MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  log2sumbnd Structured version   Visualization version   GIF version

Theorem log2sumbnd 27606
Description: Bound on the difference between Σ𝑛𝐴, log↑2(𝑛) and the equivalent integral. (Contributed by Mario Carneiro, 20-May-2016.)
Assertion
Ref Expression
log2sumbnd ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → (abs‘(Σ𝑛 ∈ (1...(⌊‘𝐴))((log‘𝑛)↑2) − (𝐴 · (((log‘𝐴)↑2) + (2 − (2 · (log‘𝐴))))))) ≤ (((log‘𝐴)↑2) + 2))
Distinct variable group:   𝐴,𝑛

Proof of Theorem log2sumbnd
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fzfid 14024 . . . . . . . 8 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → (1...(⌊‘𝐴)) ∈ Fin)
2 elfznn 13613 . . . . . . . . . . . 12 (𝑛 ∈ (1...(⌊‘𝐴)) → 𝑛 ∈ ℕ)
32adantl 481 . . . . . . . . . . 11 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ 𝑛 ∈ (1...(⌊‘𝐴))) → 𝑛 ∈ ℕ)
43nnrpd 13097 . . . . . . . . . 10 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ 𝑛 ∈ (1...(⌊‘𝐴))) → 𝑛 ∈ ℝ+)
54relogcld 26683 . . . . . . . . 9 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ 𝑛 ∈ (1...(⌊‘𝐴))) → (log‘𝑛) ∈ ℝ)
65resqcld 14175 . . . . . . . 8 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ 𝑛 ∈ (1...(⌊‘𝐴))) → ((log‘𝑛)↑2) ∈ ℝ)
71, 6fsumrecl 15782 . . . . . . 7 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → Σ𝑛 ∈ (1...(⌊‘𝐴))((log‘𝑛)↑2) ∈ ℝ)
8 rpre 13065 . . . . . . . . 9 (𝐴 ∈ ℝ+𝐴 ∈ ℝ)
98adantr 480 . . . . . . . 8 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → 𝐴 ∈ ℝ)
10 relogcl 26635 . . . . . . . . . . 11 (𝐴 ∈ ℝ+ → (log‘𝐴) ∈ ℝ)
1110adantr 480 . . . . . . . . . 10 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → (log‘𝐴) ∈ ℝ)
1211resqcld 14175 . . . . . . . . 9 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → ((log‘𝐴)↑2) ∈ ℝ)
13 2re 12367 . . . . . . . . . 10 2 ∈ ℝ
14 remulcl 11269 . . . . . . . . . . 11 ((2 ∈ ℝ ∧ (log‘𝐴) ∈ ℝ) → (2 · (log‘𝐴)) ∈ ℝ)
1513, 11, 14sylancr 586 . . . . . . . . . 10 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → (2 · (log‘𝐴)) ∈ ℝ)
16 resubcl 11600 . . . . . . . . . 10 ((2 ∈ ℝ ∧ (2 · (log‘𝐴)) ∈ ℝ) → (2 − (2 · (log‘𝐴))) ∈ ℝ)
1713, 15, 16sylancr 586 . . . . . . . . 9 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → (2 − (2 · (log‘𝐴))) ∈ ℝ)
1812, 17readdcld 11319 . . . . . . . 8 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → (((log‘𝐴)↑2) + (2 − (2 · (log‘𝐴)))) ∈ ℝ)
199, 18remulcld 11320 . . . . . . 7 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → (𝐴 · (((log‘𝐴)↑2) + (2 − (2 · (log‘𝐴))))) ∈ ℝ)
207, 19resubcld 11718 . . . . . 6 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → (Σ𝑛 ∈ (1...(⌊‘𝐴))((log‘𝑛)↑2) − (𝐴 · (((log‘𝐴)↑2) + (2 − (2 · (log‘𝐴)))))) ∈ ℝ)
2120recnd 11318 . . . . 5 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → (Σ𝑛 ∈ (1...(⌊‘𝐴))((log‘𝑛)↑2) − (𝐴 · (((log‘𝐴)↑2) + (2 − (2 · (log‘𝐴)))))) ∈ ℂ)
2221abscld 15485 . . . 4 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → (abs‘(Σ𝑛 ∈ (1...(⌊‘𝐴))((log‘𝑛)↑2) − (𝐴 · (((log‘𝐴)↑2) + (2 − (2 · (log‘𝐴))))))) ∈ ℝ)
23 resubcl 11600 . . . 4 (((abs‘(Σ𝑛 ∈ (1...(⌊‘𝐴))((log‘𝑛)↑2) − (𝐴 · (((log‘𝐴)↑2) + (2 − (2 · (log‘𝐴))))))) ∈ ℝ ∧ 2 ∈ ℝ) → ((abs‘(Σ𝑛 ∈ (1...(⌊‘𝐴))((log‘𝑛)↑2) − (𝐴 · (((log‘𝐴)↑2) + (2 − (2 · (log‘𝐴))))))) − 2) ∈ ℝ)
2422, 13, 23sylancl 585 . . 3 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → ((abs‘(Σ𝑛 ∈ (1...(⌊‘𝐴))((log‘𝑛)↑2) − (𝐴 · (((log‘𝐴)↑2) + (2 − (2 · (log‘𝐴))))))) − 2) ∈ ℝ)
25 2cn 12368 . . . . . 6 2 ∈ ℂ
2625negcli 11604 . . . . 5 -2 ∈ ℂ
27 subcl 11535 . . . . 5 (((Σ𝑛 ∈ (1...(⌊‘𝐴))((log‘𝑛)↑2) − (𝐴 · (((log‘𝐴)↑2) + (2 − (2 · (log‘𝐴)))))) ∈ ℂ ∧ -2 ∈ ℂ) → ((Σ𝑛 ∈ (1...(⌊‘𝐴))((log‘𝑛)↑2) − (𝐴 · (((log‘𝐴)↑2) + (2 − (2 · (log‘𝐴)))))) − -2) ∈ ℂ)
2821, 26, 27sylancl 585 . . . 4 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → ((Σ𝑛 ∈ (1...(⌊‘𝐴))((log‘𝑛)↑2) − (𝐴 · (((log‘𝐴)↑2) + (2 − (2 · (log‘𝐴)))))) − -2) ∈ ℂ)
2928abscld 15485 . . 3 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → (abs‘((Σ𝑛 ∈ (1...(⌊‘𝐴))((log‘𝑛)↑2) − (𝐴 · (((log‘𝐴)↑2) + (2 − (2 · (log‘𝐴)))))) − -2)) ∈ ℝ)
