MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  log2sumbnd Structured version   Visualization version   GIF version

Theorem log2sumbnd 26128
Description: Bound on the difference between Σ𝑛𝐴, log↑2(𝑛) and the equivalent integral. (Contributed by Mario Carneiro, 20-May-2016.)
Assertion
Ref Expression
log2sumbnd ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → (abs‘(Σ𝑛 ∈ (1...(⌊‘𝐴))((log‘𝑛)↑2) − (𝐴 · (((log‘𝐴)↑2) + (2 − (2 · (log‘𝐴))))))) ≤ (((log‘𝐴)↑2) + 2))
Distinct variable group:   𝐴,𝑛

Proof of Theorem log2sumbnd
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fzfid 13336 . . . . . . . 8 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → (1...(⌊‘𝐴)) ∈ Fin)
2 elfznn 12931 . . . . . . . . . . . 12 (𝑛 ∈ (1...(⌊‘𝐴)) → 𝑛 ∈ ℕ)
32adantl 485 . . . . . . . . . . 11 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ 𝑛 ∈ (1...(⌊‘𝐴))) → 𝑛 ∈ ℕ)
43nnrpd 12417 . . . . . . . . . 10 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ 𝑛 ∈ (1...(⌊‘𝐴))) → 𝑛 ∈ ℝ+)
54relogcld 25214 . . . . . . . . 9 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ 𝑛 ∈ (1...(⌊‘𝐴))) → (log‘𝑛) ∈ ℝ)
65resqcld 13607 . . . . . . . 8 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ 𝑛 ∈ (1...(⌊‘𝐴))) → ((log‘𝑛)↑2) ∈ ℝ)
71, 6fsumrecl 15083 . . . . . . 7 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → Σ𝑛 ∈ (1...(⌊‘𝐴))((log‘𝑛)↑2) ∈ ℝ)
8 rpre 12385 . . . . . . . . 9 (𝐴 ∈ ℝ+𝐴 ∈ ℝ)
98adantr 484 . . . . . . . 8 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → 𝐴 ∈ ℝ)
10 relogcl 25167 . . . . . . . . . . 11 (𝐴 ∈ ℝ+ → (log‘𝐴) ∈ ℝ)
1110adantr 484 . . . . . . . . . 10 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → (log‘𝐴) ∈ ℝ)
1211resqcld 13607 . . . . . . . . 9 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → ((log‘𝐴)↑2) ∈ ℝ)
13 2re 11699 . . . . . . . . . 10 2 ∈ ℝ
14 remulcl 10611 . . . . . . . . . . 11 ((2 ∈ ℝ ∧ (log‘𝐴) ∈ ℝ) → (2 · (log‘𝐴)) ∈ ℝ)
1513, 11, 14sylancr 590 . . . . . . . . . 10 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → (2 · (log‘𝐴)) ∈ ℝ)
16 resubcl 10939 . . . . . . . . . 10 ((2 ∈ ℝ ∧ (2 · (log‘𝐴)) ∈ ℝ) → (2 − (2 · (log‘𝐴))) ∈ ℝ)
1713, 15, 16sylancr 590 . . . . . . . . 9 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → (2 − (2 · (log‘𝐴))) ∈ ℝ)
1812, 17readdcld 10659 . . . . . . . 8 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → (((log‘𝐴)↑2) + (2 − (2 · (log‘𝐴)))) ∈ ℝ)
199, 18remulcld 10660 . . . . . . 7 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → (𝐴 · (((log‘𝐴)↑2) + (2 − (2 · (log‘𝐴))))) ∈ ℝ)
207, 19resubcld 11057 . . . . . 6 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → (Σ𝑛 ∈ (1...(⌊‘𝐴))((log‘𝑛)↑2) − (𝐴 · (((log‘𝐴)↑2) + (2 − (2 · (log‘𝐴)))))) ∈ ℝ)
2120recnd 10658 . . . . 5 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → (Σ𝑛 ∈ (1...(⌊‘𝐴))((log‘𝑛)↑2) − (𝐴 · (((log‘𝐴)↑2) + (2 − (2 · (log‘𝐴)))))) ∈ ℂ)
2221abscld 14788 . . . 4 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → (abs‘(Σ𝑛 ∈ (1...(⌊‘𝐴))((log‘𝑛)↑2) − (𝐴 · (((log‘𝐴)↑2) + (2 − (2 · (log‘𝐴))))))) ∈ ℝ)
23 resubcl 10939 . . . 4 (((abs‘(Σ𝑛 ∈ (1...(⌊‘𝐴))((log‘𝑛)↑2) − (𝐴 · (((log‘𝐴)↑2) + (2 − (2 · (log‘𝐴))))))) ∈ ℝ ∧ 2 ∈ ℝ) → ((abs‘(Σ𝑛 ∈ (1...(⌊‘𝐴))((log‘𝑛)↑2) − (𝐴 · (((log‘𝐴)↑2) + (2 − (2 · (log‘𝐴))))))) − 2) ∈ ℝ)
2422, 13, 23sylancl 589 . . 3 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → ((abs‘(Σ𝑛 ∈ (1...(⌊‘𝐴))((log‘𝑛)↑2) − (𝐴 · (((log‘𝐴)↑2) + (2 − (2 · (log‘𝐴))))))) − 2) ∈ ℝ)
25 2cn 11700 . . . . . 6 2 ∈ ℂ
2625negcli 10943 . . . . 5 -2 ∈ ℂ
27 subcl 10874 . . . . 5 (((Σ𝑛 ∈ (1...(⌊‘𝐴))((log‘𝑛)↑2) − (𝐴 · (((log‘𝐴)↑2) + (2 − (2 · (log‘𝐴)))))) ∈ ℂ ∧ -2 ∈ ℂ) → ((Σ𝑛 ∈ (1...(⌊‘𝐴))((log‘𝑛)↑2) − (𝐴 · (((log‘𝐴)↑2) + (2 − (2 · (log‘𝐴)))))) − -2) ∈ ℂ)
2821, 26, 27sylancl 589 . . . 4 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → ((Σ𝑛 ∈ (1...(⌊‘𝐴))((log‘𝑛)↑2) − (𝐴 · (((log‘𝐴)↑2) + (2 − (2 · (log‘𝐴)))))) − -2) ∈ ℂ)
2928abscld 14788 . . 3 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → (abs‘((Σ𝑛 ∈ (1...(⌊‘𝐴))((log‘𝑛)↑2) − (𝐴 · (((log‘𝐴)↑2) + (2 − (2 · (log‘𝐴)))))) − -2)) ∈ ℝ)
