MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  log2sumbnd Structured version   Visualization version   GIF version

Theorem log2sumbnd 26047
Description: Bound on the difference between Σ𝑛𝐴, log↑2(𝑛) and the equivalent integral. (Contributed by Mario Carneiro, 20-May-2016.)
Assertion
Ref Expression
log2sumbnd ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → (abs‘(Σ𝑛 ∈ (1...(⌊‘𝐴))((log‘𝑛)↑2) − (𝐴 · (((log‘𝐴)↑2) + (2 − (2 · (log‘𝐴))))))) ≤ (((log‘𝐴)↑2) + 2))
Distinct variable group:   𝐴,𝑛

Proof of Theorem log2sumbnd
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fzfid 13329 . . . . . . . 8 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → (1...(⌊‘𝐴)) ∈ Fin)
2 elfznn 12924 . . . . . . . . . . . 12 (𝑛 ∈ (1...(⌊‘𝐴)) → 𝑛 ∈ ℕ)
32adantl 482 . . . . . . . . . . 11 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ 𝑛 ∈ (1...(⌊‘𝐴))) → 𝑛 ∈ ℕ)
43nnrpd 12417 . . . . . . . . . 10 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ 𝑛 ∈ (1...(⌊‘𝐴))) → 𝑛 ∈ ℝ+)
54relogcld 25133 . . . . . . . . 9 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ 𝑛 ∈ (1...(⌊‘𝐴))) → (log‘𝑛) ∈ ℝ)
65resqcld 13599 . . . . . . . 8 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ 𝑛 ∈ (1...(⌊‘𝐴))) → ((log‘𝑛)↑2) ∈ ℝ)
71, 6fsumrecl 15079 . . . . . . 7 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → Σ𝑛 ∈ (1...(⌊‘𝐴))((log‘𝑛)↑2) ∈ ℝ)
8 rpre 12385 . . . . . . . . 9 (𝐴 ∈ ℝ+𝐴 ∈ ℝ)
98adantr 481 . . . . . . . 8 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → 𝐴 ∈ ℝ)
10 relogcl 25086 . . . . . . . . . . 11 (𝐴 ∈ ℝ+ → (log‘𝐴) ∈ ℝ)
1110adantr 481 . . . . . . . . . 10 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → (log‘𝐴) ∈ ℝ)
1211resqcld 13599 . . . . . . . . 9 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → ((log‘𝐴)↑2) ∈ ℝ)
13 2re 11699 . . . . . . . . . 10 2 ∈ ℝ
14 remulcl 10610 . . . . . . . . . . 11 ((2 ∈ ℝ ∧ (log‘𝐴) ∈ ℝ) → (2 · (log‘𝐴)) ∈ ℝ)
1513, 11, 14sylancr 587 . . . . . . . . . 10 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → (2 · (log‘𝐴)) ∈ ℝ)
16 resubcl 10938 . . . . . . . . . 10 ((2 ∈ ℝ ∧ (2 · (log‘𝐴)) ∈ ℝ) → (2 − (2 · (log‘𝐴))) ∈ ℝ)
1713, 15, 16sylancr 587 . . . . . . . . 9 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → (2 − (2 · (log‘𝐴))) ∈ ℝ)
1812, 17readdcld 10658 . . . . . . . 8 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → (((log‘𝐴)↑2) + (2 − (2 · (log‘𝐴)))) ∈ ℝ)
199, 18remulcld 10659 . . . . . . 7 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → (𝐴 · (((log‘𝐴)↑2) + (2 − (2 · (log‘𝐴))))) ∈ ℝ)
207, 19resubcld 11056 . . . . . 6 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → (Σ𝑛 ∈ (1...(⌊‘𝐴))((log‘𝑛)↑2) − (𝐴 · (((log‘𝐴)↑2) + (2 − (2 · (log‘𝐴)))))) ∈ ℝ)
2120recnd 10657 . . . . 5 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → (Σ𝑛 ∈ (1...(⌊‘𝐴))((log‘𝑛)↑2) − (𝐴 · (((log‘𝐴)↑2) + (2 − (2 · (log‘𝐴)))))) ∈ ℂ)
2221abscld 14784 . . . 4 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → (abs‘(Σ𝑛 ∈ (1...(⌊‘𝐴))((log‘𝑛)↑2) − (𝐴 · (((log‘𝐴)↑2) + (2 − (2 · (log‘𝐴))))))) ∈ ℝ)
23 resubcl 10938 . . . 4 (((abs‘(Σ𝑛 ∈ (1...(⌊‘𝐴))((log‘𝑛)↑2) − (𝐴 · (((log‘𝐴)↑2) + (2 − (2 · (log‘𝐴))))))) ∈ ℝ ∧ 2 ∈ ℝ) → ((abs‘(Σ𝑛 ∈ (1...(⌊‘𝐴))((log‘𝑛)↑2) − (𝐴 · (((log‘𝐴)↑2) + (2 − (2 · (log‘𝐴))))))) − 2) ∈ ℝ)
2422, 13, 23sylancl 586 . . 3 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → ((abs‘(Σ𝑛 ∈ (1...(⌊‘𝐴))((log‘𝑛)↑2) − (𝐴 · (((log‘𝐴)↑2) + (2 − (2 · (log‘𝐴))))))) − 2) ∈ ℝ)
25 2cn 11700 . . . . . 6 2 ∈ ℂ
2625negcli 10942 . . . . 5 -2 ∈ ℂ
27 subcl 10873 . . . . 5 (((Σ𝑛 ∈ (1...(⌊‘𝐴))((log‘𝑛)↑2) − (𝐴 · (((log‘𝐴)↑2) + (2 − (2 · (log‘𝐴)))))) ∈ ℂ ∧ -2 ∈ ℂ) → ((Σ𝑛 ∈ (1...(⌊‘𝐴))((log‘𝑛)↑2) − (𝐴 · (((log‘𝐴)↑2) + (2 − (2 · (log‘𝐴)))))) − -2) ∈ ℂ)
2821, 26, 27sylancl 586 . . . 4 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → ((Σ𝑛 ∈ (1...(⌊‘𝐴))((log‘𝑛)↑2) − (𝐴 · (((log‘𝐴)↑2) + (2 − (2 · (log‘𝐴)))))) − -2) ∈ ℂ)
2928abscld 14784 . . 3 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → (abs‘((Σ𝑛 ∈ (1...(⌊‘𝐴))((log‘𝑛)↑2) − (𝐴 · (((log‘𝐴)↑2) + (2 − (2 · (log‘𝐴)))))) − -2)) ∈ ℝ)
3025absnegi 14748 . . . . . 6 (abs‘-2) = (abs‘2)
