| Step | Hyp | Ref
| Expression |
| 1 | | 1elunit 13510 |
. . 3
⊢ 1 ∈
(0[,]1) |
| 2 | | 0elunit 13509 |
. . 3
⊢ 0 ∈
(0[,]1) |
| 3 | | 0red 11264 |
. . . 4
⊢ ((𝜑 ∧ (𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → 0 ∈ ℝ) |
| 4 | | 1red 11262 |
. . . 4
⊢ ((𝜑 ∧ (𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → 1 ∈ ℝ) |
| 5 | | dvlipcn.d |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐵 ⊆ dom (ℂ D 𝐹)) |
| 6 | | ssidd 4007 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → ℂ ⊆
ℂ) |
| 7 | | dvlipcn.f |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝐹:𝑋⟶ℂ) |
| 8 | | dvlipcn.x |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝑋 ⊆ ℂ) |
| 9 | 6, 7, 8 | dvbss 25936 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → dom (ℂ D 𝐹) ⊆ 𝑋) |
| 10 | 5, 9 | sstrd 3994 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐵 ⊆ 𝑋) |
| 11 | 10, 8 | sstrd 3994 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐵 ⊆ ℂ) |
| 12 | 11 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → 𝐵 ⊆ ℂ) |
| 13 | | simprl 771 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → 𝑌 ∈ 𝐵) |
| 14 | 12, 13 | sseldd 3984 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → 𝑌 ∈ ℂ) |
| 15 | 14 | adantr 480 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ 𝑡 ∈ (0[,]1)) → 𝑌 ∈ ℂ) |
| 16 | | unitssre 13539 |
. . . . . . . . . . 11
⊢ (0[,]1)
⊆ ℝ |
| 17 | | ax-resscn 11212 |
. . . . . . . . . . 11
⊢ ℝ
⊆ ℂ |
| 18 | 16, 17 | sstri 3993 |
. . . . . . . . . 10
⊢ (0[,]1)
⊆ ℂ |
| 19 | | simpr 484 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ 𝑡 ∈ (0[,]1)) → 𝑡 ∈ (0[,]1)) |
| 20 | 18, 19 | sselid 3981 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ 𝑡 ∈ (0[,]1)) → 𝑡 ∈ ℂ) |
| 21 | 15, 20 | mulcomd 11282 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ 𝑡 ∈ (0[,]1)) → (𝑌 · 𝑡) = (𝑡 · 𝑌)) |
| 22 | | simprr 773 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → 𝑍 ∈ 𝐵) |
| 23 | 12, 22 | sseldd 3984 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → 𝑍 ∈ ℂ) |
| 24 | 23 | adantr 480 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ 𝑡 ∈ (0[,]1)) → 𝑍 ∈ ℂ) |
| 25 | | iirev 24956 |
. . . . . . . . . . 11
⊢ (𝑡 ∈ (0[,]1) → (1
− 𝑡) ∈
(0[,]1)) |
| 26 | 25 | adantl 481 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ 𝑡 ∈ (0[,]1)) → (1 − 𝑡) ∈
(0[,]1)) |
| 27 | 18, 26 | sselid 3981 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ 𝑡 ∈ (0[,]1)) → (1 − 𝑡) ∈
ℂ) |