3025absnegi 14752 . . . . . 6 (abs‘-2) = (abs‘2)
31 0le2 11727 . . . . . . 7 0 ≤ 2
32 absid 14648 . . . . . . 7 ((2 ∈ ℝ ∧ 0 ≤ 2) → (abs‘2) = 2)
3313, 31, 32mp2an 691 . . . . . 6 (abs‘2) = 2
3430, 33eqtri 2821 . . . . 5 (abs‘-2) = 2
3534oveq2i 7146 . . . 4 ((abs‘(Σ𝑛 ∈ (1...(⌊‘𝐴))((log‘𝑛)↑2) − (𝐴 · (((log‘𝐴)↑2) + (2 − (2 · (log‘𝐴))))))) − (abs‘-2)) = ((abs‘(Σ𝑛 ∈ (1...(⌊‘𝐴))((log‘𝑛)↑2) − (𝐴 · (((log‘𝐴)↑2) + (2 − (2 · (log‘𝐴))))))) − 2)
36 abs2dif 14684 . . . . 5 (((Σ𝑛 ∈ (1...(⌊‘𝐴))((log‘𝑛)↑2) − (𝐴 · (((log‘𝐴)↑2) + (2 − (2 · (log‘𝐴)))))) ∈ ℂ ∧ -2 ∈ ℂ) → ((abs‘(Σ𝑛 ∈ (1...(⌊‘𝐴))((log‘𝑛)↑2) − (𝐴 · (((log‘𝐴)↑2) + (2 − (2 · (log‘𝐴))))))) − (abs‘-2)) ≤ (abs‘((Σ𝑛 ∈ (1...(⌊‘𝐴))((log‘𝑛)↑2) − (𝐴 · (((log‘𝐴)↑2) + (2 − (2 · (log‘𝐴)))))) − -2)))
3721, 26, 36sylancl 589 . . . 4 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → ((abs‘(Σ𝑛 ∈ (1...(⌊‘𝐴))((log‘𝑛)↑2) − (𝐴 · (((log‘𝐴)↑2) + (2 − (2 · (log‘𝐴))))))) − (abs‘-2)) ≤ (abs‘((Σ𝑛 ∈ (1...(⌊‘𝐴))((log‘𝑛)↑2) − (𝐴 · (((log‘𝐴)↑2) + (2 − (2 · (log‘𝐴)))))) − -2)))
3835, 37eqbrtrrid 5066 . . 3 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → ((abs‘(Σ𝑛 ∈ (1...(⌊‘𝐴))((log‘𝑛)↑2) − (𝐴 · (((log‘𝐴)↑2) + (2 − (2 · (log‘𝐴))))))) − 2) ≤ (abs‘((Σ𝑛 ∈ (1...(⌊‘𝐴))((log‘𝑛)↑2) − (𝐴 · (((log‘𝐴)↑2) + (2 − (2 · (log‘𝐴)))))) − -2)))
39 fveq2 6645 . . . . . . . . . . 11 (𝑥 = 𝐴 → (⌊‘𝑥) = (⌊‘𝐴))
4039oveq2d 7151 . . . . . . . . . 10 (𝑥 = 𝐴 → (1...(⌊‘𝑥)) = (1...(⌊‘𝐴)))
4140sumeq1d 15050 . . . . . . . . 9 (𝑥 = 𝐴 → Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘𝑛)↑2) = Σ𝑛 ∈ (1...(⌊‘𝐴))((log‘𝑛)↑2))
42 id 22 . . . . . . . . . 10 (𝑥 = 𝐴𝑥 = 𝐴)
43 fveq2 6645 . . . . . . . . . . . 12 (𝑥 = 𝐴 → (log‘𝑥) = (log‘𝐴))
4443oveq1d 7150 . . . . . . . . . . 11 (𝑥 = 𝐴 → ((log‘𝑥)↑2) = ((log‘𝐴)↑2))
4543oveq2d 7151 . . . . . . . . . . . 12 (𝑥 = 𝐴 → (2 · (log‘𝑥)) = (2 · (log‘𝐴)))
4645oveq2d 7151 . . . . . . . . . . 11 (𝑥 = 𝐴 → (2 − (2 · (log‘𝑥))) = (2 − (2 · (log‘𝐴))))
4744, 46oveq12d 7153 . . . . . . . . . 10 (𝑥 = 𝐴 → (((log‘𝑥)↑2) + (2 − (2 · (log‘𝑥)))) = (((log‘𝐴)↑2) + (2 − (2 · (log‘𝐴)))))
4842, 47oveq12d 7153 . . . . . . . . 9 (𝑥 = 𝐴 → (𝑥 · (((log‘𝑥)↑2) + (2 − (2 · (log‘𝑥))))) = (𝐴 · (((log‘𝐴)↑2) + (2 − (2 · (log‘𝐴))))))
4941, 48oveq12d 7153 . . . . . . . 8 (𝑥 = 𝐴 → (Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘𝑛)↑2) − (𝑥 · (((log‘𝑥)↑2) + (2 − (2 · (log‘𝑥)))))) = (Σ𝑛 ∈ (1...(⌊‘𝐴))((log‘𝑛)↑2) − (𝐴 · (((log‘𝐴)↑2) + (2 − (2 · (log‘𝐴)))))))
50 eqid 2798 . . . . . . . 8 (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘𝑛)↑2) − (𝑥 · (((log‘𝑥)↑2) + (2 − (2 · (log‘𝑥))))))) = (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘𝑛)↑2) − (𝑥 · (((log‘𝑥)↑2) + (2 − (2 · (log‘𝑥)))))))
51 ovex 7168 . . . . . . . 8 𝑛 ∈ (1...(⌊‘𝑥))((log‘𝑛)↑2) − (𝑥 · (((log‘𝑥)↑2) + (2 − (2 · (log‘𝑥)))))) ∈ V
5249, 50, 51fvmpt3i 6750 . . . . . . 7 (𝐴 ∈ ℝ+ → ((𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘𝑛)↑2) − (𝑥 · (((log‘𝑥)↑2) + (2 − (2 · (log‘𝑥)))))))‘𝐴) = (Σ𝑛 ∈ (1...(⌊‘𝐴))((log‘𝑛)↑2) − (𝐴 · (((log‘𝐴)↑2) + (2 − (2 · (log‘𝐴)))))))
5352adantr 484 . . . . . 6 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → ((𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘𝑛)↑2) − (𝑥 · (((log‘𝑥)↑2) + (2 − (2 · (log‘𝑥)))))))‘𝐴) = (Σ𝑛 ∈ (1...(⌊‘𝐴))((log‘𝑛)↑2) − (𝐴 · (((log‘𝐴)↑2) + (2 − (2 · (log‘𝐴)))))))
54 1rp 12381 . . . . . . 7 1 ∈ ℝ+
55 fveq2 6645 . . . . . . . . . . . . . 14 (𝑥 = 1 → (⌊‘𝑥) = (⌊‘1))
56 1z 12000 . . . . . . . . . . . . . . 15 1 ∈ ℤ
57 flid 13173 . . . . . . . . . . . . . . 15 (1 ∈ ℤ → (⌊‘1) = 1)
5856, 57ax-mp 5 . . . . . . . . . . . . . 14 (⌊‘1) = 1
5955, 58eqtrdi 2849 . . . . . . . . . . . . 13 (𝑥 = 1 → (⌊‘𝑥) = 1)
6059oveq2d 7151 . . . . . . . . . . . 12 (𝑥 = 1 → (1...(⌊‘𝑥)) = (1...1))
6160sumeq1d 15050 . . . . . . . . . . 11 (𝑥 = 1 → Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘𝑛)↑2) = Σ𝑛 ∈ (1...1)((log‘𝑛)↑2))
62 0cn 10622 . . . . . . . . . . . 12 0 ∈ ℂ
63 fveq2 6645 . . . . . . . . . . . . . . 15 (𝑛 = 1 → (log‘𝑛) = (log‘1))
64 log1 25177 . . . . . . . . . . . . . . 15 (log‘1) = 0