31 0le2 11727 . . . . . . 7 0 ≤ 2
32 absid 14644 . . . . . . 7 ((2 ∈ ℝ ∧ 0 ≤ 2) → (abs‘2) = 2)
3313, 31, 32mp2an 688 . . . . . 6 (abs‘2) = 2
3430, 33eqtri 2841 . . . . 5 (abs‘-2) = 2
3534oveq2i 7156 . . . 4 ((abs‘(Σ𝑛 ∈ (1...(⌊‘𝐴))((log‘𝑛)↑2) − (𝐴 · (((log‘𝐴)↑2) + (2 − (2 · (log‘𝐴))))))) − (abs‘-2)) = ((abs‘(Σ𝑛 ∈ (1...(⌊‘𝐴))((log‘𝑛)↑2) − (𝐴 · (((log‘𝐴)↑2) + (2 − (2 · (log‘𝐴))))))) − 2)
36 abs2dif 14680 . . . . 5 (((Σ𝑛 ∈ (1...(⌊‘𝐴))((log‘𝑛)↑2) − (𝐴 · (((log‘𝐴)↑2) + (2 − (2 · (log‘𝐴)))))) ∈ ℂ ∧ -2 ∈ ℂ) → ((abs‘(Σ𝑛 ∈ (1...(⌊‘𝐴))((log‘𝑛)↑2) − (𝐴 · (((log‘𝐴)↑2) + (2 − (2 · (log‘𝐴))))))) − (abs‘-2)) ≤ (abs‘((Σ𝑛 ∈ (1...(⌊‘𝐴))((log‘𝑛)↑2) − (𝐴 · (((log‘𝐴)↑2) + (2 − (2 · (log‘𝐴)))))) − -2)))
3721, 26, 36sylancl 586 . . . 4 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → ((abs‘(Σ𝑛 ∈ (1...(⌊‘𝐴))((log‘𝑛)↑2) − (𝐴 · (((log‘𝐴)↑2) + (2 − (2 · (log‘𝐴))))))) − (abs‘-2)) ≤ (abs‘((Σ𝑛 ∈ (1...(⌊‘𝐴))((log‘𝑛)↑2) − (𝐴 · (((log‘𝐴)↑2) + (2 − (2 · (log‘𝐴)))))) − -2)))
3835, 37eqbrtrrid 5093 . . 3 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → ((abs‘(Σ𝑛 ∈ (1...(⌊‘𝐴))((log‘𝑛)↑2) − (𝐴 · (((log‘𝐴)↑2) + (2 − (2 · (log‘𝐴))))))) − 2) ≤ (abs‘((Σ𝑛 ∈ (1...(⌊‘𝐴))((log‘𝑛)↑2) − (𝐴 · (((log‘𝐴)↑2) + (2 − (2 · (log‘𝐴)))))) − -2)))
39 fveq2 6663 . . . . . . . . . . 11 (𝑥 = 𝐴 → (⌊‘𝑥) = (⌊‘𝐴))
4039oveq2d 7161 . . . . . . . . . 10 (𝑥 = 𝐴 → (1...(⌊‘𝑥)) = (1...(⌊‘𝐴)))
4140sumeq1d 15046 . . . . . . . . 9 (𝑥 = 𝐴 → Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘𝑛)↑2) = Σ𝑛 ∈ (1...(⌊‘𝐴))((log‘𝑛)↑2))
42 id 22 . . . . . . . . . 10 (𝑥 = 𝐴𝑥 = 𝐴)
43 fveq2 6663 . . . . . . . . . . . 12 (𝑥 = 𝐴 → (log‘𝑥) = (log‘𝐴))
4443oveq1d 7160 . . . . . . . . . . 11 (𝑥 = 𝐴 → ((log‘𝑥)↑2) = ((log‘𝐴)↑2))
4543oveq2d 7161 . . . . . . . . . . . 12 (𝑥 = 𝐴 → (2 · (log‘𝑥)) = (2 · (log‘𝐴)))
4645oveq2d 7161 . . . . . . . . . . 11 (𝑥 = 𝐴 → (2 − (2 · (log‘𝑥))) = (2 − (2 · (log‘𝐴))))
4744, 46oveq12d 7163 . . . . . . . . . 10 (𝑥 = 𝐴 → (((log‘𝑥)↑2) + (2 − (2 · (log‘𝑥)))) = (((log‘𝐴)↑2) + (2 − (2 · (log‘𝐴)))))
4842, 47oveq12d 7163 . . . . . . . . 9 (𝑥 = 𝐴 → (𝑥 · (((log‘𝑥)↑2) + (2 − (2 · (log‘𝑥))))) = (𝐴 · (((log‘𝐴)↑2) + (2 − (2 · (log‘𝐴))))))
4941, 48oveq12d 7163 . . . . . . . 8 (𝑥 = 𝐴 → (Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘𝑛)↑2) − (𝑥 · (((log‘𝑥)↑2) + (2 − (2 · (log‘𝑥)))))) = (Σ𝑛 ∈ (1...(⌊‘𝐴))((log‘𝑛)↑2) − (𝐴 · (((log‘𝐴)↑2) + (2 − (2 · (log‘𝐴)))))))
50 eqid 2818 . . . . . . . 8 (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘𝑛)↑2) − (𝑥 · (((log‘𝑥)↑2) + (2 − (2 · (log‘𝑥))))))) = (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘𝑛)↑2) − (𝑥 · (((log‘𝑥)↑2) + (2 − (2 · (log‘𝑥)))))))
51 ovex 7178 . . . . . . . 8 𝑛 ∈ (1...(⌊‘𝑥))((log‘𝑛)↑2) − (𝑥 · (((log‘𝑥)↑2) + (2 − (2 · (log‘𝑥)))))) ∈ V
5249, 50, 51fvmpt3i 6766 . . . . . . 7 (𝐴 ∈ ℝ+ → ((𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘𝑛)↑2) − (𝑥 · (((log‘𝑥)↑2) + (2 − (2 · (log‘𝑥)))))))‘𝐴) = (Σ𝑛 ∈ (1...(⌊‘𝐴))((log‘𝑛)↑2) − (𝐴 · (((log‘𝐴)↑2) + (2 − (2 · (log‘𝐴)))))))
5352adantr 481 . . . . . 6 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → ((𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘𝑛)↑2) − (𝑥 · (((log‘𝑥)↑2) + (2 − (2 · (log‘𝑥)))))))‘𝐴) = (Σ𝑛 ∈ (1...(⌊‘𝐴))((log‘𝑛)↑2) − (𝐴 · (((log‘𝐴)↑2) + (2 − (2 · (log‘𝐴)))))))
54 1rp 12381 . . . . . . 7 1 ∈ ℝ+
55 fveq2 6663 . . . . . . . . . . . . . 14 (𝑥 = 1 → (⌊‘𝑥) = (⌊‘1))
56 1z 12000 . . . . . . . . . . . . . . 15 1 ∈ ℤ
57 flid 13166 . . . . . . . . . . . . . . 15 (1 ∈ ℤ → (⌊‘1) = 1)
5856, 57ax-mp 5 . . . . . . . . . . . . . 14 (⌊‘1) = 1
5955, 58syl6eq 2869 . . . . . . . . . . . . 13 (𝑥 = 1 → (⌊‘𝑥) = 1)
6059oveq2d 7161 . . . . . . . . . . . 12 (𝑥 = 1 → (1...(⌊‘𝑥)) = (1...1))
6160sumeq1d 15046 . . . . . . . . . . 11 (𝑥 = 1 → Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘𝑛)↑2) = Σ𝑛 ∈ (1...1)((log‘𝑛)↑2))
62 0cn 10621 . . . . . . . . . . . 12 0 ∈ ℂ
63 fveq2 6663 . . . . . . . . . . . . . . 15 (𝑛 = 1 → (log‘𝑛) = (log‘1))
64 log1 25096 . . . . . . . . . . . . . . 15 (log‘1) = 0
6563, 64syl6eq 2869 . . . . . . . . . . . . . 14 (𝑛 = 1 → (log‘𝑛) = 0)
6665sq0id 13545 . . . . . . . . . . . . 13 (𝑛 = 1 → ((log‘𝑛)↑2) = 0)