| 28 | 24, 27 | mulcomd 11282 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ 𝑡 ∈ (0[,]1)) → (𝑍 · (1 − 𝑡)) = ((1 − 𝑡) · 𝑍)) |
| 29 | 21, 28 | oveq12d 7449 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ 𝑡 ∈ (0[,]1)) → ((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡))) = ((𝑡 · 𝑌) + ((1 − 𝑡) · 𝑍))) |
| 30 | | dvlipcn.a |
. . . . . . . . 9
⊢ (𝜑 → 𝐴 ∈ ℂ) |
| 31 | 30 | ad2antrr 726 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ 𝑡 ∈ (0[,]1)) → 𝐴 ∈ ℂ) |
| 32 | | dvlipcn.r |
. . . . . . . . 9
⊢ (𝜑 → 𝑅 ∈
ℝ*) |
| 33 | 32 | ad2antrr 726 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ 𝑡 ∈ (0[,]1)) → 𝑅 ∈
ℝ*) |
| 34 | 13 | adantr 480 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ 𝑡 ∈ (0[,]1)) → 𝑌 ∈ 𝐵) |
| 35 | 22 | adantr 480 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ 𝑡 ∈ (0[,]1)) → 𝑍 ∈ 𝐵) |
| 36 | | dvlipcn.b |
. . . . . . . . 9
⊢ 𝐵 = (𝐴(ball‘(abs ∘ − ))𝑅) |
| 37 | 36 | blcvx 24819 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℂ ∧ 𝑅 ∈ ℝ*)
∧ (𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵 ∧ 𝑡 ∈ (0[,]1))) → ((𝑡 · 𝑌) + ((1 − 𝑡) · 𝑍)) ∈ 𝐵) |
| 38 | 31, 33, 34, 35, 19, 37 | syl23anc 1379 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ 𝑡 ∈ (0[,]1)) → ((𝑡 · 𝑌) + ((1 − 𝑡) · 𝑍)) ∈ 𝐵) |
| 39 | 29, 38 | eqeltrd 2841 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ 𝑡 ∈ (0[,]1)) → ((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡))) ∈ 𝐵) |
| 40 | | eqidd 2738 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑡 ∈ (0[,]1) ↦ ((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))) = (𝑡 ∈ (0[,]1) ↦ ((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡))))) |
| 41 | 7, 10 | fssresd 6775 |
. . . . . . . . 9
⊢ (𝜑 → (𝐹 ↾ 𝐵):𝐵⟶ℂ) |
| 42 | 41 | feqmptd 6977 |
. . . . . . . 8
⊢ (𝜑 → (𝐹 ↾ 𝐵) = (𝑧 ∈ 𝐵 ↦ ((𝐹 ↾ 𝐵)‘𝑧))) |
| 43 | | fvres 6925 |
. . . . . . . . 9
⊢ (𝑧 ∈ 𝐵 → ((𝐹 ↾ 𝐵)‘𝑧) = (𝐹‘𝑧)) |
| 44 | 43 | mpteq2ia 5245 |
. . . . . . . 8
⊢ (𝑧 ∈ 𝐵 ↦ ((𝐹 ↾ 𝐵)‘𝑧)) = (𝑧 ∈ 𝐵 ↦ (𝐹‘𝑧)) |
| 45 | 42, 44 | eqtrdi 2793 |
. . . . . . 7
⊢ (𝜑 → (𝐹 ↾ 𝐵) = (𝑧 ∈ 𝐵 ↦ (𝐹‘𝑧))) |
| 46 | 45 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝐹 ↾ 𝐵) = (𝑧 ∈ 𝐵 ↦ (𝐹‘𝑧))) |
| 47 | | fveq2 6906 |
. . . . . 6
⊢ (𝑧 = ((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡))) → (𝐹‘𝑧) = (𝐹‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡))))) |
| 48 | 39, 40, 46, 47 | fmptco 7149 |
. . . . 5
⊢ ((𝜑 ∧ (𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝐹 ↾ 𝐵) ∘ (𝑡 ∈ (0[,]1) ↦ ((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡))))) = (𝑡 ∈ (0[,]1) ↦ (𝐹‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))))) |