6563, 64eqtrdi 2849 . . . . . . . . . . . . . 14 (𝑛 = 1 → (log‘𝑛) = 0)
6665sq0id 13553 . . . . . . . . . . . . 13 (𝑛 = 1 → ((log‘𝑛)↑2) = 0)
6766fsum1 15094 . . . . . . . . . . . 12 ((1 ∈ ℤ ∧ 0 ∈ ℂ) → Σ𝑛 ∈ (1...1)((log‘𝑛)↑2) = 0)
6856, 62, 67mp2an 691 . . . . . . . . . . 11 Σ𝑛 ∈ (1...1)((log‘𝑛)↑2) = 0
6961, 68eqtrdi 2849 . . . . . . . . . 10 (𝑥 = 1 → Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘𝑛)↑2) = 0)
70 id 22 . . . . . . . . . . . 12 (𝑥 = 1 → 𝑥 = 1)
71 fveq2 6645 . . . . . . . . . . . . . . . 16 (𝑥 = 1 → (log‘𝑥) = (log‘1))
7271, 64eqtrdi 2849 . . . . . . . . . . . . . . 15 (𝑥 = 1 → (log‘𝑥) = 0)
7372sq0id 13553 . . . . . . . . . . . . . 14 (𝑥 = 1 → ((log‘𝑥)↑2) = 0)
7472oveq2d 7151 . . . . . . . . . . . . . . . . 17 (𝑥 = 1 → (2 · (log‘𝑥)) = (2 · 0))
75 2t0e0 11794 . . . . . . . . . . . . . . . . 17 (2 · 0) = 0
7674, 75eqtrdi 2849 . . . . . . . . . . . . . . . 16 (𝑥 = 1 → (2 · (log‘𝑥)) = 0)
7776oveq2d 7151 . . . . . . . . . . . . . . 15 (𝑥 = 1 → (2 − (2 · (log‘𝑥))) = (2 − 0))
7825subid1i 10947 . . . . . . . . . . . . . . 15 (2 − 0) = 2
7977, 78eqtrdi 2849 . . . . . . . . . . . . . 14 (𝑥 = 1 → (2 − (2 · (log‘𝑥))) = 2)
8073, 79oveq12d 7153 . . . . . . . . . . . . 13 (𝑥 = 1 → (((log‘𝑥)↑2) + (2 − (2 · (log‘𝑥)))) = (0 + 2))
8125addid2i 10817 . . . . . . . . . . . . 13 (0 + 2) = 2
8280, 81eqtrdi 2849 . . . . . . . . . . . 12 (𝑥 = 1 → (((log‘𝑥)↑2) + (2 − (2 · (log‘𝑥)))) = 2)
8370, 82oveq12d 7153 . . . . . . . . . . 11 (𝑥 = 1 → (𝑥 · (((log‘𝑥)↑2) + (2 − (2 · (log‘𝑥))))) = (1 · 2))
8425mulid2i 10635 . . . . . . . . . . 11 (1 · 2) = 2
8583, 84eqtrdi 2849 . . . . . . . . . 10 (𝑥 = 1 → (𝑥 · (((log‘𝑥)↑2) + (2 − (2 · (log‘𝑥))))) = 2)
8669, 85oveq12d 7153 . . . . . . . . 9 (𝑥 = 1 → (Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘𝑛)↑2) − (𝑥 · (((log‘𝑥)↑2) + (2 − (2 · (log‘𝑥)))))) = (0 − 2))
87 df-neg 10862 . . . . . . . . 9 -2 = (0 − 2)
8886, 87eqtr4di 2851 . . . . . . . 8 (𝑥 = 1 → (Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘𝑛)↑2) − (𝑥 · (((log‘𝑥)↑2) + (2 − (2 · (log‘𝑥)))))) = -2)
8988, 50, 51fvmpt3i 6750 . . . . . . 7 (1 ∈ ℝ+ → ((𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘𝑛)↑2) − (𝑥 · (((log‘𝑥)↑2) + (2 − (2 · (log‘𝑥)))))))‘1) = -2)
9054, 89mp1i 13 . . . . . 6 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → ((𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘𝑛)↑2) − (𝑥 · (((log‘𝑥)↑2) + (2 − (2 · (log‘𝑥)))))))‘1) = -2)
9153, 90oveq12d 7153 . . . . 5 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → (((𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘𝑛)↑2) − (𝑥 · (((log‘𝑥)↑2) + (2 − (2 · (log‘𝑥)))))))‘𝐴) − ((𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘𝑛)↑2) − (𝑥 · (((log‘𝑥)↑2) + (2 − (2 · (log‘𝑥)))))))‘1)) = ((Σ𝑛 ∈ (1...(⌊‘𝐴))((log‘𝑛)↑2) − (𝐴 · (((log‘𝐴)↑2) + (2 − (2 · (log‘𝐴)))))) − -2))
9291fveq2d 6649 . . . 4 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → (abs‘(((𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘𝑛)↑2) − (𝑥 · (((log‘𝑥)↑2) + (2 − (2 · (log‘𝑥)))))))‘𝐴) − ((𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘𝑛)↑2) − (𝑥 · (((log‘𝑥)↑2) + (2 − (2 · (log‘𝑥)))))))‘1))) = (abs‘((Σ𝑛 ∈ (1...(⌊‘𝐴))((log‘𝑛)↑2) − (𝐴 · (((log‘𝐴)↑2) + (2 − (2 · (log‘𝐴)))))) − -2)))
93 ioorp 12803 . . . . . 6 (0(,)+∞) = ℝ+
9493eqcomi 2807 . . . . 5 + = (0(,)+∞)
95 nnuz 12269 . . . . 5 ℕ = (ℤ‘1)
9656a1i 11 . . . . 5 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → 1 ∈ ℤ)
97 1red 10631 . . . . 5 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → 1 ∈ ℝ)
98 pnfxr 10684 . . . . . 6 +∞ ∈ ℝ*
9998a1i 11 . . . . 5 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → +∞ ∈ ℝ*)
100 1re 10630 . . . . . . 7 1 ∈ ℝ
101 1nn0 11901 . . . . . . 7 1 ∈ ℕ0
102100, 101nn0addge1i 11933 . . . . . 6 1 ≤ (1 + 1)
103102a1i 11 . . . . 5 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → 1 ≤ (1 + 1))
104 0red 10633 . . . . 5 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → 0 ∈ ℝ)
105 rpre 12385 . . . . . . 7 (𝑥 ∈ ℝ+𝑥 ∈ ℝ)
106105adantl 485 . . . . . 6 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → 𝑥 ∈ ℝ)