3025absnegi 15449 . . . . . 6 (abs‘-2) = (abs‘2)
31 0le2 12395 . . . . . . 7 0 ≤ 2
32 absid 15345 . . . . . . 7 ((2 ∈ ℝ ∧ 0 ≤ 2) → (abs‘2) = 2)
3313, 31, 32mp2an 691 . . . . . 6 (abs‘2) = 2
3430, 33eqtri 2768 . . . . 5 (abs‘-2) = 2
3534oveq2i 7459 . . . 4 ((abs‘(Σ𝑛 ∈ (1...(⌊‘𝐴))((log‘𝑛)↑2) − (𝐴 · (((log‘𝐴)↑2) + (2 − (2 · (log‘𝐴))))))) − (abs‘-2)) = ((abs‘(Σ𝑛 ∈ (1...(⌊‘𝐴))((log‘𝑛)↑2) − (𝐴 · (((log‘𝐴)↑2) + (2 − (2 · (log‘𝐴))))))) − 2)
36 abs2dif 15381 . . . . 5 (((Σ𝑛 ∈ (1...(⌊‘𝐴))((log‘𝑛)↑2) − (𝐴 · (((log‘𝐴)↑2) + (2 − (2 · (log‘𝐴)))))) ∈ ℂ ∧ -2 ∈ ℂ) → ((abs‘(Σ𝑛 ∈ (1...(⌊‘𝐴))((log‘𝑛)↑2) − (𝐴 · (((log‘𝐴)↑2) + (2 − (2 · (log‘𝐴))))))) − (abs‘-2)) ≤ (abs‘((Σ𝑛 ∈ (1...(⌊‘𝐴))((log‘𝑛)↑2) − (𝐴 · (((log‘𝐴)↑2) + (2 − (2 · (log‘𝐴)))))) − -2)))
3721, 26, 36sylancl 585 . . . 4 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → ((abs‘(Σ𝑛 ∈ (1...(⌊‘𝐴))((log‘𝑛)↑2) − (𝐴 · (((log‘𝐴)↑2) + (2 − (2 · (log‘𝐴))))))) − (abs‘-2)) ≤ (abs‘((Σ𝑛 ∈ (1...(⌊‘𝐴))((log‘𝑛)↑2) − (𝐴 · (((log‘𝐴)↑2) + (2 − (2 · (log‘𝐴)))))) − -2)))
3835, 37eqbrtrrid 5202 . . 3 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → ((abs‘(Σ𝑛 ∈ (1...(⌊‘𝐴))((log‘𝑛)↑2) − (𝐴 · (((log‘𝐴)↑2) + (2 − (2 · (log‘𝐴))))))) − 2) ≤ (abs‘((Σ𝑛 ∈ (1...(⌊‘𝐴))((log‘𝑛)↑2) − (𝐴 · (((log‘𝐴)↑2) + (2 − (2 · (log‘𝐴)))))) − -2)))
39 fveq2 6920 . . . . . . . . . . 11 (𝑥 = 𝐴 → (⌊‘𝑥) = (⌊‘𝐴))
4039oveq2d 7464 . . . . . . . . . 10 (𝑥 = 𝐴 → (1...(⌊‘𝑥)) = (1...(⌊‘𝐴)))
4140sumeq1d 15748 . . . . . . . . 9 (𝑥 = 𝐴 → Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘𝑛)↑2) = Σ𝑛 ∈ (1...(⌊‘𝐴))((log‘𝑛)↑2))
42 id 22 . . . . . . . . . 10 (𝑥 = 𝐴𝑥 = 𝐴)
43 fveq2 6920 . . . . . . . . . . . 12 (𝑥 = 𝐴 → (log‘𝑥) = (log‘𝐴))
4443oveq1d 7463 . . . . . . . . . . 11 (𝑥 = 𝐴 → ((log‘𝑥)↑2) = ((log‘𝐴)↑2))
4543oveq2d 7464 . . . . . . . . . . . 12 (𝑥 = 𝐴 → (2 · (log‘𝑥)) = (2 · (log‘𝐴)))
4645oveq2d 7464 . . . . . . . . . . 11 (𝑥 = 𝐴 → (2 − (2 · (log‘𝑥))) = (2 − (2 · (log‘𝐴))))
4744, 46oveq12d 7466 . . . . . . . . . 10 (𝑥 = 𝐴 → (((log‘𝑥)↑2) + (2 − (2 · (log‘𝑥)))) = (((log‘𝐴)↑2) + (2 − (2 · (log‘𝐴)))))
4842, 47oveq12d 7466 . . . . . . . . 9 (𝑥 = 𝐴 → (𝑥 · (((log‘𝑥)↑2) + (2 − (2 · (log‘𝑥))))) = (𝐴 · (((log‘𝐴)↑2) + (2 − (2 · (log‘𝐴))))))
4941, 48oveq12d 7466 . . . . . . . 8 (𝑥 = 𝐴 → (Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘𝑛)↑2) − (𝑥 · (((log‘𝑥)↑2) + (2 − (2 · (log‘𝑥)))))) = (Σ𝑛 ∈ (1...(⌊‘𝐴))((log‘𝑛)↑2) − (𝐴 · (((log‘𝐴)↑2) + (2 − (2 · (log‘𝐴)))))))
50 eqid 2740 . . . . . . . 8 (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘𝑛)↑2) − (𝑥 · (((log‘𝑥)↑2) + (2 − (2 · (log‘𝑥))))))) = (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘𝑛)↑2) − (𝑥 · (((log‘𝑥)↑2) + (2 − (2 · (log‘𝑥)))))))
51 ovex 7481 . . . . . . . 8 𝑛 ∈ (1...(⌊‘𝑥))((log‘𝑛)↑2) − (𝑥 · (((log‘𝑥)↑2) + (2 − (2 · (log‘𝑥)))))) ∈ V
5249, 50, 51fvmpt3i 7034 . . . . . . 7 (𝐴 ∈ ℝ+ → ((𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘𝑛)↑2) − (𝑥 · (((log‘𝑥)↑2) + (2 − (2 · (log‘𝑥)))))))‘𝐴) = (Σ𝑛 ∈ (1...(⌊‘𝐴))((log‘𝑛)↑2) − (𝐴 · (((log‘𝐴)↑2) + (2 − (2 · (log‘𝐴)))))))
5352adantr 480 . . . . . 6 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → ((𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘𝑛)↑2) − (𝑥 · (((log‘𝑥)↑2) + (2 − (2 · (log‘𝑥)))))))‘𝐴) = (Σ𝑛 ∈ (1...(⌊‘𝐴))((log‘𝑛)↑2) − (𝐴 · (((log‘𝐴)↑2) + (2 − (2 · (log‘𝐴)))))))
54 1rp 13061 . . . . . . 7 1 ∈ ℝ+
55 fveq2 6920 . . . . . . . . . . . . . 14 (𝑥 = 1 → (⌊‘𝑥) = (⌊‘1))
56 1z 12673 . . . . . . . . . . . . . . 15 1 ∈ ℤ
57 flid 13859 . . . . . . . . . . . . . . 15 (1 ∈ ℤ → (⌊‘1) = 1)
5856, 57ax-mp 5 . . . . . . . . . . . . . 14 (⌊‘1) = 1
5955, 58eqtrdi 2796 . . . . . . . . . . . . 13 (𝑥 = 1 → (⌊‘𝑥) = 1)
6059oveq2d 7464 . . . . . . . . . . . 12 (𝑥 = 1 → (1...(⌊‘𝑥)) = (1...1))
6160sumeq1d 15748 . . . . . . . . . . 11 (𝑥 = 1 → Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘𝑛)↑2) = Σ𝑛 ∈ (1...1)((log‘𝑛)↑2))
62 0cn 11282 . . . . . . . . . . . 12 0 ∈ ℂ
63 fveq2 6920 . . . . . . . . . . . . . . 15 (𝑛 = 1 → (log‘𝑛) = (log‘1))