| 49 | 39 | fmpttd 7135 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑡 ∈ (0[,]1) ↦ ((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))):(0[,]1)⟶𝐵) |
| 50 | | eqid 2737 |
. . . . . . . . 9
⊢
(TopOpen‘ℂfld) =
(TopOpen‘ℂfld) |
| 51 | 50 | addcn 24887 |
. . . . . . . . . 10
⊢ + ∈
(((TopOpen‘ℂfld) ×t
(TopOpen‘ℂfld)) Cn
(TopOpen‘ℂfld)) |
| 52 | 51 | a1i 11 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → + ∈
(((TopOpen‘ℂfld) ×t
(TopOpen‘ℂfld)) Cn
(TopOpen‘ℂfld))) |
| 53 | | ssid 4006 |
. . . . . . . . . . . 12
⊢ ℂ
⊆ ℂ |
| 54 | | cncfmptc 24938 |
. . . . . . . . . . . 12
⊢ ((𝑌 ∈ ℂ ∧ (0[,]1)
⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑡 ∈ (0[,]1) ↦ 𝑌) ∈ ((0[,]1)–cn→ℂ)) |
| 55 | 18, 53, 54 | mp3an23 1455 |
. . . . . . . . . . 11
⊢ (𝑌 ∈ ℂ → (𝑡 ∈ (0[,]1) ↦ 𝑌) ∈ ((0[,]1)–cn→ℂ)) |
| 56 | 14, 55 | syl 17 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑡 ∈ (0[,]1) ↦ 𝑌) ∈ ((0[,]1)–cn→ℂ)) |
| 57 | | cncfmptid 24939 |
. . . . . . . . . . . 12
⊢ (((0[,]1)
⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑡 ∈ (0[,]1) ↦ 𝑡) ∈ ((0[,]1)–cn→ℂ)) |
| 58 | 18, 53, 57 | mp2an 692 |
. . . . . . . . . . 11
⊢ (𝑡 ∈ (0[,]1) ↦ 𝑡) ∈ ((0[,]1)–cn→ℂ) |
| 59 | 58 | a1i 11 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑡 ∈ (0[,]1) ↦ 𝑡) ∈ ((0[,]1)–cn→ℂ)) |
| 60 | 56, 59 | mulcncf 25480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑡 ∈ (0[,]1) ↦ (𝑌 · 𝑡)) ∈ ((0[,]1)–cn→ℂ)) |
| 61 | | cncfmptc 24938 |
. . . . . . . . . . . 12
⊢ ((𝑍 ∈ ℂ ∧ (0[,]1)
⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑡 ∈ (0[,]1) ↦ 𝑍) ∈ ((0[,]1)–cn→ℂ)) |
| 62 | 18, 53, 61 | mp3an23 1455 |
. . . . . . . . . . 11
⊢ (𝑍 ∈ ℂ → (𝑡 ∈ (0[,]1) ↦ 𝑍) ∈ ((0[,]1)–cn→ℂ)) |
| 63 | 23, 62 | syl 17 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑡 ∈ (0[,]1) ↦ 𝑍) ∈ ((0[,]1)–cn→ℂ)) |
| 64 | 50 | subcn 24888 |
. . . . . . . . . . . 12
⊢ −
∈ (((TopOpen‘ℂfld) ×t
(TopOpen‘ℂfld)) Cn
(TopOpen‘ℂfld)) |
| 65 | 64 | a1i 11 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → − ∈
(((TopOpen‘ℂfld) ×t
(TopOpen‘ℂfld)) Cn
(TopOpen‘ℂfld))) |
| 66 | | ax-1cn 11213 |
. . . . . . . . . . . . 13
⊢ 1 ∈
ℂ |
| 67 | | cncfmptc 24938 |
. . . . . . . . . . . . 13
⊢ ((1
∈ ℂ ∧ (0[,]1) ⊆ ℂ ∧ ℂ ⊆ ℂ)
→ (𝑡 ∈ (0[,]1)
↦ 1) ∈ ((0[,]1)–cn→ℂ)) |
| 68 | 66, 18, 53, 67 | mp3an 1463 |
. . . . . . . . . . . 12
⊢ (𝑡 ∈ (0[,]1) ↦ 1)
∈ ((0[,]1)–cn→ℂ) |
| 69 | 68 | a1i 11 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑡 ∈ (0[,]1) ↦ 1) ∈