6766fsum1 15090 . . . . . . . . . . . 12 ((1 ∈ ℤ ∧ 0 ∈ ℂ) → Σ𝑛 ∈ (1...1)((log‘𝑛)↑2) = 0)
6856, 62, 67mp2an 688 . . . . . . . . . . 11 Σ𝑛 ∈ (1...1)((log‘𝑛)↑2) = 0
6961, 68syl6eq 2869 . . . . . . . . . 10 (𝑥 = 1 → Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘𝑛)↑2) = 0)
70 id 22 . . . . . . . . . . . 12 (𝑥 = 1 → 𝑥 = 1)
71 fveq2 6663 . . . . . . . . . . . . . . . 16 (𝑥 = 1 → (log‘𝑥) = (log‘1))
7271, 64syl6eq 2869 . . . . . . . . . . . . . . 15 (𝑥 = 1 → (log‘𝑥) = 0)
7372sq0id 13545 . . . . . . . . . . . . . 14 (𝑥 = 1 → ((log‘𝑥)↑2) = 0)
7472oveq2d 7161 . . . . . . . . . . . . . . . . 17 (𝑥 = 1 → (2 · (log‘𝑥)) = (2 · 0))
75 2t0e0 11794 . . . . . . . . . . . . . . . . 17 (2 · 0) = 0
7674, 75syl6eq 2869 . . . . . . . . . . . . . . . 16 (𝑥 = 1 → (2 · (log‘𝑥)) = 0)
7776oveq2d 7161 . . . . . . . . . . . . . . 15 (𝑥 = 1 → (2 − (2 · (log‘𝑥))) = (2 − 0))
7825subid1i 10946 . . . . . . . . . . . . . . 15 (2 − 0) = 2
7977, 78syl6eq 2869 . . . . . . . . . . . . . 14 (𝑥 = 1 → (2 − (2 · (log‘𝑥))) = 2)
8073, 79oveq12d 7163 . . . . . . . . . . . . 13 (𝑥 = 1 → (((log‘𝑥)↑2) + (2 − (2 · (log‘𝑥)))) = (0 + 2))
8125addid2i 10816 . . . . . . . . . . . . 13 (0 + 2) = 2
8280, 81syl6eq 2869 . . . . . . . . . . . 12 (𝑥 = 1 → (((log‘𝑥)↑2) + (2 − (2 · (log‘𝑥)))) = 2)
8370, 82oveq12d 7163 . . . . . . . . . . 11 (𝑥 = 1 → (𝑥 · (((log‘𝑥)↑2) + (2 − (2 · (log‘𝑥))))) = (1 · 2))
8425mulid2i 10634 . . . . . . . . . . 11 (1 · 2) = 2
8583, 84syl6eq 2869 . . . . . . . . . 10 (𝑥 = 1 → (𝑥 · (((log‘𝑥)↑2) + (2 − (2 · (log‘𝑥))))) = 2)
8669, 85oveq12d 7163 . . . . . . . . 9 (𝑥 = 1 → (Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘𝑛)↑2) − (𝑥 · (((log‘𝑥)↑2) + (2 − (2 · (log‘𝑥)))))) = (0 − 2))
87 df-neg 10861 . . . . . . . . 9 -2 = (0 − 2)
8886, 87syl6eqr 2871 . . . . . . . 8 (𝑥 = 1 → (Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘𝑛)↑2) − (𝑥 · (((log‘𝑥)↑2) + (2 − (2 · (log‘𝑥)))))) = -2)
8988, 50, 51fvmpt3i 6766 . . . . . . 7 (1 ∈ ℝ+ → ((𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘𝑛)↑2) − (𝑥 · (((log‘𝑥)↑2) + (2 − (2 · (log‘𝑥)))))))‘1) = -2)
9054, 89mp1i 13 . . . . . 6 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → ((𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘𝑛)↑2) − (𝑥 · (((log‘𝑥)↑2) + (2 − (2 · (log‘𝑥)))))))‘1) = -2)
9153, 90oveq12d 7163 . . . . 5 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → (((𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘𝑛)↑2) − (𝑥 · (((log‘𝑥)↑2) + (2 − (2 · (log‘𝑥)))))))‘𝐴) − ((𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘𝑛)↑2) − (𝑥 · (((log‘𝑥)↑2) + (2 − (2 · (log‘𝑥)))))))‘1)) = ((Σ𝑛 ∈ (1...(⌊‘𝐴))((log‘𝑛)↑2) − (𝐴 · (((log‘𝐴)↑2) + (2 − (2 · (log‘𝐴)))))) − -2))
9291fveq2d 6667 . . . 4 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → (abs‘(((𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘𝑛)↑2) − (𝑥 · (((log‘𝑥)↑2) + (2 − (2 · (log‘𝑥)))))))‘𝐴) − ((𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘𝑛)↑2) − (𝑥 · (((log‘𝑥)↑2) + (2 − (2 · (log‘𝑥)))))))‘1))) = (abs‘((Σ𝑛 ∈ (1...(⌊‘𝐴))((log‘𝑛)↑2) − (𝐴 · (((log‘𝐴)↑2) + (2 − (2 · (log‘𝐴)))))) − -2)))
93 ioorp 12802 . . . . . 6 (0(,)+∞) = ℝ+
9493eqcomi 2827 . . . . 5 + = (0(,)+∞)
95 nnuz 12269 . . . . 5 ℕ = (ℤ‘1)
9656a1i 11 . . . . 5 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → 1 ∈ ℤ)
97 1red 10630 . . . . 5 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → 1 ∈ ℝ)
98 pnfxr 10683 . . . . . 6 +∞ ∈ ℝ*
9998a1i 11 . . . . 5 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → +∞ ∈ ℝ*)
100 1re 10629 . . . . . . 7 1 ∈ ℝ
101 1nn0 11901 . . . . . . 7 1 ∈ ℕ0
102100, 101nn0addge1i 11933 . . . . . 6 1 ≤ (1 + 1)
103102a1i 11 . . . . 5 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → 1 ≤ (1 + 1))
104 0red 10632 . . . . 5 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → 0 ∈ ℝ)
105 rpre 12385 . . . . . . 7 (𝑥 ∈ ℝ+𝑥 ∈ ℝ)
106105adantl 482 . . . . . 6 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → 𝑥 ∈ ℝ)
107 simpr 485 . . . . . . . . 9 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → 𝑥 ∈ ℝ+)
108107relogcld 25133 . . . . . . . 8 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → (log‘𝑥) ∈ ℝ)