64 log1 26645 . . . . . . . . . . . . . . 15 (log‘1) = 0
6563, 64eqtrdi 2796 . . . . . . . . . . . . . 14 (𝑛 = 1 → (log‘𝑛) = 0)
6665sq0id 14243 . . . . . . . . . . . . 13 (𝑛 = 1 → ((log‘𝑛)↑2) = 0)
6766fsum1 15795 . . . . . . . . . . . 12 ((1 ∈ ℤ ∧ 0 ∈ ℂ) → Σ𝑛 ∈ (1...1)((log‘𝑛)↑2) = 0)
6856, 62, 67mp2an 691 . . . . . . . . . . 11 Σ𝑛 ∈ (1...1)((log‘𝑛)↑2) = 0
6961, 68eqtrdi 2796 . . . . . . . . . 10 (𝑥 = 1 → Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘𝑛)↑2) = 0)
70 id 22 . . . . . . . . . . . 12 (𝑥 = 1 → 𝑥 = 1)
71 fveq2 6920 . . . . . . . . . . . . . . . 16 (𝑥 = 1 → (log‘𝑥) = (log‘1))
7271, 64eqtrdi 2796 . . . . . . . . . . . . . . 15 (𝑥 = 1 → (log‘𝑥) = 0)
7372sq0id 14243 . . . . . . . . . . . . . 14 (𝑥 = 1 → ((log‘𝑥)↑2) = 0)
7472oveq2d 7464 . . . . . . . . . . . . . . . . 17 (𝑥 = 1 → (2 · (log‘𝑥)) = (2 · 0))
75 2t0e0 12462 . . . . . . . . . . . . . . . . 17 (2 · 0) = 0
7674, 75eqtrdi 2796 . . . . . . . . . . . . . . . 16 (𝑥 = 1 → (2 · (log‘𝑥)) = 0)
7776oveq2d 7464 . . . . . . . . . . . . . . 15 (𝑥 = 1 → (2 − (2 · (log‘𝑥))) = (2 − 0))
7825subid1i 11608 . . . . . . . . . . . . . . 15 (2 − 0) = 2
7977, 78eqtrdi 2796 . . . . . . . . . . . . . 14 (𝑥 = 1 → (2 − (2 · (log‘𝑥))) = 2)
8073, 79oveq12d 7466 . . . . . . . . . . . . 13 (𝑥 = 1 → (((log‘𝑥)↑2) + (2 − (2 · (log‘𝑥)))) = (0 + 2))
8125addlidi 11478 . . . . . . . . . . . . 13 (0 + 2) = 2
8280, 81eqtrdi 2796 . . . . . . . . . . . 12 (𝑥 = 1 → (((log‘𝑥)↑2) + (2 − (2 · (log‘𝑥)))) = 2)
8370, 82oveq12d 7466 . . . . . . . . . . 11 (𝑥 = 1 → (𝑥 · (((log‘𝑥)↑2) + (2 − (2 · (log‘𝑥))))) = (1 · 2))
8425mullidi 11295 . . . . . . . . . . 11 (1 · 2) = 2
8583, 84eqtrdi 2796 . . . . . . . . . 10 (𝑥 = 1 → (𝑥 · (((log‘𝑥)↑2) + (2 − (2 · (log‘𝑥))))) = 2)
8669, 85oveq12d 7466 . . . . . . . . 9 (𝑥 = 1 → (Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘𝑛)↑2) − (𝑥 · (((log‘𝑥)↑2) + (2 − (2 · (log‘𝑥)))))) = (0 − 2))
87 df-neg 11523 . . . . . . . . 9 -2 = (0 − 2)
8886, 87eqtr4di 2798 . . . . . . . 8 (𝑥 = 1 → (Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘𝑛)↑2) − (𝑥 · (((log‘𝑥)↑2) + (2 − (2 · (log‘𝑥)))))) = -2)
8988, 50, 51fvmpt3i 7034 . . . . . . 7 (1 ∈ ℝ+ → ((𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘𝑛)↑2) − (𝑥 · (((log‘𝑥)↑2) + (2 − (2 · (log‘𝑥)))))))‘1) = -2)
9054, 89mp1i 13 . . . . . 6 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → ((𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘𝑛)↑2) − (𝑥 · (((log‘𝑥)↑2) + (2 − (2 · (log‘𝑥)))))))‘1) = -2)
9153, 90oveq12d 7466 . . . . 5 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → (((𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘𝑛)↑2) − (𝑥 · (((log‘𝑥)↑2) + (2 − (2 · (log‘𝑥)))))))‘𝐴) − ((𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘𝑛)↑2) − (𝑥 · (((log‘𝑥)↑2) + (2 − (2 · (log‘𝑥)))))))‘1)) = ((Σ𝑛 ∈ (1...(⌊‘𝐴))((log‘𝑛)↑2) − (𝐴 · (((log‘𝐴)↑2) + (2 − (2 · (log‘𝐴)))))) − -2))
9291fveq2d 6924 . . . 4 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → (abs‘(((𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘𝑛)↑2) − (𝑥 · (((log‘𝑥)↑2) + (2 − (2 · (log‘𝑥)))))))‘𝐴) − ((𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘𝑛)↑2) − (𝑥 · (((log‘𝑥)↑2) + (2 − (2 · (log‘𝑥)))))))‘1))) = (abs‘((Σ𝑛 ∈ (1...(⌊‘𝐴))((log‘𝑛)↑2) − (𝐴 · (((log‘𝐴)↑2) + (2 − (2 · (log‘𝐴)))))) − -2)))
93 ioorp 13485 . . . . . 6 (0(,)+∞) = ℝ+
9493eqcomi 2749 . . . . 5 + = (0(,)+∞)
95 nnuz 12946 . . . . 5 ℕ = (ℤ‘1)
9656a1i 11 . . . . 5 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → 1 ∈ ℤ)
97 1red 11291 . . . . 5 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → 1 ∈ ℝ)
98 pnfxr 11344 . . . . . 6 +∞ ∈ ℝ*
9998a1i 11 . . . . 5 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → +∞ ∈ ℝ*)
100 1re 11290 . . . . . . 7 1 ∈ ℝ
101 1nn0 12569 . . . . . . 7 1 ∈ ℕ0
102100, 101nn0addge1i 12601 . . . . . 6 1 ≤ (1 + 1)
103102a1i 11 . . . . 5 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → 1 ≤ (1 + 1))
104 0red 11293 . . . . 5 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → 0 ∈ ℝ)