((0[,]1)–cn→ℂ)) |
| 70 | 50, 65, 69, 59 | cncfmpt2f 24941 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑡 ∈ (0[,]1) ↦ (1 − 𝑡)) ∈ ((0[,]1)–cn→ℂ)) |
| 71 | 63, 70 | mulcncf 25480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑡 ∈ (0[,]1) ↦ (𝑍 · (1 − 𝑡))) ∈ ((0[,]1)–cn→ℂ)) |
| 72 | 50, 52, 60, 71 | cncfmpt2f 24941 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑡 ∈ (0[,]1) ↦ ((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))) ∈ ((0[,]1)–cn→ℂ)) |
| 73 | | cncfcdm 24924 |
. . . . . . . 8
⊢ ((𝐵 ⊆ ℂ ∧ (𝑡 ∈ (0[,]1) ↦ ((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))) ∈ ((0[,]1)–cn→ℂ)) → ((𝑡 ∈ (0[,]1) ↦ ((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))) ∈ ((0[,]1)–cn→𝐵) ↔ (𝑡 ∈ (0[,]1) ↦ ((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))):(0[,]1)⟶𝐵)) |
| 74 | 12, 72, 73 | syl2anc 584 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑡 ∈ (0[,]1) ↦ ((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))) ∈ ((0[,]1)–cn→𝐵) ↔ (𝑡 ∈ (0[,]1) ↦ ((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))):(0[,]1)⟶𝐵)) |
| 75 | 49, 74 | mpbird 257 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑡 ∈ (0[,]1) ↦ ((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))) ∈ ((0[,]1)–cn→𝐵)) |
| 76 | | ssidd 4007 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ℂ ⊆
ℂ) |
| 77 | 41 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝐹 ↾ 𝐵):𝐵⟶ℂ) |
| 78 | 50 | cnfldtopon 24803 |
. . . . . . . . . . . . . 14
⊢
(TopOpen‘ℂfld) ∈
(TopOn‘ℂ) |
| 79 | 78 | toponrestid 22927 |
. . . . . . . . . . . . 13
⊢
(TopOpen‘ℂfld) =
((TopOpen‘ℂfld) ↾t
ℂ) |
| 80 | 50, 79 | dvres 25946 |
. . . . . . . . . . . 12
⊢
(((ℂ ⊆ ℂ ∧ 𝐹:𝑋⟶ℂ) ∧ (𝑋 ⊆ ℂ ∧ 𝐵 ⊆ ℂ)) → (ℂ D (𝐹 ↾ 𝐵)) = ((ℂ D 𝐹) ↾
((int‘(TopOpen‘ℂfld))‘𝐵))) |
| 81 | 6, 7, 8, 11, 80 | syl22anc 839 |
. . . . . . . . . . 11
⊢ (𝜑 → (ℂ D (𝐹 ↾ 𝐵)) = ((ℂ D 𝐹) ↾
((int‘(TopOpen‘ℂfld))‘𝐵))) |
| 82 | 50 | cnfldtop 24804 |
. . . . . . . . . . . . 13
⊢
(TopOpen‘ℂfld) ∈ Top |
| 83 | | cnxmet 24793 |
. . . . . . . . . . . . . . 15
⊢ (abs
∘ − ) ∈ (∞Met‘ℂ) |
| 84 | 50 | cnfldtopn 24802 |
. . . . . . . . . . . . . . . 16
⊢
(TopOpen‘ℂfld) = (MetOpen‘(abs ∘
− )) |
| 85 | 84 | blopn 24513 |
. . . . . . . . . . . . . . 15
⊢ (((abs
∘ − ) ∈ (∞Met‘ℂ) ∧ 𝐴 ∈ ℂ ∧ 𝑅 ∈ ℝ*) → (𝐴(ball‘(abs ∘ −
))𝑅) ∈
(TopOpen‘ℂfld)) |
| 86 | 83, 30, 32, 85 | mp3an2i 1468 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝐴(ball‘(abs ∘ − ))𝑅) ∈
(TopOpen‘ℂfld)) |