109108resqcld 13599 . . . . . . 7 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → ((log‘𝑥)↑2) ∈ ℝ)
110 remulcl 10610 . . . . . . . . 9 ((2 ∈ ℝ ∧ (log‘𝑥) ∈ ℝ) → (2 · (log‘𝑥)) ∈ ℝ)
11113, 108, 110sylancr 587 . . . . . . . 8 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → (2 · (log‘𝑥)) ∈ ℝ)
112 resubcl 10938 . . . . . . . 8 ((2 ∈ ℝ ∧ (2 · (log‘𝑥)) ∈ ℝ) → (2 − (2 · (log‘𝑥))) ∈ ℝ)
11313, 111, 112sylancr 587 . . . . . . 7 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → (2 − (2 · (log‘𝑥))) ∈ ℝ)
114109, 113readdcld 10658 . . . . . 6 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → (((log‘𝑥)↑2) + (2 − (2 · (log‘𝑥)))) ∈ ℝ)
115106, 114remulcld 10659 . . . . 5 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → (𝑥 · (((log‘𝑥)↑2) + (2 − (2 · (log‘𝑥))))) ∈ ℝ)
116 nnrp 12388 . . . . . 6 (𝑥 ∈ ℕ → 𝑥 ∈ ℝ+)
117116, 109sylan2 592 . . . . 5 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ ℕ) → ((log‘𝑥)↑2) ∈ ℝ)
118 reelprrecn 10617 . . . . . . . 8 ℝ ∈ {ℝ, ℂ}
119118a1i 11 . . . . . . 7 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → ℝ ∈ {ℝ, ℂ})
120106recnd 10657 . . . . . . 7 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → 𝑥 ∈ ℂ)
121 1red 10630 . . . . . . 7 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → 1 ∈ ℝ)
122 recn 10615 . . . . . . . . 9 (𝑥 ∈ ℝ → 𝑥 ∈ ℂ)
123122adantl 482 . . . . . . . 8 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ ℝ) → 𝑥 ∈ ℂ)
124 1red 10630 . . . . . . . 8 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ ℝ) → 1 ∈ ℝ)
125119dvmptid 24481 . . . . . . . 8 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → (ℝ D (𝑥 ∈ ℝ ↦ 𝑥)) = (𝑥 ∈ ℝ ↦ 1))
126 rpssre 12384 . . . . . . . . 9 + ⊆ ℝ
127126a1i 11 . . . . . . . 8 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → ℝ+ ⊆ ℝ)
128 eqid 2818 . . . . . . . . 9 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
129128tgioo2 23338 . . . . . . . 8 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
130 iooretop 23301 . . . . . . . . . 10 (0(,)+∞) ∈ (topGen‘ran (,))
13193, 130eqeltrri 2907 . . . . . . . . 9 + ∈ (topGen‘ran (,))
132131a1i 11 . . . . . . . 8 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → ℝ+ ∈ (topGen‘ran (,)))
133119, 123, 124, 125, 127, 129, 128, 132dvmptres 24487 . . . . . . 7 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → (ℝ D (𝑥 ∈ ℝ+𝑥)) = (𝑥 ∈ ℝ+ ↦ 1))
134114recnd 10657 . . . . . . 7 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → (((log‘𝑥)↑2) + (2 − (2 · (log‘𝑥)))) ∈ ℂ)
135 resubcl 10938 . . . . . . . . 9 (((2 · (log‘𝑥)) ∈ ℝ ∧ 2 ∈ ℝ) → ((2 · (log‘𝑥)) − 2) ∈ ℝ)
136111, 13, 135sylancl 586 . . . . . . . 8 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → ((2 · (log‘𝑥)) − 2) ∈ ℝ)
137136, 107rerpdivcld 12450 . . . . . . 7 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → (((2 · (log‘𝑥)) − 2) / 𝑥) ∈ ℝ)
138109recnd 10657 . . . . . . . . 9 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → ((log‘𝑥)↑2) ∈ ℂ)
139111recnd 10657 . . . . . . . . . 10 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → (2 · (log‘𝑥)) ∈ ℂ)
140107rpreccld 12429 . . . . . . . . . . 11 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → (1 / 𝑥) ∈ ℝ+)
141140rpcnd 12421 . . . . . . . . . 10 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → (1 / 𝑥) ∈ ℂ)
142139, 141mulcld 10649 . . . . . . . . 9 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → ((2 · (log‘𝑥)) · (1 / 𝑥)) ∈ ℂ)
143 cnelprrecn 10618 . . . . . . . . . . 11 ℂ ∈ {ℝ, ℂ}
144143a1i 11 . . . . . . . . . 10 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → ℂ ∈ {ℝ, ℂ})
145108recnd 10657 . . . . . . . . . 10 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → (log‘𝑥) ∈ ℂ)
146 sqcl 13472 . . . . . . . . . . 11 (𝑦 ∈ ℂ → (𝑦↑2) ∈ ℂ)
147146adantl 482 . . . . . . . . . 10 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ 𝑦 ∈ ℂ) → (𝑦↑2) ∈ ℂ)
148 simpr 485 . . . . . . . . . . 11 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ 𝑦 ∈ ℂ) → 𝑦 ∈ ℂ)
149 mulcl 10609 . . . . . . . . . . 11 ((2 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (2 · 𝑦) ∈ ℂ)
