1 ≤ 𝑥 ∧ 𝑥 ≤ 𝑛 ∧ 𝑛 ≤ +∞)) → 𝑥 ∈ ℝ) |
| 227 | 225, 226,
224, 219, 212 | letrd 11418 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℝ+
∧ 1 ≤ 𝐴) ∧
(𝑥 ∈
ℝ+ ∧ 𝑛
∈ ℝ+) ∧ (1 ≤ 𝑥 ∧ 𝑥 ≤ 𝑛 ∧ 𝑛 ≤ +∞)) → 1 ≤ 𝑛) |
| 228 | 224, 227 | logge0d 26672 |
. . . . . . 7
⊢ (((𝐴 ∈ ℝ+
∧ 1 ≤ 𝐴) ∧
(𝑥 ∈
ℝ+ ∧ 𝑛
∈ ℝ+) ∧ (1 ≤ 𝑥 ∧ 𝑥 ≤ 𝑛 ∧ 𝑛 ≤ +∞)) → 0 ≤
(log‘𝑛)) |
| 229 | 217, 218,
223, 228 | le2sqd 14296 |
. . . . . 6
⊢ (((𝐴 ∈ ℝ+
∧ 1 ≤ 𝐴) ∧
(𝑥 ∈
ℝ+ ∧ 𝑛
∈ ℝ+) ∧ (1 ≤ 𝑥 ∧ 𝑥 ≤ 𝑛 ∧ 𝑛 ≤ +∞)) → ((log‘𝑥) ≤ (log‘𝑛) ↔ ((log‘𝑥)↑2) ≤ ((log‘𝑛)↑2))) |
| 230 | 216, 229 | mpbid 232 |
. . . . 5
⊢ (((𝐴 ∈ ℝ+
∧ 1 ≤ 𝐴) ∧
(𝑥 ∈
ℝ+ ∧ 𝑛
∈ ℝ+) ∧ (1 ≤ 𝑥 ∧ 𝑥 ≤ 𝑛 ∧ 𝑛 ≤ +∞)) → ((log‘𝑥)↑2) ≤ ((log‘𝑛)↑2)) |
| 231 | | relogcl 26617 |
. . . . . . 7
⊢ (𝑥 ∈ ℝ+
→ (log‘𝑥) ∈
ℝ) |
| 232 | 231 | ad2antrl 728 |
. . . . . 6
⊢ (((𝐴 ∈ ℝ+
∧ 1 ≤ 𝐴) ∧
(𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) → (log‘𝑥) ∈ ℝ) |
| 233 | 232 | sqge0d 14177 |
. . . . 5
⊢ (((𝐴 ∈ ℝ+
∧ 1 ≤ 𝐴) ∧
(𝑥 ∈
ℝ+ ∧ 1 ≤ 𝑥)) → 0 ≤ ((log‘𝑥)↑2)) |
| 234 | 54 | a1i 11 |
. . . . 5
⊢ ((𝐴 ∈ ℝ+
∧ 1 ≤ 𝐴) → 1
∈ ℝ+) |
| 235 | | simpl 482 |
. . . . 5
⊢ ((𝐴 ∈ ℝ+
∧ 1 ≤ 𝐴) →
𝐴 ∈
ℝ+) |
| 236 | | 1le1 11891 |
. . . . . 6
⊢ 1 ≤
1 |
| 237 | 236 | a1i 11 |
. . . . 5
⊢ ((𝐴 ∈ ℝ+
∧ 1 ≤ 𝐴) → 1
≤ 1) |
| 238 | | simpr 484 |
. . . . 5
⊢ ((𝐴 ∈ ℝ+
∧ 1 ≤ 𝐴) → 1
≤ 𝐴) |
| 239 | 9 | rexrd 11311 |
. . . . . 6
⊢ ((𝐴 ∈ ℝ+
∧ 1 ≤ 𝐴) →
𝐴 ∈
ℝ*) |
| 240 | | pnfge 13172 |
. . . . . 6
⊢ (𝐴 ∈ ℝ*
→ 𝐴 ≤
+∞) |
| 241 | 239, 240 | syl 17 |
. . . . 5
⊢ ((𝐴 ∈ ℝ+
∧ 1 ≤ 𝐴) →
𝐴 ≤
+∞) |
| 242 | 94, 95, 96, 97, 99, 103, 104, 115, 109, 117, 209, 211, 230, 50, 233, 234, 235, 237, 238, 241, 44 | dvfsum2 26075 |
. . . 4
⊢ ((𝐴 ∈ ℝ+
∧ 1 ≤ 𝐴) →
(abs‘(((𝑥 ∈
ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘𝑛)↑2) − (𝑥 · (((log‘𝑥)↑2) + (2 − (2 ·
(log‘𝑥)))))))‘𝐴) − ((𝑥 ∈ ℝ+ ↦
(Σ𝑛 ∈
(1...(⌊‘𝑥))((log‘𝑛)↑2) − (𝑥 · (((log‘𝑥)↑2) + (2 − (2 ·
(log‘𝑥)))))))‘1))) ≤ ((log‘𝐴)↑2)) |
| 243 | 92, 242 | eqbrtrrd 5167 |
. . 3
⊢ ((𝐴 ∈ ℝ+
∧ 1 ≤ 𝐴) →
(abs‘((Σ𝑛
∈ (1...(⌊‘𝐴))((log‘𝑛)↑2) − (𝐴 · (((log‘𝐴)↑2) + (2 − (2 ·
(log‘𝐴)))))) −
-2)) ≤ ((log‘𝐴)↑2)) |
| 244 | 24, 29, 12, 38, 243 | letrd 11418 |
. 2
⊢ ((𝐴 ∈ ℝ+
∧ 1 ≤ 𝐴) →
((abs‘(Σ𝑛
∈ (1...(⌊‘𝐴))((log‘𝑛)↑2) − (𝐴 · (((log‘𝐴)↑2) + (2 − (2 ·
(log‘𝐴))))))) −
2) ≤ ((log‘𝐴)↑2)) |
| 245 | 13 | a1i 11 |
. . 3
⊢ ((𝐴 ∈ ℝ+
∧ 1 ≤ 𝐴) → 2
∈ ℝ) |
| 246 | 22, 245, 12 | lesubaddd 11860 |
. 2
⊢ ((𝐴 ∈ ℝ+
∧ 1 ≤ 𝐴) →
(((abs‘(Σ𝑛
∈ (1...(⌊‘𝐴))((log‘𝑛)↑2) − (𝐴 · (((log‘𝐴)↑2) + (2 − (2 ·
(log‘𝐴))))))) −
2) ≤ ((log‘𝐴)↑2) ↔ (abs‘(Σ𝑛 ∈
(1...(⌊‘𝐴))((log‘𝑛)↑2) − (𝐴 · (((log‘𝐴)↑2) + (2 − (2 ·
(log‘𝐴))))))) ≤
(((log‘𝐴)↑2) +
2))) |
| 247 | 244, 246 | mpbid 232 |
1
⊢ ((𝐴 ∈ ℝ+
∧ 1 ≤ 𝐴) →
(abs‘(Σ𝑛 ∈
(1...(⌊‘𝐴))((log‘𝑛)↑2) − (𝐴 · (((log‘𝐴)↑2) + (2 − (2 ·
(log‘𝐴))))))) ≤
(((log‘𝐴)↑2) +
2)) |