107 simpr 488 . . . . . . . . 9 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → 𝑥 ∈ ℝ+)
108107relogcld 25214 . . . . . . . 8 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → (log‘𝑥) ∈ ℝ)
109108resqcld 13607 . . . . . . 7 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → ((log‘𝑥)↑2) ∈ ℝ)
110 remulcl 10611 . . . . . . . . 9 ((2 ∈ ℝ ∧ (log‘𝑥) ∈ ℝ) → (2 · (log‘𝑥)) ∈ ℝ)
11113, 108, 110sylancr 590 . . . . . . . 8 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → (2 · (log‘𝑥)) ∈ ℝ)
112 resubcl 10939 . . . . . . . 8 ((2 ∈ ℝ ∧ (2 · (log‘𝑥)) ∈ ℝ) → (2 − (2 · (log‘𝑥))) ∈ ℝ)
11313, 111, 112sylancr 590 . . . . . . 7 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → (2 − (2 · (log‘𝑥))) ∈ ℝ)
114109, 113readdcld 10659 . . . . . 6 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → (((log‘𝑥)↑2) + (2 − (2 · (log‘𝑥)))) ∈ ℝ)
115106, 114remulcld 10660 . . . . 5 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → (𝑥 · (((log‘𝑥)↑2) + (2 − (2 · (log‘𝑥))))) ∈ ℝ)
116 nnrp 12388 . . . . . 6 (𝑥 ∈ ℕ → 𝑥 ∈ ℝ+)
117116, 109sylan2 595 . . . . 5 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ ℕ) → ((log‘𝑥)↑2) ∈ ℝ)
118 reelprrecn 10618 . . . . . . . 8 ℝ ∈ {ℝ, ℂ}
119118a1i 11 . . . . . . 7 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → ℝ ∈ {ℝ, ℂ})
120106recnd 10658 . . . . . . 7 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → 𝑥 ∈ ℂ)
121 1red 10631 . . . . . . 7 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → 1 ∈ ℝ)
122 recn 10616 . . . . . . . . 9 (𝑥 ∈ ℝ → 𝑥 ∈ ℂ)
123122adantl 485 . . . . . . . 8 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ ℝ) → 𝑥 ∈ ℂ)
124 1red 10631 . . . . . . . 8 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ ℝ) → 1 ∈ ℝ)
125119dvmptid 24560 . . . . . . . 8 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → (ℝ D (𝑥 ∈ ℝ ↦ 𝑥)) = (𝑥 ∈ ℝ ↦ 1))
126 rpssre 12384 . . . . . . . . 9 + ⊆ ℝ
127126a1i 11 . . . . . . . 8 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → ℝ+ ⊆ ℝ)
128 eqid 2798 . . . . . . . . 9 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
129128tgioo2 23408 . . . . . . . 8 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
130 iooretop 23371 . . . . . . . . . 10 (0(,)+∞) ∈ (topGen‘ran (,))
13193, 130eqeltrri 2887 . . . . . . . . 9 + ∈ (topGen‘ran (,))
132131a1i 11 . . . . . . . 8 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → ℝ+ ∈ (topGen‘ran (,)))
133119, 123, 124, 125, 127, 129, 128, 132dvmptres 24566 . . . . . . 7 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → (ℝ D (𝑥 ∈ ℝ+𝑥)) = (𝑥 ∈ ℝ+ ↦ 1))
134114recnd 10658 . . . . . . 7 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → (((log‘𝑥)↑2) + (2 − (2 · (log‘𝑥)))) ∈ ℂ)
135 resubcl 10939 . . . . . . . . 9 (((2 · (log‘𝑥)) ∈ ℝ ∧ 2 ∈ ℝ) → ((2 · (log‘𝑥)) − 2) ∈ ℝ)
136111, 13, 135sylancl 589 . . . . . . . 8 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → ((2 · (log‘𝑥)) − 2) ∈ ℝ)
137136, 107rerpdivcld 12450 . . . . . . 7 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → (((2 · (log‘𝑥)) − 2) / 𝑥) ∈ ℝ)
138109recnd 10658 . . . . . . . . 9 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → ((log‘𝑥)↑2) ∈ ℂ)
139111recnd 10658 . . . . . . . . . 10 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → (2 · (log‘𝑥)) ∈ ℂ)
140107rpreccld 12429 . . . . . . . . . . 11 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → (1 / 𝑥) ∈ ℝ+)
141140rpcnd 12421 . . . . . . . . . 10 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → (1 / 𝑥) ∈ ℂ)
142139, 141mulcld 10650 . . . . . . . . 9 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → ((2 · (log‘𝑥)) · (1 / 𝑥)) ∈ ℂ)
143 cnelprrecn 10619 . . . . . . . . . . 11 ℂ ∈ {ℝ, ℂ}
144143a1i 11 . . . . . . . . . 10 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → ℂ ∈ {ℝ, ℂ})
145108recnd 10658 . . . . . . . . . 10 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → (log‘𝑥) ∈ ℂ)
146 sqcl 13480 . . . . . . . . . . 11 (𝑦 ∈ ℂ → (𝑦↑2) ∈ ℂ)
147146adantl 485 . . . . . . . . . 10 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ 𝑦 ∈ ℂ) → (𝑦↑2) ∈ ℂ)