15025, 148, 149sylancr 587 . . . . . . . . . 10 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ 𝑦 ∈ ℂ) → (2 · 𝑦) ∈ ℂ)
151 dvrelog 25147 . . . . . . . . . . 11 (ℝ D (log ↾ ℝ+)) = (𝑥 ∈ ℝ+ ↦ (1 / 𝑥))
152 relogf1o 25077 . . . . . . . . . . . . . . 15 (log ↾ ℝ+):ℝ+1-1-onto→ℝ
153 f1of 6608 . . . . . . . . . . . . . . 15 ((log ↾ ℝ+):ℝ+1-1-onto→ℝ → (log ↾ ℝ+):ℝ+⟶ℝ)
154152, 153mp1i 13 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → (log ↾ ℝ+):ℝ+⟶ℝ)
155154feqmptd 6726 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → (log ↾ ℝ+) = (𝑥 ∈ ℝ+ ↦ ((log ↾ ℝ+)‘𝑥)))
156 fvres 6682 . . . . . . . . . . . . . 14 (𝑥 ∈ ℝ+ → ((log ↾ ℝ+)‘𝑥) = (log‘𝑥))
157156mpteq2ia 5148 . . . . . . . . . . . . 13 (𝑥 ∈ ℝ+ ↦ ((log ↾ ℝ+)‘𝑥)) = (𝑥 ∈ ℝ+ ↦ (log‘𝑥))
158155, 157syl6eq 2869 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → (log ↾ ℝ+) = (𝑥 ∈ ℝ+ ↦ (log‘𝑥)))
159158oveq2d 7161 . . . . . . . . . . 11 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → (ℝ D (log ↾ ℝ+)) = (ℝ D (𝑥 ∈ ℝ+ ↦ (log‘𝑥))))
160151, 159syl5reqr 2868 . . . . . . . . . 10 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → (ℝ D (𝑥 ∈ ℝ+ ↦ (log‘𝑥))) = (𝑥 ∈ ℝ+ ↦ (1 / 𝑥)))
161 2nn 11698 . . . . . . . . . . . 12 2 ∈ ℕ
162 dvexp 24477 . . . . . . . . . . . 12 (2 ∈ ℕ → (ℂ D (𝑦 ∈ ℂ ↦ (𝑦↑2))) = (𝑦 ∈ ℂ ↦ (2 · (𝑦↑(2 − 1)))))
163161, 162mp1i 13 . . . . . . . . . . 11 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → (ℂ D (𝑦 ∈ ℂ ↦ (𝑦↑2))) = (𝑦 ∈ ℂ ↦ (2 · (𝑦↑(2 − 1)))))
164 2m1e1 11751 . . . . . . . . . . . . . . 15 (2 − 1) = 1
165164oveq2i 7156 . . . . . . . . . . . . . 14 (𝑦↑(2 − 1)) = (𝑦↑1)
166 exp1 13423 . . . . . . . . . . . . . 14 (𝑦 ∈ ℂ → (𝑦↑1) = 𝑦)
167165, 166syl5eq 2865 . . . . . . . . . . . . 13 (𝑦 ∈ ℂ → (𝑦↑(2 − 1)) = 𝑦)
168167oveq2d 7161 . . . . . . . . . . . 12 (𝑦 ∈ ℂ → (2 · (𝑦↑(2 − 1))) = (2 · 𝑦))
169168mpteq2ia 5148 . . . . . . . . . . 11 (𝑦 ∈ ℂ ↦ (2 · (𝑦↑(2 − 1)))) = (𝑦 ∈ ℂ ↦ (2 · 𝑦))
170163, 169syl6eq 2869 . . . . . . . . . 10 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → (ℂ D (𝑦 ∈ ℂ ↦ (𝑦↑2))) = (𝑦 ∈ ℂ ↦ (2 · 𝑦)))
171 oveq1 7152 . . . . . . . . . 10 (𝑦 = (log‘𝑥) → (𝑦↑2) = ((log‘𝑥)↑2))
172 oveq2 7153 . . . . . . . . . 10 (𝑦 = (log‘𝑥) → (2 · 𝑦) = (2 · (log‘𝑥)))
173119, 144, 145, 140, 147, 150, 160, 170, 171, 172dvmptco 24496 . . . . . . . . 9 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → (ℝ D (𝑥 ∈ ℝ+ ↦ ((log‘𝑥)↑2))) = (𝑥 ∈ ℝ+ ↦ ((2 · (log‘𝑥)) · (1 / 𝑥))))
174113recnd 10657 . . . . . . . . 9 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → (2 − (2 · (log‘𝑥))) ∈ ℂ)
175 ovexd 7180 . . . . . . . . 9 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → (0 − (2 · (1 / 𝑥))) ∈ V)
176 2cnd 11703 . . . . . . . . . 10 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → 2 ∈ ℂ)
177 0red 10632 . . . . . . . . . 10 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → 0 ∈ ℝ)
178 2cnd 11703 . . . . . . . . . . 11 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ ℝ) → 2 ∈ ℂ)
179 0red 10632 . . . . . . . . . . 11 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ ℝ) → 0 ∈ ℝ)
180 2cnd 11703 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → 2 ∈ ℂ)
181119, 180dvmptc 24482 . . . . . . . . . . 11 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → (ℝ D (𝑥 ∈ ℝ ↦ 2)) = (𝑥 ∈ ℝ ↦ 0))
182119, 178, 179, 181, 127, 129, 128, 132dvmptres 24487 . . . . . . . . . 10 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → (ℝ D (𝑥 ∈ ℝ+ ↦ 2)) = (𝑥 ∈ ℝ+ ↦ 0))
183 mulcl 10609 . . . . . . . . . . 11 ((2 ∈ ℂ ∧ (1 / 𝑥) ∈ ℂ) → (2 · (1 / 𝑥)) ∈ ℂ)
18425, 141, 183sylancr 587 . . . . . . . . . 10 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → (2 · (1 / 𝑥)) ∈ ℂ)
185119, 145, 140, 160, 180dvmptcmul 24488 . . . . . . . . . 10 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → (ℝ D (𝑥 ∈ ℝ+ ↦ (2 · (log‘𝑥)))) = (𝑥 ∈ ℝ+ ↦ (2 · (1 / 𝑥))))
186119, 176, 177, 182, 139, 184, 185dvmptsub 24491 . . . . . . . . 9 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → (ℝ D (𝑥 ∈ ℝ+ ↦ (2 − (2 · (log‘𝑥))))) = (𝑥 ∈ ℝ+ ↦ (0 − (2 · (1 / 𝑥)))))