| 87 | 36, 86 | eqeltrid 2845 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐵 ∈
(TopOpen‘ℂfld)) |
| 88 | | isopn3i 23090 |
. . . . . . . . . . . . 13
⊢
(((TopOpen‘ℂfld) ∈ Top ∧ 𝐵 ∈
(TopOpen‘ℂfld)) →
((int‘(TopOpen‘ℂfld))‘𝐵) = 𝐵) |
| 89 | 82, 87, 88 | sylancr 587 |
. . . . . . . . . . . 12
⊢ (𝜑 →
((int‘(TopOpen‘ℂfld))‘𝐵) = 𝐵) |
| 90 | 89 | reseq2d 5997 |
. . . . . . . . . . 11
⊢ (𝜑 → ((ℂ D 𝐹) ↾
((int‘(TopOpen‘ℂfld))‘𝐵)) = ((ℂ D 𝐹) ↾ 𝐵)) |
| 91 | 81, 90 | eqtrd 2777 |
. . . . . . . . . 10
⊢ (𝜑 → (ℂ D (𝐹 ↾ 𝐵)) = ((ℂ D 𝐹) ↾ 𝐵)) |
| 92 | 91 | dmeqd 5916 |
. . . . . . . . 9
⊢ (𝜑 → dom (ℂ D (𝐹 ↾ 𝐵)) = dom ((ℂ D 𝐹) ↾ 𝐵)) |
| 93 | | dmres 6030 |
. . . . . . . . . 10
⊢ dom
((ℂ D 𝐹) ↾
𝐵) = (𝐵 ∩ dom (ℂ D 𝐹)) |
| 94 | | dfss2 3969 |
. . . . . . . . . . 11
⊢ (𝐵 ⊆ dom (ℂ D 𝐹) ↔ (𝐵 ∩ dom (ℂ D 𝐹)) = 𝐵) |
| 95 | 5, 94 | sylib 218 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐵 ∩ dom (ℂ D 𝐹)) = 𝐵) |
| 96 | 93, 95 | eqtrid 2789 |
. . . . . . . . 9
⊢ (𝜑 → dom ((ℂ D 𝐹) ↾ 𝐵) = 𝐵) |
| 97 | 92, 96 | eqtrd 2777 |
. . . . . . . 8
⊢ (𝜑 → dom (ℂ D (𝐹 ↾ 𝐵)) = 𝐵) |
| 98 | 97 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → dom (ℂ D (𝐹 ↾ 𝐵)) = 𝐵) |
| 99 | | dvcn 25957 |
. . . . . . 7
⊢
(((ℂ ⊆ ℂ ∧ (𝐹 ↾ 𝐵):𝐵⟶ℂ ∧ 𝐵 ⊆ ℂ) ∧ dom (ℂ D
(𝐹 ↾ 𝐵)) = 𝐵) → (𝐹 ↾ 𝐵) ∈ (𝐵–cn→ℂ)) |
| 100 | 76, 77, 12, 98, 99 | syl31anc 1375 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝐹 ↾ 𝐵) ∈ (𝐵–cn→ℂ)) |
| 101 | 75, 100 | cncfco 24933 |
. . . . 5
⊢ ((𝜑 ∧ (𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝐹 ↾ 𝐵) ∘ (𝑡 ∈ (0[,]1) ↦ ((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡))))) ∈ ((0[,]1)–cn→ℂ)) |
| 102 | 48, 101 | eqeltrrd 2842 |
. . . 4
⊢ ((𝜑 ∧ (𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑡 ∈ (0[,]1) ↦ (𝐹‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡))))) ∈ ((0[,]1)–cn→ℂ)) |
| 103 | 17 | a1i 11 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ℝ ⊆
ℂ) |
| 104 | 16 | a1i 11 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (0[,]1) ⊆
ℝ) |
| 105 | 7 | ad2antrr 726 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ 𝑡 ∈ (0[,]1)) → 𝐹:𝑋⟶ℂ) |
| 106 | 10 | ad2antrr 726 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ 𝑡 ∈ (0[,]1)) → 𝐵 ⊆ 𝑋) |
| 107 | 106, 39 | sseldd 3984 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ 𝑡 ∈ (0[,]1)) → ((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡))) ∈ 𝑋) |
| 108 | 105, 107 | ffvelcdmd 7105 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ 𝑡 ∈ (0[,]1)) → (𝐹‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))) ∈ ℂ) |