148 simpr 488 . . . . . . . . . . 11 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ 𝑦 ∈ ℂ) → 𝑦 ∈ ℂ)
149 mulcl 10610 . . . . . . . . . . 11 ((2 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (2 · 𝑦) ∈ ℂ)
15025, 148, 149sylancr 590 . . . . . . . . . 10 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ 𝑦 ∈ ℂ) → (2 · 𝑦) ∈ ℂ)
151 dvrelog 25228 . . . . . . . . . . 11 (ℝ D (log ↾ ℝ+)) = (𝑥 ∈ ℝ+ ↦ (1 / 𝑥))
152 relogf1o 25158 . . . . . . . . . . . . . . 15 (log ↾ ℝ+):ℝ+1-1-onto→ℝ
153 f1of 6590 . . . . . . . . . . . . . . 15 ((log ↾ ℝ+):ℝ+1-1-onto→ℝ → (log ↾ ℝ+):ℝ+⟶ℝ)
154152, 153mp1i 13 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → (log ↾ ℝ+):ℝ+⟶ℝ)
155154feqmptd 6708 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → (log ↾ ℝ+) = (𝑥 ∈ ℝ+ ↦ ((log ↾ ℝ+)‘𝑥)))
156 fvres 6664 . . . . . . . . . . . . . 14 (𝑥 ∈ ℝ+ → ((log ↾ ℝ+)‘𝑥) = (log‘𝑥))
157156mpteq2ia 5121 . . . . . . . . . . . . 13 (𝑥 ∈ ℝ+ ↦ ((log ↾ ℝ+)‘𝑥)) = (𝑥 ∈ ℝ+ ↦ (log‘𝑥))
158155, 157eqtrdi 2849 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → (log ↾ ℝ+) = (𝑥 ∈ ℝ+ ↦ (log‘𝑥)))
159158oveq2d 7151 . . . . . . . . . . 11 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → (ℝ D (log ↾ ℝ+)) = (ℝ D (𝑥 ∈ ℝ+ ↦ (log‘𝑥))))
160151, 159syl5reqr 2848 . . . . . . . . . 10 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → (ℝ D (𝑥 ∈ ℝ+ ↦ (log‘𝑥))) = (𝑥 ∈ ℝ+ ↦ (1 / 𝑥)))
161 2nn 11698 . . . . . . . . . . . 12 2 ∈ ℕ
162 dvexp 24556 . . . . . . . . . . . 12 (2 ∈ ℕ → (ℂ D (𝑦 ∈ ℂ ↦ (𝑦↑2))) = (𝑦 ∈ ℂ ↦ (2 · (𝑦↑(2 − 1)))))
163161, 162mp1i 13 . . . . . . . . . . 11 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → (ℂ D (𝑦 ∈ ℂ ↦ (𝑦↑2))) = (𝑦 ∈ ℂ ↦ (2 · (𝑦↑(2 − 1)))))
164 2m1e1 11751 . . . . . . . . . . . . . . 15 (2 − 1) = 1
165164oveq2i 7146 . . . . . . . . . . . . . 14 (𝑦↑(2 − 1)) = (𝑦↑1)
166 exp1 13431 . . . . . . . . . . . . . 14 (𝑦 ∈ ℂ → (𝑦↑1) = 𝑦)
167165, 166syl5eq 2845 . . . . . . . . . . . . 13 (𝑦 ∈ ℂ → (𝑦↑(2 − 1)) = 𝑦)
168167oveq2d 7151 . . . . . . . . . . . 12 (𝑦 ∈ ℂ → (2 · (𝑦↑(2 − 1))) = (2 · 𝑦))
169168mpteq2ia 5121 . . . . . . . . . . 11 (𝑦 ∈ ℂ ↦ (2 · (𝑦↑(2 − 1)))) = (𝑦 ∈ ℂ ↦ (2 · 𝑦))
170163, 169eqtrdi 2849 . . . . . . . . . 10 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → (ℂ D (𝑦 ∈ ℂ ↦ (𝑦↑2))) = (𝑦 ∈ ℂ ↦ (2 · 𝑦)))
171 oveq1 7142 . . . . . . . . . 10 (𝑦 = (log‘𝑥) → (𝑦↑2) = ((log‘𝑥)↑2))
172 oveq2 7143 . . . . . . . . . 10 (𝑦 = (log‘𝑥) → (2 · 𝑦) = (2 · (log‘𝑥)))
173119, 144, 145, 140, 147, 150, 160, 170, 171, 172dvmptco 24575 . . . . . . . . 9 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → (ℝ D (𝑥 ∈ ℝ+ ↦ ((log‘𝑥)↑2))) = (𝑥 ∈ ℝ+ ↦ ((2 · (log‘𝑥)) · (1 / 𝑥))))
174113recnd 10658 . . . . . . . . 9 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → (2 − (2 · (log‘𝑥))) ∈ ℂ)
175 ovexd 7170 . . . . . . . . 9 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → (0 − (2 · (1 / 𝑥))) ∈ V)
176 2cnd 11703 . . . . . . . . . 10 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → 2 ∈ ℂ)
177 0red 10633 . . . . . . . . . 10 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → 0 ∈ ℝ)
178 2cnd 11703 . . . . . . . . . . 11 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ ℝ) → 2 ∈ ℂ)
179 0red 10633 . . . . . . . . . . 11 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ ℝ) → 0 ∈ ℝ)
180 2cnd 11703 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → 2 ∈ ℂ)
181119, 180dvmptc 24561 . . . . . . . . . . 11 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → (ℝ D (𝑥 ∈ ℝ ↦ 2)) = (𝑥 ∈ ℝ ↦ 0))
182119, 178, 179, 181, 127, 129, 128, 132dvmptres 24566 . . . . . . . . . 10 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → (ℝ D (𝑥 ∈ ℝ+ ↦ 2)) = (𝑥 ∈ ℝ+ ↦ 0))
183 mulcl 10610 . . . . . . . . . . 11 ((2 ∈ ℂ ∧ (1 / 𝑥) ∈ ℂ) → (2 · (1 / 𝑥)) ∈ ℂ)
18425, 141, 183sylancr 590 . . . . . . . . . 10 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → (2 · (1 / 𝑥)) ∈ ℂ)
185119, 145, 140, 160, 180dvmptcmul 24567 . . . . . . . . . 10 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → (ℝ D (𝑥 ∈ ℝ+ ↦ (2 · (log‘𝑥)))) = (𝑥 ∈ ℝ+ ↦ (2 · (1 / 𝑥))))