187119, 138, 142, 173, 174, 175, 186dvmptadd 24484 . . . . . . . 8 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → (ℝ D (𝑥 ∈ ℝ+ ↦ (((log‘𝑥)↑2) + (2 − (2 · (log‘𝑥)))))) = (𝑥 ∈ ℝ+ ↦ (((2 · (log‘𝑥)) · (1 / 𝑥)) + (0 − (2 · (1 / 𝑥))))))
188139, 176, 141subdird 11085 . . . . . . . . . 10 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → (((2 · (log‘𝑥)) − 2) · (1 / 𝑥)) = (((2 · (log‘𝑥)) · (1 / 𝑥)) − (2 · (1 / 𝑥))))
189136recnd 10657 . . . . . . . . . . 11 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → ((2 · (log‘𝑥)) − 2) ∈ ℂ)
190 rpne0 12393 . . . . . . . . . . . 12 (𝑥 ∈ ℝ+𝑥 ≠ 0)
191190adantl 482 . . . . . . . . . . 11 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → 𝑥 ≠ 0)
192189, 120, 191divrecd 11407 . . . . . . . . . 10 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → (((2 · (log‘𝑥)) − 2) / 𝑥) = (((2 · (log‘𝑥)) − 2) · (1 / 𝑥)))
193 df-neg 10861 . . . . . . . . . . . 12 -(2 · (1 / 𝑥)) = (0 − (2 · (1 / 𝑥)))
194193oveq2i 7156 . . . . . . . . . . 11 (((2 · (log‘𝑥)) · (1 / 𝑥)) + -(2 · (1 / 𝑥))) = (((2 · (log‘𝑥)) · (1 / 𝑥)) + (0 − (2 · (1 / 𝑥))))
195142, 184negsubd 10991 . . . . . . . . . . 11 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → (((2 · (log‘𝑥)) · (1 / 𝑥)) + -(2 · (1 / 𝑥))) = (((2 · (log‘𝑥)) · (1 / 𝑥)) − (2 · (1 / 𝑥))))
196194, 195syl5eqr 2867 . . . . . . . . . 10 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → (((2 · (log‘𝑥)) · (1 / 𝑥)) + (0 − (2 · (1 / 𝑥)))) = (((2 · (log‘𝑥)) · (1 / 𝑥)) − (2 · (1 / 𝑥))))
197188, 192, 1963eqtr4rd 2864 . . . . . . . . 9 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → (((2 · (log‘𝑥)) · (1 / 𝑥)) + (0 − (2 · (1 / 𝑥)))) = (((2 · (log‘𝑥)) − 2) / 𝑥))
198197mpteq2dva 5152 . . . . . . . 8 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → (𝑥 ∈ ℝ+ ↦ (((2 · (log‘𝑥)) · (1 / 𝑥)) + (0 − (2 · (1 / 𝑥))))) = (𝑥 ∈ ℝ+ ↦ (((2 · (log‘𝑥)) − 2) / 𝑥)))
199187, 198eqtrd 2853 . . . . . . 7 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → (ℝ D (𝑥 ∈ ℝ+ ↦ (((log‘𝑥)↑2) + (2 − (2 · (log‘𝑥)))))) = (𝑥 ∈ ℝ+ ↦ (((2 · (log‘𝑥)) − 2) / 𝑥)))
200119, 120, 121, 133, 134, 137, 199dvmptmul 24485 . . . . . 6 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → (ℝ D (𝑥 ∈ ℝ+ ↦ (𝑥 · (((log‘𝑥)↑2) + (2 − (2 · (log‘𝑥))))))) = (𝑥 ∈ ℝ+ ↦ ((1 · (((log‘𝑥)↑2) + (2 − (2 · (log‘𝑥))))) + ((((2 · (log‘𝑥)) − 2) / 𝑥) · 𝑥))))
201134mulid2d 10647 . . . . . . . . . 10 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → (1 · (((log‘𝑥)↑2) + (2 − (2 · (log‘𝑥))))) = (((log‘𝑥)↑2) + (2 − (2 · (log‘𝑥)))))
202138, 139, 176subsub2d 11014 . . . . . . . . . 10 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → (((log‘𝑥)↑2) − ((2 · (log‘𝑥)) − 2)) = (((log‘𝑥)↑2) + (2 − (2 · (log‘𝑥)))))
203201, 202eqtr4d 2856 . . . . . . . . 9 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → (1 · (((log‘𝑥)↑2) + (2 − (2 · (log‘𝑥))))) = (((log‘𝑥)↑2) − ((2 · (log‘𝑥)) − 2)))
204189, 120, 191divcan1d 11405 . . . . . . . . 9 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → ((((2 · (log‘𝑥)) − 2) / 𝑥) · 𝑥) = ((2 · (log‘𝑥)) − 2))
205203, 204oveq12d 7163 . . . . . . . 8 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → ((1 · (((log‘𝑥)↑2) + (2 − (2 · (log‘𝑥))))) + ((((2 · (log‘𝑥)) − 2) / 𝑥) · 𝑥)) = ((((log‘𝑥)↑2) − ((2 · (log‘𝑥)) − 2)) + ((2 · (log‘𝑥)) − 2)))
206138, 189npcand 10989 . . . . . . . 8 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → ((((log‘𝑥)↑2) − ((2 · (log‘𝑥)) − 2)) + ((2 · (log‘𝑥)) − 2)) = ((log‘𝑥)↑2))
207205, 206eqtrd 2853 . . . . . . 7 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ 𝑥 ∈ ℝ+) → ((1 · (((log‘𝑥)↑2) + (2 − (2 · (log‘𝑥))))) + ((((2 · (log‘𝑥)) − 2) / 𝑥) · 𝑥)) = ((log‘𝑥)↑2))
208207mpteq2dva 5152 . . . . . 6 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → (𝑥 ∈ ℝ+ ↦ ((1 · (((log‘𝑥)↑2) + (2 − (2 · (log‘𝑥))))) + ((((2 · (log‘𝑥)) − 2) / 𝑥) · 𝑥))) = (𝑥 ∈ ℝ+ ↦ ((log‘𝑥)↑2)))
209200, 208eqtrd 2853 . . . . 5 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → (ℝ D (𝑥 ∈ ℝ+ ↦ (𝑥 · (((log‘𝑥)↑2) + (2 − (2 · (log‘𝑥))))))) = (𝑥 ∈ ℝ+ ↦ ((log‘𝑥)↑2)))
210 fveq2 6663 . . . . . 6 (𝑥 = 𝑛 → (log‘𝑥) = (log‘𝑛))
211210oveq1d 7160 . . . . 5 (𝑥 = 𝑛 → ((log‘𝑥)↑2) = ((log‘𝑛)↑2))