105 rpre 13065 . . . . . . 7 (𝑥 ∈ ℝ+𝑥 ∈ ℝ)
106105adantl 481 . . . . . 6 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → 𝑥 ∈ ℝ)
107 simpr 484 . . . . . . . . 9 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → 𝑥 ∈ ℝ+)
108107relogcld 26683 . . . . . . . 8 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → (log‘𝑥) ∈ ℝ)
109108resqcld 14175 . . . . . . 7 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → ((log‘𝑥)↑2) ∈ ℝ)
110 remulcl 11269 . . . . . . . . 9 ((2 ∈ ℝ ∧ (log‘𝑥) ∈ ℝ) → (2 · (log‘𝑥)) ∈ ℝ)
11113, 108, 110sylancr 586 . . . . . . . 8 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → (2 · (log‘𝑥)) ∈ ℝ)
112 resubcl 11600 . . . . . . . 8 ((2 ∈ ℝ ∧ (2 · (log‘𝑥)) ∈ ℝ) → (2 − (2 · (log‘𝑥))) ∈ ℝ)
11313, 111, 112sylancr 586 . . . . . . 7 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → (2 − (2 · (log‘𝑥))) ∈ ℝ)
114109, 113readdcld 11319 . . . . . 6 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → (((log‘𝑥)↑2) + (2 − (2 · (log‘𝑥)))) ∈ ℝ)
115106, 114remulcld 11320 . . . . 5 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → (𝑥 · (((log‘𝑥)↑2) + (2 − (2 · (log‘𝑥))))) ∈ ℝ)
116 nnrp 13068 . . . . . 6 (𝑥 ∈ ℕ → 𝑥 ∈ ℝ+)
117116, 109sylan2 592 . . . . 5 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ ℕ) → ((log‘𝑥)↑2) ∈ ℝ)
118 reelprrecn 11276 . . . . . . . 8 ℝ ∈ {ℝ, ℂ}
119118a1i 11 . . . . . . 7 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → ℝ ∈ {ℝ, ℂ})
120106recnd 11318 . . . . . . 7 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → 𝑥 ∈ ℂ)
121 1red 11291 . . . . . . 7 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → 1 ∈ ℝ)
122 recn 11274 . . . . . . . . 9 (𝑥 ∈ ℝ → 𝑥 ∈ ℂ)
123122adantl 481 . . . . . . . 8 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ ℝ) → 𝑥 ∈ ℂ)
124 1red 11291 . . . . . . . 8 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ ℝ) → 1 ∈ ℝ)
125119dvmptid 26015 . . . . . . . 8 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → (ℝ D (𝑥 ∈ ℝ ↦ 𝑥)) = (𝑥 ∈ ℝ ↦ 1))
126 rpssre 13064 . . . . . . . . 9 + ⊆ ℝ
127126a1i 11 . . . . . . . 8 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → ℝ+ ⊆ ℝ)
128 eqid 2740 . . . . . . . . 9 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
129128tgioo2 24844 . . . . . . . 8 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
130 iooretop 24807 . . . . . . . . . 10 (0(,)+∞) ∈ (topGen‘ran (,))
13193, 130eqeltrri 2841 . . . . . . . . 9 + ∈ (topGen‘ran (,))
132131a1i 11 . . . . . . . 8 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → ℝ+ ∈ (topGen‘ran (,)))
133119, 123, 124, 125, 127, 129, 128, 132dvmptres 26021 . . . . . . 7 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → (ℝ D (𝑥 ∈ ℝ+𝑥)) = (𝑥 ∈ ℝ+ ↦ 1))
134114recnd 11318 . . . . . . 7 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → (((log‘𝑥)↑2) + (2 − (2 · (log‘𝑥)))) ∈ ℂ)
135 resubcl 11600 . . . . . . . . 9 (((2 · (log‘𝑥)) ∈ ℝ ∧ 2 ∈ ℝ) → ((2 · (log‘𝑥)) − 2) ∈ ℝ)
136111, 13, 135sylancl 585 . . . . . . . 8 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → ((2 · (log‘𝑥)) − 2) ∈ ℝ)
137136, 107rerpdivcld 13130 . . . . . . 7 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → (((2 · (log‘𝑥)) − 2) / 𝑥) ∈ ℝ)
138109recnd 11318 . . . . . . . . 9 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → ((log‘𝑥)↑2) ∈ ℂ)
139111recnd 11318 . . . . . . . . . 10 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → (2 · (log‘𝑥)) ∈ ℂ)
140107rpreccld 13109 . . . . . . . . . . 11 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → (1 / 𝑥) ∈ ℝ+)
141140rpcnd 13101 . . . . . . . . . 10 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → (1 / 𝑥) ∈ ℂ)
142139, 141mulcld 11310 . . . . . . . . 9 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → ((2 · (log‘𝑥)) · (1 / 𝑥)) ∈ ℂ)
143 cnelprrecn 11277 . . . . . . . . . . 11 ℂ ∈ {ℝ, ℂ}
144143a1i 11 . . . . . . . . . 10 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → ℂ ∈ {ℝ, ℂ})
145108recnd 11318 . . . . . . . . . 10 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → (log‘𝑥) ∈ ℂ)