| 109 | | tgioo4 24826 |
. . . . . . . 8
⊢
(topGen‘ran (,)) = ((TopOpen‘ℂfld)
↾t ℝ) |
| 110 | | 1re 11261 |
. . . . . . . . 9
⊢ 1 ∈
ℝ |
| 111 | | iccntr 24843 |
. . . . . . . . 9
⊢ ((0
∈ ℝ ∧ 1 ∈ ℝ) → ((int‘(topGen‘ran
(,)))‘(0[,]1)) = (0(,)1)) |
| 112 | 3, 110, 111 | sylancl 586 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((int‘(topGen‘ran
(,)))‘(0[,]1)) = (0(,)1)) |
| 113 | 103, 104,
108, 109, 50, 112 | dvmptntr 26009 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (ℝ D (𝑡 ∈ (0[,]1) ↦ (𝐹‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))))) = (ℝ D (𝑡 ∈ (0(,)1) ↦ (𝐹‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡))))))) |
| 114 | | reelprrecn 11247 |
. . . . . . . . 9
⊢ ℝ
∈ {ℝ, ℂ} |
| 115 | 114 | a1i 11 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ℝ ∈ {ℝ,
ℂ}) |
| 116 | | cnelprrecn 11248 |
. . . . . . . . 9
⊢ ℂ
∈ {ℝ, ℂ} |
| 117 | 116 | a1i 11 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ℂ ∈ {ℝ,
ℂ}) |
| 118 | | ioossicc 13473 |
. . . . . . . . . 10
⊢ (0(,)1)
⊆ (0[,]1) |
| 119 | 118 | sseli 3979 |
. . . . . . . . 9
⊢ (𝑡 ∈ (0(,)1) → 𝑡 ∈
(0[,]1)) |
| 120 | 119, 39 | sylan2 593 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ 𝑡 ∈ (0(,)1)) → ((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡))) ∈ 𝐵) |
| 121 | 14, 23 | subcld 11620 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑌 − 𝑍) ∈ ℂ) |
| 122 | 121 | adantr 480 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ 𝑡 ∈ (0(,)1)) → (𝑌 − 𝑍) ∈ ℂ) |
| 123 | 10 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → 𝐵 ⊆ 𝑋) |
| 124 | 123 | sselda 3983 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ 𝑧 ∈ 𝐵) → 𝑧 ∈ 𝑋) |
| 125 | 7 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → 𝐹:𝑋⟶ℂ) |
| 126 | 125 | ffvelcdmda 7104 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ 𝑧 ∈ 𝑋) → (𝐹‘𝑧) ∈ ℂ) |
| 127 | 124, 126 | syldan 591 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ 𝑧 ∈ 𝐵) → (𝐹‘𝑧) ∈ ℂ) |
| 128 | | fvexd 6921 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ 𝑧 ∈ 𝐵) → ((ℂ D 𝐹)‘𝑧) ∈ V) |
| 129 | 14 | adantr 480 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ 𝑡 ∈ (0(,)1)) → 𝑌 ∈ ℂ) |
| 130 | 119, 20 | sylan2 593 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ 𝑡 ∈ (0(,)1)) → 𝑡 ∈ ℂ) |
| 131 | 129, 130 | mulcld 11281 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ 𝑡 ∈ (0(,)1)) → (𝑌 · 𝑡) ∈ ℂ) |
| 132 | | 1red 11262 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ 𝑡 ∈ (0(,)1)) → 1 ∈
ℝ) |