212 simp32 1202 . . . . . . 7 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ (𝑥 ∈ ℝ+𝑛 ∈ ℝ+) ∧ (1 ≤ 𝑥𝑥𝑛𝑛 ≤ +∞)) → 𝑥𝑛)
213 simp2l 1191 . . . . . . . 8 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ (𝑥 ∈ ℝ+𝑛 ∈ ℝ+) ∧ (1 ≤ 𝑥𝑥𝑛𝑛 ≤ +∞)) → 𝑥 ∈ ℝ+)
214 simp2r 1192 . . . . . . . 8 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ (𝑥 ∈ ℝ+𝑛 ∈ ℝ+) ∧ (1 ≤ 𝑥𝑥𝑛𝑛 ≤ +∞)) → 𝑛 ∈ ℝ+)
215213, 214logled 25137 . . . . . . 7 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ (𝑥 ∈ ℝ+𝑛 ∈ ℝ+) ∧ (1 ≤ 𝑥𝑥𝑛𝑛 ≤ +∞)) → (𝑥𝑛 ↔ (log‘𝑥) ≤ (log‘𝑛)))
216212, 215mpbid 233 . . . . . 6 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ (𝑥 ∈ ℝ+𝑛 ∈ ℝ+) ∧ (1 ≤ 𝑥𝑥𝑛𝑛 ≤ +∞)) → (log‘𝑥) ≤ (log‘𝑛))
217213relogcld 25133 . . . . . . 7 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ (𝑥 ∈ ℝ+𝑛 ∈ ℝ+) ∧ (1 ≤ 𝑥𝑥𝑛𝑛 ≤ +∞)) → (log‘𝑥) ∈ ℝ)
218214relogcld 25133 . . . . . . 7 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ (𝑥 ∈ ℝ+𝑛 ∈ ℝ+) ∧ (1 ≤ 𝑥𝑥𝑛𝑛 ≤ +∞)) → (log‘𝑛) ∈ ℝ)
219 simp31 1201 . . . . . . . . 9 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ (𝑥 ∈ ℝ+𝑛 ∈ ℝ+) ∧ (1 ≤ 𝑥𝑥𝑛𝑛 ≤ +∞)) → 1 ≤ 𝑥)
220 logleb 25113 . . . . . . . . . 10 ((1 ∈ ℝ+𝑥 ∈ ℝ+) → (1 ≤ 𝑥 ↔ (log‘1) ≤ (log‘𝑥)))
22154, 213, 220sylancr 587 . . . . . . . . 9 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ (𝑥 ∈ ℝ+𝑛 ∈ ℝ+) ∧ (1 ≤ 𝑥𝑥𝑛𝑛 ≤ +∞)) → (1 ≤ 𝑥 ↔ (log‘1) ≤ (log‘𝑥)))
222219, 221mpbid 233 . . . . . . . 8 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ (𝑥 ∈ ℝ+𝑛 ∈ ℝ+) ∧ (1 ≤ 𝑥𝑥𝑛𝑛 ≤ +∞)) → (log‘1) ≤ (log‘𝑥))
22364, 222eqbrtrrid 5093 . . . . . . 7 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ (𝑥 ∈ ℝ+𝑛 ∈ ℝ+) ∧ (1 ≤ 𝑥𝑥𝑛𝑛 ≤ +∞)) → 0 ≤ (log‘𝑥))
224214rpred 12419 . . . . . . . 8 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ (𝑥 ∈ ℝ+𝑛 ∈ ℝ+) ∧ (1 ≤ 𝑥𝑥𝑛𝑛 ≤ +∞)) → 𝑛 ∈ ℝ)
225 1red 10630 . . . . . . . . 9 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ (𝑥 ∈ ℝ+𝑛 ∈ ℝ+) ∧ (1 ≤ 𝑥𝑥𝑛𝑛 ≤ +∞)) → 1 ∈ ℝ)
226213rpred 12419 . . . . . . . . 9 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ (𝑥 ∈ ℝ+𝑛 ∈ ℝ+) ∧ (1 ≤ 𝑥𝑥𝑛𝑛 ≤ +∞)) → 𝑥 ∈ ℝ)
227225, 226, 224, 219, 212letrd 10785 . . . . . . . 8 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ (𝑥 ∈ ℝ+𝑛 ∈ ℝ+) ∧ (1 ≤ 𝑥𝑥𝑛𝑛 ≤ +∞)) → 1 ≤ 𝑛)
228224, 227logge0d 25140 . . . . . . 7 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ (𝑥 ∈ ℝ+𝑛 ∈ ℝ+) ∧ (1 ≤ 𝑥𝑥𝑛𝑛 ≤ +∞)) → 0 ≤ (log‘𝑛))
229217, 218, 223, 228le2sqd 13608 . . . . . 6 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ (𝑥 ∈ ℝ+𝑛 ∈ ℝ+) ∧ (1 ≤ 𝑥𝑥𝑛𝑛 ≤ +∞)) → ((log‘𝑥) ≤ (log‘𝑛) ↔ ((log‘𝑥)↑2) ≤ ((log‘𝑛)↑2)))
230216, 229mpbid 233 . . . . 5 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ (𝑥 ∈ ℝ+𝑛 ∈ ℝ+) ∧ (1 ≤ 𝑥𝑥𝑛𝑛 ≤ +∞)) → ((log‘𝑥)↑2) ≤ ((log‘𝑛)↑2))
231 relogcl 25086 . . . . . . 7 (𝑥 ∈ ℝ+ → (log‘𝑥) ∈ ℝ)
232231ad2antrl 724 . . . . . 6 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → (log‘𝑥) ∈ ℝ)
233232sqge0d 13600 . . . . 5 (((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) ∧ (𝑥 ∈ ℝ+ ∧ 1 ≤ 𝑥)) → 0 ≤ ((log‘𝑥)↑2))
23454a1i 11 . . . . 5 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → 1 ∈ ℝ+)
235 simpl 483 . . . . 5 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → 𝐴 ∈ ℝ+)
236 1le1 11256 . . . . . 6 1 ≤ 1
237236a1i 11 . . . . 5 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → 1 ≤ 1)
238 simpr 485 . . . . 5 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → 1 ≤ 𝐴)
2399rexrd 10679 . . . . . 6 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → 𝐴 ∈ ℝ*)
240 pnfge 12513 . . . . . 6 (𝐴 ∈ ℝ*𝐴 ≤ +∞)
241239, 240syl 17 . . . . 5 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → 𝐴 ≤ +∞)
24294, 95, 96, 97, 99, 103, 104, 115, 109, 117, 209, 211, 230, 50, 233, 234, 235, 237, 238, 241, 44dvfsum2 24558 . . . 4 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → (abs‘(((𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘𝑛)↑2) − (𝑥 · (((log‘𝑥)↑2) + (2 − (2 · (log‘𝑥)))))))‘𝐴) − ((𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((log‘𝑛)↑2) − (𝑥 · (((log‘𝑥)↑2) + (2 − (2 · (log‘𝑥)))))))‘1))) ≤ ((log‘𝐴)↑2))
24392, 242eqbrtrrd 5081 . . 3 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → (abs‘((Σ𝑛 ∈ (1...(⌊‘𝐴))((log‘𝑛)↑2) − (𝐴 · (((log‘𝐴)↑2) + (2 − (2 · (log‘𝐴)))))) − -2)) ≤ ((log‘𝐴)↑2))