186119, 176, 177, 182, 139, 184, 185dvmptsub 24570 . . . . . . . . 9 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → (ℝ D (𝑥 ∈ ℝ+ ↦ (2 − (2 · (log‘𝑥))))) = (𝑥 ∈ ℝ+ ↦ (0 − (2 · (1 / 𝑥)))))
187119, 138, 142, 173, 174, 175, 186dvmptadd 24563 . . . . . . . 8 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → (ℝ D (𝑥 ∈ ℝ+ ↦ (((log‘𝑥)↑2) + (2 − (2 · (log‘𝑥)))))) = (𝑥 ∈ ℝ+ ↦ (((2 · (log‘𝑥)) · (1 / 𝑥)) + (0 − (2 · (1 / 𝑥))))))
188139, 176, 141subdird 11086 . . . . . . . . . 10 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → (((2 · (log‘𝑥)) − 2) · (1 / 𝑥)) = (((2 · (log‘𝑥)) · (1 / 𝑥)) − (2 · (1 / 𝑥))))
189136recnd 10658 . . . . . . . . . . 11 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → ((2 · (log‘𝑥)) − 2) ∈ ℂ)
190 rpne0 12393 . . . . . . . . . . . 12 (𝑥 ∈ ℝ+𝑥 ≠ 0)
191190adantl 485 . . . . . . . . . . 11 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → 𝑥 ≠ 0)
192189, 120, 191divrecd 11408 . . . . . . . . . 10 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → (((2 · (log‘𝑥)) − 2) / 𝑥) = (((2 · (log‘𝑥)) − 2) · (1 / 𝑥)))
193 df-neg 10862 . . . . . . . . . . . 12 -(2 · (1 / 𝑥)) = (0 − (2 · (1 / 𝑥)))
194193oveq2i 7146 . . . . . . . . . . 11 (((2 · (log‘𝑥)) · (1 / 𝑥)) + -(2 · (1 / 𝑥))) = (((2 · (log‘𝑥)) · (1 / 𝑥)) + (0 − (2 · (1 / 𝑥))))
195142, 184negsubd 10992 . . . . . . . . . . 11 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → (((2 · (log‘𝑥)) · (1 / 𝑥)) + -(2 · (1 / 𝑥))) = (((2 · (log‘𝑥)) · (1 / 𝑥)) − (2 · (1 / 𝑥))))
196194, 195syl5eqr 2847 . . . . . . . . . 10 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → (((2 · (log‘𝑥)) · (1 / 𝑥)) + (0 − (2 · (1 / 𝑥)))) = (((2 · (log‘𝑥)) · (1 / 𝑥)) − (2 · (1 / 𝑥))))
197188, 192, 1963eqtr4rd 2844 . . . . . . . . 9 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → (((2 · (log‘𝑥)) · (1 / 𝑥)) + (0 − (2 · (1 / 𝑥)))) = (((2 · (log‘𝑥)) − 2) / 𝑥))
198197mpteq2dva 5125 . . . . . . . 8 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → (𝑥 ∈ ℝ+ ↦ (((2 · (log‘𝑥)) · (1 / 𝑥)) + (0 − (2 · (1 / 𝑥))))) = (𝑥 ∈ ℝ+ ↦ (((2 · (log‘𝑥)) − 2) / 𝑥)))
199187, 198eqtrd 2833 . . . . . . 7 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → (ℝ D (𝑥 ∈ ℝ+ ↦ (((log‘𝑥)↑2) + (2 − (2 · (log‘𝑥)))))) = (𝑥 ∈ ℝ+ ↦ (((2 · (log‘𝑥)) − 2) / 𝑥)))
200119, 120, 121, 133, 134, 137, 199dvmptmul 24564 . . . . . 6 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → (ℝ D (𝑥 ∈ ℝ+ ↦ (𝑥 · (((log‘𝑥)↑2) + (2 − (2 · (log‘𝑥))))))) = (𝑥 ∈ ℝ+ ↦ ((1 · (((log‘𝑥)↑2) + (2 − (2 · (log‘𝑥))))) + ((((2 · (log‘𝑥)) − 2) / 𝑥) · 𝑥))))
201134mulid2d 10648 . . . . . . . . . 10 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → (1 · (((log‘𝑥)↑2) + (2 − (2 · (log‘𝑥))))) = (((log‘𝑥)↑2) + (2 − (2 · (log‘𝑥)))))
202138, 139, 176subsub2d 11015 . . . . . . . . . 10 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → (((log‘𝑥)↑2) − ((2 · (log‘𝑥)) − 2)) = (((log‘𝑥)↑2) + (2 − (2 · (log‘𝑥)))))
203201, 202eqtr4d 2836 . . . . . . . . 9 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → (1 · (((log‘𝑥)↑2) + (2 − (2 · (log‘𝑥))))) = (((log‘𝑥)↑2) − ((2 · (log‘𝑥)) − 2)))
204189, 120, 191divcan1d 11406 . . . . . . . . 9 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → ((((2 · (log‘𝑥)) − 2) / 𝑥) · 𝑥) = ((2 · (log‘𝑥)) − 2))
205203, 204oveq12d 7153 . . . . . . . 8 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → ((1 · (((log‘𝑥)↑2) + (2 − (2 · (log‘𝑥))))) + ((((2 · (log‘𝑥)) − 2) / 𝑥) · 𝑥)) = ((((log‘𝑥)↑2) − ((2 · (log‘𝑥)) − 2)) + ((2 · (log‘𝑥)) − 2)))
206138, 189npcand 10990 . . . . . . . 8 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → ((((log‘𝑥)↑2) − ((2 · (log‘𝑥)) − 2)) + ((2 · (log‘𝑥)) − 2)) = ((log‘𝑥)↑2))
207205, 206eqtrd 2833 . . . . . . 7 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → ((1 · (((log‘𝑥)↑2) + (2 − (2 · (log‘𝑥))))) + ((((2 · (log‘𝑥)) − 2) / 𝑥) · 𝑥)) = ((log‘𝑥)↑2))
208207mpteq2dva 5125 . . . . . 6 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → (𝑥 ∈ ℝ+ ↦ ((1 · (((log‘𝑥)↑2) + (2 − (2 · (log‘𝑥))))) + ((((2 · (log‘𝑥)) − 2) / 𝑥) · 𝑥))) = (𝑥 ∈ ℝ+ ↦ ((log‘𝑥)↑2)))