146 sqcl 14168 . . . . . . . . . . 11 (𝑦 ∈ ℂ → (𝑦↑2) ∈ ℂ)
147146adantl 481 . . . . . . . . . 10 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ 𝑦 ∈ ℂ) → (𝑦↑2) ∈ ℂ)
148 simpr 484 . . . . . . . . . . 11 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ 𝑦 ∈ ℂ) → 𝑦 ∈ ℂ)
149 mulcl 11268 . . . . . . . . . . 11 ((2 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (2 · 𝑦) ∈ ℂ)
15025, 148, 149sylancr 586 . . . . . . . . . 10 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ 𝑦 ∈ ℂ) → (2 · 𝑦) ∈ ℂ)
151 relogf1o 26626 . . . . . . . . . . . . . . 15 (log ↾ ℝ+):ℝ+1-1-onto→ℝ
152 f1of 6862 . . . . . . . . . . . . . . 15 ((log ↾ ℝ+):ℝ+1-1-onto→ℝ → (log ↾ ℝ+):ℝ+⟶ℝ)
153151, 152mp1i 13 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → (log ↾ ℝ+):ℝ+⟶ℝ)
154153feqmptd 6990 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → (log ↾ ℝ+) = (𝑥 ∈ ℝ+ ↦ ((log ↾ ℝ+)‘𝑥)))
155 fvres 6939 . . . . . . . . . . . . . 14 (𝑥 ∈ ℝ+ → ((log ↾ ℝ+)‘𝑥) = (log‘𝑥))
156155mpteq2ia 5269 . . . . . . . . . . . . 13 (𝑥 ∈ ℝ+ ↦ ((log ↾ ℝ+)‘𝑥)) = (𝑥 ∈ ℝ+ ↦ (log‘𝑥))
157154, 156eqtrdi 2796 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → (log ↾ ℝ+) = (𝑥 ∈ ℝ+ ↦ (log‘𝑥)))
158157oveq2d 7464 . . . . . . . . . . 11 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → (ℝ D (log ↾ ℝ+)) = (ℝ D (𝑥 ∈ ℝ+ ↦ (log‘𝑥))))
159 dvrelog 26697 . . . . . . . . . . 11 (ℝ D (log ↾ ℝ+)) = (𝑥 ∈ ℝ+ ↦ (1 / 𝑥))
160158, 159eqtr3di 2795 . . . . . . . . . 10 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → (ℝ D (𝑥 ∈ ℝ+ ↦ (log‘𝑥))) = (𝑥 ∈ ℝ+ ↦ (1 / 𝑥)))
161 2nn 12366 . . . . . . . . . . . 12 2 ∈ ℕ
162 dvexp 26011 . . . . . . . . . . . 12 (2 ∈ ℕ → (ℂ D (𝑦 ∈ ℂ ↦ (𝑦↑2))) = (𝑦 ∈ ℂ ↦ (2 · (𝑦↑(2 − 1)))))
163161, 162mp1i 13 . . . . . . . . . . 11 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → (ℂ D (𝑦 ∈ ℂ ↦ (𝑦↑2))) = (𝑦 ∈ ℂ ↦ (2 · (𝑦↑(2 − 1)))))
164 2m1e1 12419 . . . . . . . . . . . . . . 15 (2 − 1) = 1
165164oveq2i 7459 . . . . . . . . . . . . . 14 (𝑦↑(2 − 1)) = (𝑦↑1)
166 exp1 14118 . . . . . . . . . . . . . 14 (𝑦 ∈ ℂ → (𝑦↑1) = 𝑦)
167165, 166eqtrid 2792 . . . . . . . . . . . . 13 (𝑦 ∈ ℂ → (𝑦↑(2 − 1)) = 𝑦)
168167oveq2d 7464 . . . . . . . . . . . 12 (𝑦 ∈ ℂ → (2 · (𝑦↑(2 − 1))) = (2 · 𝑦))
169168mpteq2ia 5269 . . . . . . . . . . 11 (𝑦 ∈ ℂ ↦ (2 · (𝑦↑(2 − 1)))) = (𝑦 ∈ ℂ ↦ (2 · 𝑦))
170163, 169eqtrdi 2796 . . . . . . . . . 10 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → (ℂ D (𝑦 ∈ ℂ ↦ (𝑦↑2))) = (𝑦 ∈ ℂ ↦ (2 · 𝑦)))
171 oveq1 7455 . . . . . . . . . 10 (𝑦 = (log‘𝑥) → (𝑦↑2) = ((log‘𝑥)↑2))
172 oveq2 7456 . . . . . . . . . 10 (𝑦 = (log‘𝑥) → (2 · 𝑦) = (2 · (log‘𝑥)))
173119, 144, 145, 140, 147, 150, 160, 170, 171, 172dvmptco 26030 . . . . . . . . 9 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → (ℝ D (𝑥 ∈ ℝ+ ↦ ((log‘𝑥)↑2))) = (𝑥 ∈ ℝ+ ↦ ((2 · (log‘𝑥)) · (1 / 𝑥))))
174113recnd 11318 . . . . . . . . 9 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → (2 − (2 · (log‘𝑥))) ∈ ℂ)
175 ovexd 7483 . . . . . . . . 9 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → (0 − (2 · (1 / 𝑥))) ∈ V)
176 2cnd 12371 . . . . . . . . . 10 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → 2 ∈ ℂ)
177 0red 11293 . . . . . . . . . 10 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → 0 ∈ ℝ)
178 2cnd 12371 . . . . . . . . . . 11 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ ℝ) → 2 ∈ ℂ)
179 0red 11293 . . . . . . . . . . 11 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ ℝ) → 0 ∈ ℝ)
180 2cnd 12371 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → 2 ∈ ℂ)
181119, 180dvmptc 26016 . . . . . . . . . . 11 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → (ℝ D (𝑥 ∈ ℝ ↦ 2)) = (𝑥 ∈ ℝ ↦ 0))
182119, 178, 179, 181, 127, 129, 128, 132dvmptres 26021 . . . . . . . . . 10 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → (ℝ D (𝑥 ∈ ℝ+ ↦ 2)) = (𝑥 ∈ ℝ+ ↦ 0))
183 mulcl 11268 . . . . . . . . . . 11 ((2 ∈ ℂ ∧ (1 / 𝑥) ∈ ℂ) → (2 · (1 / 𝑥)) ∈ ℂ)