24424, 29, 12, 38, 243letrd 10785 . 2 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → ((abs‘(Σ𝑛 ∈ (1...(⌊‘𝐴))((log‘𝑛)↑2) − (𝐴 · (((log‘𝐴)↑2) + (2 − (2 · (log‘𝐴))))))) − 2) ≤ ((log‘𝐴)↑2))
24513a1i 11 . . 3 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → 2 ∈ ℝ)
24622, 245, 12lesubaddd 11225 . 2 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → (((abs‘(Σ𝑛 ∈ (1...(⌊‘𝐴))((log‘𝑛)↑2) − (𝐴 · (((log‘𝐴)↑2) + (2 − (2 · (log‘𝐴))))))) − 2) ≤ ((log‘𝐴)↑2) ↔ (abs‘(Σ𝑛 ∈ (1...(⌊‘𝐴))((log‘𝑛)↑2) − (𝐴 · (((log‘𝐴)↑2) + (2 − (2 · (log‘𝐴))))))) ≤ (((log‘𝐴)↑2) + 2)))
247244, 246mpbid 233 1 ((𝐴 ∈ ℝ+ ∧ 1 ≤ 𝐴) → (abs‘(Σ𝑛 ∈ (1...(⌊‘𝐴))((log‘𝑛)↑2) − (𝐴 · (((log‘𝐴)↑2) + (2 − (2 · (log‘𝐴))))))) ≤ (((log‘𝐴)↑2) + 2))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396  w3a 1079   = wceq 1528  wcel 2105  wne 3013  Vcvv 3492  wss 3933  {cpr 4559   class class class wbr 5057  cmpt 5137  ran crn 5549  cres 5550  wf 6344  1-1-ontowf1o 6347  cfv 6348  (class class class)co 7145  cc 10523  cr 10524  0cc0 10525  1c1 10526   + caddc 10528   · cmul 10530  +∞cpnf 10660  *cxr 10662  cle 10664  cmin 10858  -cneg 10859   / cdiv 11285  cn 11626  2c2 11680  cz 11969  +crp 12377  (,)cioo 12726  ...cfz 12880  cfl 13148  cexp 13417  abscabs 14581  Σcsu 15030  TopOpenctopn 16683  topGenctg 16699  fldccnfld 20473   D cdv 24388  logclog 25065
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-inf2 9092  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602  ax-pre-sup 10603  ax-addf 10604  ax-mulf 10605
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-fal 1541  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rmo 3143  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-int 4868  df-iun 4912  df-iin 4913  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-se 5508  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-isom 6357  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-of 7398  df-om 7570  df-1st 7678  df-2nd 7679  df-supp 7820  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-1o 8091  df-2o 8092  df-oadd 8095  df-er 8278  df-map 8397  df-pm 8398  df-ixp 8450  df-en 8498  df-dom 8499  df-sdom 8500  df-fin 8501  df-fsupp 8822  df-fi 8863  df-sup 8894  df-inf 8895  df-oi 8962  df-card 9356  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-div 11286  df-nn 11627  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-uz 12232  df-q 12337  df-rp 12378  df-xneg 12495  df-xadd 12496  df-xmul 12497  df-ioo 12730  df-ioc 12731  df-ico 12732  df-icc 12733  df-fz 12881  df-fzo 13022  df-fl 13150  df-mod 13226  df-seq 13358  df-exp 13418  df-fac 13622  df-bc 13651  df-hash 13679  df-shft 14414  df-cj 14446  df-re 14447  df-im 14448  df-sqrt 14582  df-abs 14583  df-limsup 14816  df-clim 14833  df-rlim 14834  df-sum 15031  df-ef 15409  df-sin 15411  df-cos 15412  df-pi 15414  df-struct 16473  df-ndx 16474  df-slot 16475  df-base 16477  df-sets 16478  df-ress 16479  df-plusg 16566  df-mulr 16567  df-starv 16568  df-sca 16569  df-vsca 16570  df-ip 16571  df-tset 16572  df-ple 16573  df-ds 16575  df-unif 16576  df-hom 16577  df-cco 16578  df-rest 16684  df-topn 16685  df-0g 16703  df-gsum 16704  df-topgen 16705  df-pt 16706  df-prds 16709  df-xrs 16763  df-qtop 16768  df-imas 16769  df-xps 16771  df-mre 16845  df-mrc 16846  df-acs 16848  df-mgm 17840  df-sgrp 17889  df-mnd 17900  df-submnd 17945  df-mulg 18163  df-cntz 18385  df-cmn 18837  df-psmet 20465  df-xmet 20466  df-met 20467  df-bl 20468  df-mopn 20469  df-fbas 20470  df-fg 20471  df-cnfld 20474  df-top 21430  df-topon 21447  df-topsp 21469  df-bases 21482  df-cld 21555  df-ntr 21556  df-cls 21557  df-nei 21634  df-lp 21672  df-perf 21673  df-cn 21763  df-cnp 21764  df-haus 21851  df-cmp 21923  df-tx 22098  df-hmeo 22291  df-fil 22382  df-fm 22474  df-flim 22475  df-flf 22476  df-xms 22857  df-ms 22858  df-tms 22859  df-cncf 23413  df-limc 24391  df-dv 24392  df-log 25067
This theorem is referenced by:  selberglem2  26049
  Copyright terms: Public domain W3C validator