209200, 208eqtrd 2833 . . . . 5 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → (ℝ D (𝑥 ∈ ℝ+ ↦ (𝑥 · (((log‘𝑥)↑2) + (2 − (2 · (log‘𝑥))))))) = (𝑥 ∈ ℝ+ ↦ ((log‘𝑥)↑2)))
210 fveq2 6645 . . . . . 6 (𝑥 = 𝑛 → (log‘𝑥) = (log‘𝑛))
211210oveq1d 7150 . . . . 5 (𝑥 = 𝑛 → ((log‘𝑥)↑2) = ((log‘𝑛)↑2))
212 simp32 1207 . . . . . . 7 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ (𝑥 ∈ ℝ+𝑛 ∈ ℝ+) ∧ (1 ≤ 𝑥𝑥𝑛𝑛 ≤ +∞)) → 𝑥𝑛)
213 simp2l 1196 . . . . . . . 8 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ (𝑥 ∈ ℝ+𝑛 ∈ ℝ+) ∧ (1 ≤ 𝑥𝑥𝑛𝑛 ≤ +∞)) → 𝑥 ∈ ℝ+)
214 simp2r 1197 . . . . . . . 8 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ (𝑥 ∈ ℝ+𝑛 ∈ ℝ+) ∧ (1 ≤ 𝑥𝑥𝑛𝑛 ≤ +∞)) → 𝑛 ∈ ℝ+)
215213, 214logled 25218 . . . . . . 7 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ (𝑥 ∈ ℝ+𝑛 ∈ ℝ+) ∧ (1 ≤ 𝑥𝑥𝑛𝑛 ≤ +∞)) → (𝑥𝑛 ↔ (log‘𝑥) ≤ (log‘𝑛)))
216212, 215mpbid 235 . . . . . 6 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ (𝑥 ∈ ℝ+𝑛 ∈ ℝ+) ∧ (1 ≤ 𝑥𝑥𝑛𝑛 ≤ +∞)) → (log‘𝑥) ≤ (log‘𝑛))
217213relogcld 25214 . . . . . . 7 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ (𝑥 ∈ ℝ+𝑛 ∈ ℝ+) ∧ (1 ≤ 𝑥𝑥𝑛𝑛 ≤ +∞)) → (log‘𝑥) ∈ ℝ)
218214relogcld 25214 . . . . . . 7 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ (𝑥 ∈ ℝ+𝑛 ∈ ℝ+) ∧ (1 ≤ 𝑥𝑥𝑛𝑛 ≤ +∞)) → (log‘𝑛) ∈ ℝ)
219 simp31 1206 . . . . . . . . 9 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ (𝑥 ∈ ℝ+𝑛 ∈ ℝ+) ∧ (1 ≤ 𝑥𝑥𝑛𝑛 ≤ +∞)) → 1 ≤ 𝑥)
220 logleb 25194 . . . . . . . . . 10 ((1 ∈ ℝ+𝑥 ∈ ℝ+) → (1 ≤ 𝑥 ↔ (log‘1) ≤ (log‘𝑥)))
22154, 213, 220sylancr 590 . . . . . . . . 9 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ (𝑥 ∈ ℝ+𝑛 ∈ ℝ+) ∧ (1 ≤ 𝑥𝑥𝑛𝑛 ≤ +∞)) → (1 ≤ 𝑥 ↔ (log‘1) ≤ (log‘𝑥)))
222219, 221mpbid 235 . . . . . . . 8 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ (𝑥 ∈ ℝ+𝑛 ∈ ℝ+) ∧ (1 ≤ 𝑥𝑥𝑛𝑛 ≤ +∞)) → (log‘1) ≤ (log‘𝑥))
22364, 222eqbrtrrid 5066 . . . . . . 7 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ (𝑥 ∈ ℝ+𝑛 ∈ ℝ+) ∧ (1 ≤ 𝑥𝑥𝑛𝑛 ≤ +∞)) → 0 ≤ (log‘𝑥))
224214rpred 12419 . . . . . . . 8 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ (𝑥 ∈ ℝ+𝑛 ∈ ℝ+) ∧ (1 ≤ 𝑥𝑥𝑛𝑛 ≤ +∞)) → 𝑛 ∈ ℝ)
225 1red 10631 . . . . . . . . 9 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ (𝑥 ∈ ℝ+𝑛 ∈ ℝ+) ∧ (1 ≤ 𝑥𝑥𝑛𝑛 ≤ +∞)) → 1 ∈ ℝ)
226213rpred 12419 . . . . . . . . 9 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ (𝑥 ∈ ℝ+𝑛 ∈ ℝ+) ∧ (1 ≤ 𝑥𝑥𝑛𝑛 ≤ +∞)) → 𝑥 ∈ ℝ)
227225, 226, 224, 219, 212letrd 10786 . . . . . . . 8 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ (𝑥 ∈ ℝ+𝑛 ∈ ℝ+) ∧ (1 ≤ 𝑥𝑥𝑛𝑛 ≤ +∞)) → 1 ≤ 𝑛)
228224, 227logge0d 25221 . . . . . . 7 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ (𝑥 ∈ ℝ+𝑛 ∈ ℝ+) ∧ (1 ≤ 𝑥𝑥𝑛𝑛 ≤ +∞)) → 0 ≤ (log‘𝑛))
229217, 218, 223, 228le2sqd 13616 . . . . . 6 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ (𝑥 ∈ ℝ+𝑛 ∈ ℝ+) ∧ (1 ≤ 𝑥𝑥𝑛𝑛 ≤ +∞)) → ((log‘𝑥) ≤ (log‘𝑛) ↔ ((log‘𝑥)↑2) ≤ ((log‘𝑛)↑2)))
230216, 229mpbid 235 . . . . 5 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ (𝑥 ∈ ℝ+𝑛 ∈ ℝ+) ∧ (1 ≤ 𝑥𝑥𝑛𝑛 ≤ +∞)) → ((log‘𝑥)↑2) ≤ ((log‘𝑛)↑2))
231 relogcl 25167 . . . . . . 7 (𝑥 ∈ ℝ+ → (log‘𝑥) ∈ ℝ)
232231ad2antrl 727 . . . . . 6 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (log‘𝑥) ∈ ℝ)
233232sqge0d 13608 . . . . 5 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 0 ≤ ((log‘𝑥)↑2))
23454a1i 11 . . . . 5 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → 1 ∈ ℝ+)
235 simpl 486 . . . . 5 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → 𝐴 ∈ ℝ+)
236 1le1 11257 . . . . . 6 1 ≤ 1
237236a1i 11 . . . . 5 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → 1 ≤ 1)
238 simpr 488 . . . . 5 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → 1 ≤ 𝐴)
2399rexrd 10680 . . . . . 6 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → 𝐴 ∈ ℝ*)
240 pnfge 12513 . . . . . 6 (𝐴 ∈ ℝ*𝐴 ≤ +∞)
241239, 240syl 17 . . . . 5 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → 𝐴 ≤ +∞)