18425, 141, 183sylancr 586 . . . . . . . . . 10 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → (2 · (1 / 𝑥)) ∈ ℂ)
185119, 145, 140, 160, 180dvmptcmul 26022 . . . . . . . . . 10 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → (ℝ D (𝑥 ∈ ℝ+ ↦ (2 · (log‘𝑥)))) = (𝑥 ∈ ℝ+ ↦ (2 · (1 / 𝑥))))
186119, 176, 177, 182, 139, 184, 185dvmptsub 26025 . . . . . . . . 9 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → (ℝ D (𝑥 ∈ ℝ+ ↦ (2 − (2 · (log‘𝑥))))) = (𝑥 ∈ ℝ+ ↦ (0 − (2 · (1 / 𝑥)))))
187119, 138, 142, 173, 174, 175, 186dvmptadd 26018 . . . . . . . 8 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → (ℝ D (𝑥 ∈ ℝ+ ↦ (((log‘𝑥)↑2) + (2 − (2 · (log‘𝑥)))))) = (𝑥 ∈ ℝ+ ↦ (((2 · (log‘𝑥)) · (1 / 𝑥)) + (0 − (2 · (1 / 𝑥))))))
188139, 176, 141subdird 11747 . . . . . . . . . 10 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → (((2 · (log‘𝑥)) − 2) · (1 / 𝑥)) = (((2 · (log‘𝑥)) · (1 / 𝑥)) − (2 · (1 / 𝑥))))
189136recnd 11318 . . . . . . . . . . 11 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → ((2 · (log‘𝑥)) − 2) ∈ ℂ)
190 rpne0 13073 . . . . . . . . . . . 12 (𝑥 ∈ ℝ+𝑥 ≠ 0)
191190adantl 481 . . . . . . . . . . 11 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → 𝑥 ≠ 0)
192189, 120, 191divrecd 12073 . . . . . . . . . 10 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → (((2 · (log‘𝑥)) − 2) / 𝑥) = (((2 · (log‘𝑥)) − 2) · (1 / 𝑥)))
193 df-neg 11523 . . . . . . . . . . . 12 -(2 · (1 / 𝑥)) = (0 − (2 · (1 / 𝑥)))
194193oveq2i 7459 . . . . . . . . . . 11 (((2 · (log‘𝑥)) · (1 / 𝑥)) + -(2 · (1 / 𝑥))) = (((2 · (log‘𝑥)) · (1 / 𝑥)) + (0 − (2 · (1 / 𝑥))))
195142, 184negsubd 11653 . . . . . . . . . . 11 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → (((2 · (log‘𝑥)) · (1 / 𝑥)) + -(2 · (1 / 𝑥))) = (((2 · (log‘𝑥)) · (1 / 𝑥)) − (2 · (1 / 𝑥))))
196194, 195eqtr3id 2794 . . . . . . . . . 10 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → (((2 · (log‘𝑥)) · (1 / 𝑥)) + (0 − (2 · (1 / 𝑥)))) = (((2 · (log‘𝑥)) · (1 / 𝑥)) − (2 · (1 / 𝑥))))
197188, 192, 1963eqtr4rd 2791 . . . . . . . . 9 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → (((2 · (log‘𝑥)) · (1 / 𝑥)) + (0 − (2 · (1 / 𝑥)))) = (((2 · (log‘𝑥)) − 2) / 𝑥))
198197mpteq2dva 5266 . . . . . . . 8 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → (𝑥 ∈ ℝ+ ↦ (((2 · (log‘𝑥)) · (1 / 𝑥)) + (0 − (2 · (1 / 𝑥))))) = (𝑥 ∈ ℝ+ ↦ (((2 · (log‘𝑥)) − 2) / 𝑥)))
199187, 198eqtrd 2780 . . . . . . 7 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → (ℝ D (𝑥 ∈ ℝ+ ↦ (((log‘𝑥)↑2) + (2 − (2 · (log‘𝑥)))))) = (𝑥 ∈ ℝ+ ↦ (((2 · (log‘𝑥)) − 2) / 𝑥)))
200119, 120, 121, 133, 134, 137, 199dvmptmul 26019 . . . . . 6 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → (ℝ D (𝑥 ∈ ℝ+ ↦ (𝑥 · (((log‘𝑥)↑2) + (2 − (2 · (log‘𝑥))))))) = (𝑥 ∈ ℝ+ ↦ ((1 · (((log‘𝑥)↑2) + (2 − (2 · (log‘𝑥))))) + ((((2 · (log‘𝑥)) − 2) / 𝑥) · 𝑥))))
201134mullidd 11308 . . . . . . . . . 10 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → (1 · (((log‘𝑥)↑2) + (2 − (2 · (log‘𝑥))))) = (((log‘𝑥)↑2) + (2 − (2 · (log‘𝑥)))))
202138, 139, 176subsub2d 11676 . . . . . . . . . 10 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → (((log‘𝑥)↑2) − ((2 · (log‘𝑥)) − 2)) = (((log‘𝑥)↑2) + (2 − (2 · (log‘𝑥)))))
203201, 202eqtr4d 2783 . . . . . . . . 9 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → (1 · (((log‘𝑥)↑2) + (2 − (2 · (log‘𝑥))))) = (((log‘𝑥)↑2) − ((2 · (log‘𝑥)) − 2)))
204189, 120, 191divcan1d 12071 . . . . . . . . 9 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → ((((2 · (log‘𝑥)) − 2) / 𝑥) · 𝑥) = ((2 · (log‘𝑥)) − 2))
205203, 204oveq12d 7466 . . . . . . . 8 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → ((1 · (((log‘𝑥)↑2) + (2 − (2 · (log‘𝑥))))) + ((((2 · (log‘𝑥)) − 2) / 𝑥) · 𝑥)) = ((((log‘𝑥)↑2) − ((2 · (log‘𝑥)) − 2)) + ((2 · (log‘𝑥)) − 2)))
206138, 189npcand 11651 . . . . . . . 8 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → ((((log‘𝑥)↑2) − ((2 · (log‘𝑥)) − 2)) + ((2 · (log‘𝑥)) − 2)) = ((log‘𝑥)↑2))
207205, 206eqtrd 2780 . . . . . . 7 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → ((1 · (((log‘𝑥)↑2) + (2 − (2 · (log‘𝑥))))) + ((((2 · (log‘𝑥)) − 2) / 𝑥) · 𝑥)) = ((log‘𝑥)↑2))