24294, 95, 96, 97, 99, 103, 104, 115, 109, 117, 209, 211, 230, 50, 233, 234, 235, 237, 238, 241, 44dvfsum2 24637 . . . 4 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → (abs‘(((𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘𝑛)↑2) − (𝑥 · (((log‘𝑥)↑2) + (2 − (2 · (log‘𝑥)))))))‘𝐴) − ((𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘𝑛)↑2) − (𝑥 · (((log‘𝑥)↑2) + (2 − (2 · (log‘𝑥)))))))‘1))) ≤ ((log‘𝐴)↑2))
24392, 242eqbrtrrd 5054 . . 3 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → (abs‘((Σ𝑛 ∈ (1...(⌊‘𝐴))((log‘𝑛)↑2) − (𝐴 · (((log‘𝐴)↑2) + (2 − (2 · (log‘𝐴)))))) − -2)) ≤ ((log‘𝐴)↑2))
24424, 29, 12, 38, 243letrd 10786 . 2 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → ((abs‘(Σ𝑛 ∈ (1...(⌊‘𝐴))((log‘𝑛)↑2) − (𝐴 · (((log‘𝐴)↑2) + (2 − (2 · (log‘𝐴))))))) − 2) ≤ ((log‘𝐴)↑2))
24513a1i 11 . . 3 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → 2 ∈ ℝ)
24622, 245, 12lesubaddd 11226 . 2 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → (((abs‘(Σ𝑛 ∈ (1...(⌊‘𝐴))((log‘𝑛)↑2) − (𝐴 · (((log‘𝐴)↑2) + (2 − (2 · (log‘𝐴))))))) − 2) ≤ ((log‘𝐴)↑2) ↔ (abs‘(Σ𝑛 ∈ (1...(⌊‘𝐴))((log‘𝑛)↑2) − (𝐴 · (((log‘𝐴)↑2) + (2 − (2 · (log‘𝐴))))))) ≤ (((log‘𝐴)↑2) + 2)))
247244, 246mpbid 235 1 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → (abs‘(Σ𝑛 ∈ (1...(⌊‘𝐴))((log‘𝑛)↑2) − (𝐴 · (((log‘𝐴)↑2) + (2 − (2 · (log‘𝐴))))))) ≤ (((log‘𝐴)↑2) + 2))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2111  wne 2987  Vcvv 3441  wss 3881  {cpr 4527   class class class wbr 5030  cmpt 5110  ran crn 5520  cres 5521  wf 6320  1-1-ontowf1o 6323  cfv 6324  (class class class)co 7135  cc 10524  cr 10525  0cc0 10526  1c1 10527   + caddc 10529   · cmul 10531  +∞cpnf 10661  *cxr 10663  cle 10665  cmin 10859  -cneg 10860   / cdiv 11286  cn 11625  2c2 11680  cz 11969  +crp 12377  (,)cioo 12726  ...cfz 12885  cfl 13155  cexp 13425  abscabs 14585  Σcsu 15034  TopOpenctopn 16687  topGenctg 16703  fldccnfld 20091   D cdv 24466  logclog 25146
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-inf2 9088  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604  ax-addf 10605  ax-mulf 10606
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-iin 4884  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-of 7389  df-om 7561  df-1st 7671  df-2nd 7672  df-supp 7814  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-2o 8086  df-oadd 8089  df-er 8272  df-map 8391  df-pm 8392  df-ixp 8445  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-fsupp 8818  df-fi 8859  df-sup 8890  df-inf 8891  df-oi 8958  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-uz 12232  df-q 12337  df-rp 12378  df-xneg 12495  df-xadd 12496  df-xmul 12497  df-ioo 12730  df-ioc 12731  df-ico 12732  df-icc 12733  df-fz 12886  df-fzo 13029  df-fl 13157  df-mod 13233  df-seq 13365  df-exp 13426  df-fac 13630  df-bc 13659  df-hash 13687  df-shft 14418  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-limsup 14820  df-clim 14837  df-rlim 14838  df-sum 15035  df-ef 15413  df-sin 15415  df-cos 15416  df-pi 15418  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-starv 16572  df-sca 16573  df-vsca 16574  df-ip 16575  df-tset 16576  df-ple 16577  df-ds 16579  df-unif 16580  df-hom 16581  df-cco 16582  df-rest 16688  df-topn 16689  df-0g 16707  df-gsum 16708  df-topgen 16709  df-pt 16710  df-prds 16713  df-xrs 16767  df-qtop 16772  df-imas 16773  df-xps 16775  df-mre 16849  df-mrc 16850  df-acs 16852  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-submnd 17949  df-mulg 18217  df-cntz 18439  df-cmn 18900  df-psmet 20083  df-xmet 20084  df-met 20085  df-bl 20086  df-mopn 20087  df-fbas 20088  df-fg 20089  df-cnfld 20092  df-top 21499  df-topon 21516  df-topsp 21538  df-bases 21551  df-cld 21624  df-ntr 21625  df-cls 21626  df-nei 21703  df-lp 21741  df-perf 21742  df-cn 21832  df-cnp 21833  df-haus 21920  df-cmp 21992  df-tx 22167  df-hmeo 22360  df-fil 22451  df-fm 22543  df-flim 22544  df-flf 22545  df-xms 22927  df-ms 22928  df-tms 22929  df-cncf 23483  df-limc 24469  df-dv 24470  df-log 25148
This theorem is referenced by:  selberglem2  26130
  Copyright terms: Public domain W3C validator