208207mpteq2dva 5266 . . . . . 6 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → (𝑥 ∈ ℝ+ ↦ ((1 · (((log‘𝑥)↑2) + (2 − (2 · (log‘𝑥))))) + ((((2 · (log‘𝑥)) − 2) / 𝑥) · 𝑥))) = (𝑥 ∈ ℝ+ ↦ ((log‘𝑥)↑2)))
209200, 208eqtrd 2780 . . . . 5 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → (ℝ D (𝑥 ∈ ℝ+ ↦ (𝑥 · (((log‘𝑥)↑2) + (2 − (2 · (log‘𝑥))))))) = (𝑥 ∈ ℝ+ ↦ ((log‘𝑥)↑2)))
210 fveq2 6920 . . . . . 6 (𝑥 = 𝑛 → (log‘𝑥) = (log‘𝑛))
211210oveq1d 7463 . . . . 5 (𝑥 = 𝑛 → ((log‘𝑥)↑2) = ((log‘𝑛)↑2))
212 simp32 1210 . . . . . . 7 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ (𝑥 ∈ ℝ+𝑛 ∈ ℝ+) ∧ (1 ≤ 𝑥𝑥𝑛𝑛 ≤ +∞)) → 𝑥𝑛)
213 simp2l 1199 . . . . . . . 8 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ (𝑥 ∈ ℝ+𝑛 ∈ ℝ+) ∧ (1 ≤ 𝑥𝑥𝑛𝑛 ≤ +∞)) → 𝑥 ∈ ℝ+)
214 simp2r 1200 . . . . . . . 8 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ (𝑥 ∈ ℝ+𝑛 ∈ ℝ+) ∧ (1 ≤ 𝑥𝑥𝑛𝑛 ≤ +∞)) → 𝑛 ∈ ℝ+)
215213, 214logled 26687 . . . . . . 7 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ (𝑥 ∈ ℝ+𝑛 ∈ ℝ+) ∧ (1 ≤ 𝑥𝑥𝑛𝑛 ≤ +∞)) → (𝑥𝑛 ↔ (log‘𝑥) ≤ (log‘𝑛)))
216212, 215mpbid 232 . . . . . 6 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ (𝑥 ∈ ℝ+𝑛 ∈ ℝ+) ∧ (1 ≤ 𝑥𝑥𝑛𝑛 ≤ +∞)) → (log‘𝑥) ≤ (log‘𝑛))
217213relogcld 26683 . . . . . . 7 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ (𝑥 ∈ ℝ+𝑛 ∈ ℝ+) ∧ (1 ≤ 𝑥𝑥𝑛𝑛 ≤ +∞)) → (log‘𝑥) ∈ ℝ)
218214relogcld 26683 . . . . . . 7 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ (𝑥 ∈ ℝ+𝑛 ∈ ℝ+) ∧ (1 ≤ 𝑥𝑥𝑛𝑛 ≤ +∞)) → (log‘𝑛) ∈ ℝ)
219 simp31 1209 . . . . . . . . 9 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ (𝑥 ∈ ℝ+𝑛 ∈ ℝ+) ∧ (1 ≤ 𝑥𝑥𝑛𝑛 ≤ +∞)) → 1 ≤ 𝑥)
220 logleb 26663 . . . . . . . . . 10 ((1 ∈ ℝ+𝑥 ∈ ℝ+) → (1 ≤ 𝑥 ↔ (log‘1) ≤ (log‘𝑥)))
22154, 213, 220sylancr 586 . . . . . . . . 9 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ (𝑥 ∈ ℝ+𝑛 ∈ ℝ+) ∧ (1 ≤ 𝑥𝑥𝑛𝑛 ≤ +∞)) → (1 ≤ 𝑥 ↔ (log‘1) ≤ (log‘𝑥)))
222219, 221mpbid 232 . . . . . . . 8 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ (𝑥 ∈ ℝ+𝑛 ∈ ℝ+) ∧ (1 ≤ 𝑥𝑥𝑛𝑛 ≤ +∞)) → (log‘1) ≤ (log‘𝑥))
22364, 222eqbrtrrid 5202 . . . . . . 7 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ (𝑥 ∈ ℝ+𝑛 ∈ ℝ+) ∧ (1 ≤ 𝑥𝑥𝑛𝑛 ≤ +∞)) → 0 ≤ (log‘𝑥))
224214rpred 13099 . . . . . . . 8 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ (𝑥 ∈ ℝ+𝑛 ∈ ℝ+) ∧ (1 ≤ 𝑥𝑥𝑛𝑛 ≤ +∞)) → 𝑛 ∈ ℝ)
225 1red 11291 . . . . . . . . 9 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ (𝑥 ∈ ℝ+𝑛 ∈ ℝ+) ∧ (1 ≤ 𝑥𝑥𝑛𝑛 ≤ +∞)) → 1 ∈ ℝ)
226213rpred 13099 . . . . . . . . 9 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ (𝑥 ∈ ℝ+𝑛 ∈ ℝ+) ∧ (1 ≤ 𝑥𝑥𝑛𝑛 ≤ +∞)) → 𝑥 ∈ ℝ)
227225, 226, 224, 219, 212letrd 11447 . . . . . . . 8 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ (𝑥 ∈ ℝ+𝑛 ∈ ℝ+) ∧ (1 ≤ 𝑥𝑥𝑛𝑛 ≤ +∞)) → 1 ≤ 𝑛)
228224, 227logge0d 26690 . . . . . . 7 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ (𝑥 ∈ ℝ+𝑛 ∈ ℝ+) ∧ (1 ≤ 𝑥𝑥𝑛𝑛 ≤ +∞)) → 0 ≤ (log‘𝑛))
229217, 218, 223, 228le2sqd 14306 . . . . . 6 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ (𝑥 ∈ ℝ+𝑛 ∈ ℝ+) ∧ (1 ≤ 𝑥𝑥𝑛𝑛 ≤ +∞)) → ((log‘𝑥) ≤ (log‘𝑛) ↔ ((log‘𝑥)↑2) ≤ ((log‘𝑛)↑2)))
230216, 229mpbid 232 . . . . 5 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ (𝑥 ∈ ℝ+𝑛 ∈ ℝ+) ∧ (1 ≤ 𝑥𝑥𝑛𝑛 ≤ +∞)) → ((log‘𝑥)↑2) ≤ ((log‘𝑛)↑2))
231 relogcl 26635 . . . . . . 7 (𝑥 ∈ ℝ+ → (log‘𝑥) ∈ ℝ)
232231ad2antrl 727 . . . . . 6 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (log‘𝑥) ∈ ℝ)
233232sqge0d 14187 . . . . 5 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 0 ≤ ((log‘𝑥)↑2))
23454a1i 11 . . . . 5 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → 1 ∈ ℝ+)
235 simpl 482 . . . . 5 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → 𝐴 ∈ ℝ+)
236 1le1 11918 . . . . . 6 1 ≤ 1
237236a1i 11 . . . . 5 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → 1 ≤ 1)
238 simpr 484 . . . . 5 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → 1 ≤ 𝐴)
2399rexrd 11340 . . . . . 6 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → 𝐴 ∈ ℝ*)
240 pnfge 13193 . . . . . 6 (𝐴 ∈ ℝ*𝐴 ≤ +∞)
241239, 240syl 17 . . . . 5 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → 𝐴 ≤ +∞)
24294, 95, 96, 97, 99, 103, 104, 115, 109, 117, 209, 211, 230, 50, 233, 234, 235, 237, 238, 241, 44dvfsum2 26095 . . . 4 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → (abs‘(((𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘𝑛)↑2) − (𝑥 · (((log‘𝑥)↑2) + (2 − (2 · (log‘𝑥)))))))‘𝐴) − ((𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘𝑛)↑2) − (𝑥 · (((log‘𝑥)↑2) + (2 − (2 · (log‘𝑥)))))))‘1))) ≤ ((log‘𝐴)↑2))
24392, 242eqbrtrrd 5190 . . 3 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → (abs‘((Σ𝑛 ∈ (1...(⌊‘𝐴))((log‘𝑛)↑2) − (𝐴 · (((log‘𝐴)↑2) + (2 − (2 · (log‘𝐴)))))) − -2)) ≤ ((log‘𝐴)↑2))
24424, 29, 12, 38, 243letrd 11447 . 2 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → ((abs‘(Σ𝑛 ∈ (1...(⌊‘𝐴))((log‘𝑛)↑2) − (𝐴 · (((log‘𝐴)↑2) + (2 − (2 · (log‘𝐴))))))) − 2) ≤ ((log‘𝐴)↑2))
24513a1i 11 . . 3 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → 2 ∈ ℝ)
24622, 245, 12lesubaddd 11887 . 2 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → (((abs‘(Σ𝑛 ∈ (1...(⌊‘𝐴))((log‘𝑛)↑2) − (𝐴 · (((log‘𝐴)↑2) + (2 − (2 · (log‘𝐴))))))) − 2) ≤ ((log‘𝐴)↑2) ↔ (abs‘(Σ𝑛 ∈ (1...(⌊‘𝐴))((log‘𝑛)↑2) − (𝐴 · (((log‘𝐴)↑2) + (2 − (2 · (log‘𝐴))))))) ≤ (((log‘𝐴)↑2) + 2)))
247244, 246mpbid 232 1 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → (abs‘(Σ𝑛 ∈ (1...(⌊‘𝐴))((log‘𝑛)↑2) − (𝐴 · (((log‘𝐴)↑2) + (2 − (2 · (log‘𝐴))))))) ≤ (((log‘𝐴)↑2) + 2))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wne 2946  Vcvv 3488  wss 3976  {cpr 4650   class class class wbr 5166  cmpt 5249  ran crn 5701  cres 5702  wf 6569  1-1-ontowf1o 6572  cfv 6573  (class class class)co 7448  cc 11182  cr 11183  0cc0 11184  1c1 11185   + caddc 11187   · cmul 11189  +∞cpnf 11321  *cxr 11323  cle 11325  cmin 11520  -cneg 11521   / cdiv 11947  cn 12293  2c2 12348  cz 12639  +crp 13057  (,)cioo 13407  ...cfz 13567  cfl 13841  cexp 14112  abscabs 15283  Σcsu 15734  TopOpenctopn 17481  topGenctg 17497  fldccnfld 21387   D cdv 25918  logclog 26614
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262  ax-addf 11263
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-er 8763  df-map 8886  df-pm 8887  df-ixp 8956  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fsupp 9432  df-fi 9480  df-sup 9511  df-inf 9512  df-oi 9579  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-q 13014  df-rp 13058  df-xneg 13175  df-xadd 13176  df-xmul 13177  df-ioo 13411  df-ioc 13412  df-ico 13413  df-icc 13414  df-fz 13568  df-fzo 13712  df-fl 13843  df-mod 13921  df-seq 14053  df-exp 14113  df-fac 14323  df-bc 14352  df-hash 14380  df-shft 15116  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-limsup 15517  df-clim 15534  df-rlim 15535  df-sum 15735  df-ef 16115  df-sin 16117  df-cos 16118  df-pi 16120  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-starv 17326  df-sca 17327  df-vsca 17328  df-ip 17329  df-tset 17330  df-ple 17331  df-ds 17333  df-unif 17334  df-hom 17335  df-cco 17336  df-rest 17482  df-topn 17483  df-0g 17501  df-gsum 17502  df-topgen 17503  df-pt 17504  df-prds 17507  df-xrs 17562  df-qtop 17567  df-imas 17568  df-xps 17570  df-mre 17644  df-mrc 17645  df-acs 17647  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-submnd 18819  df-mulg 19108  df-cntz 19357  df-cmn 19824  df-psmet 21379  df-xmet 21380  df-met 21381  df-bl 21382  df-mopn 21383  df-fbas 21384  df-fg 21385  df-cnfld 21388  df-top 22921  df-topon 22938  df-topsp 22960  df-bases 22974  df-cld 23048  df-ntr 23049  df-cls 23050  df-nei 23127  df-lp 23165  df-perf 23166  df-cn 23256  df-cnp 23257  df-haus 23344  df-cmp 23416  df-tx 23591  df-hmeo 23784  df-fil 23875  df-fm 23967  df-flim 23968  df-flf 23969  df-xms 24351  df-ms 24352  df-tms 24353  df-cncf 24923  df-limc 25921  df-dv 25922  df-log 26616
This theorem is referenced by:  selberglem2  27608
  Copyright terms: Public domain W3C validator