| 133 | | simpr 484 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ 𝑡 ∈ ℝ) → 𝑡 ∈ ℝ) |
| 134 | 133 | recnd 11289 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ 𝑡 ∈ ℝ) → 𝑡 ∈ ℂ) |
| 135 | | 1red 11262 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ 𝑡 ∈ ℝ) → 1 ∈
ℝ) |
| 136 | 115 | dvmptid 25995 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (ℝ D (𝑡 ∈ ℝ ↦ 𝑡)) = (𝑡 ∈ ℝ ↦ 1)) |
| 137 | | ioossre 13448 |
. . . . . . . . . . . . . 14
⊢ (0(,)1)
⊆ ℝ |
| 138 | 137 | a1i 11 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (0(,)1) ⊆
ℝ) |
| 139 | | iooretop 24786 |
. . . . . . . . . . . . . 14
⊢ (0(,)1)
∈ (topGen‘ran (,)) |
| 140 | 139 | a1i 11 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (0(,)1) ∈ (topGen‘ran
(,))) |
| 141 | 115, 134,
135, 136, 138, 109, 50, 140 | dvmptres 26001 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (ℝ D (𝑡 ∈ (0(,)1) ↦ 𝑡)) = (𝑡 ∈ (0(,)1) ↦ 1)) |
| 142 | 115, 130,
132, 141, 14 | dvmptcmul 26002 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (ℝ D (𝑡 ∈ (0(,)1) ↦ (𝑌 · 𝑡))) = (𝑡 ∈ (0(,)1) ↦ (𝑌 · 1))) |
| 143 | 14 | mulridd 11278 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑌 · 1) = 𝑌) |
| 144 | 143 | mpteq2dv 5244 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑡 ∈ (0(,)1) ↦ (𝑌 · 1)) = (𝑡 ∈ (0(,)1) ↦ 𝑌)) |
| 145 | 142, 144 | eqtrd 2777 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (ℝ D (𝑡 ∈ (0(,)1) ↦ (𝑌 · 𝑡))) = (𝑡 ∈ (0(,)1) ↦ 𝑌)) |
| 146 | 23 | adantr 480 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ 𝑡 ∈ (0(,)1)) → 𝑍 ∈ ℂ) |
| 147 | 119, 27 | sylan2 593 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ 𝑡 ∈ (0(,)1)) → (1 − 𝑡) ∈
ℂ) |
| 148 | 146, 147 | mulcld 11281 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ 𝑡 ∈ (0(,)1)) → (𝑍 · (1 − 𝑡)) ∈ ℂ) |
| 149 | | negex 11506 |
. . . . . . . . . . 11
⊢ -𝑍 ∈ V |
| 150 | 149 | a1i 11 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ 𝑡 ∈ (0(,)1)) → -𝑍 ∈ V) |
| 151 | | negex 11506 |
. . . . . . . . . . . . 13
⊢ -1 ∈
V |
| 152 | 151 | a1i 11 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ 𝑡 ∈ (0(,)1)) → -1 ∈
V) |
| 153 | | 1cnd 11256 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ 𝑡 ∈ (0(,)1)) → 1 ∈
ℂ) |
| 154 | | 0red 11264 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ 𝑡 ∈ (0(,)1)) → 0 ∈
ℝ) |
| 155 | | 1cnd 11256 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ 𝑡 ∈ ℝ) → 1 ∈
ℂ) |
| 156 | | 0red 11264 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ 𝑡 ∈ ℝ) → 0 ∈
ℝ) |
| 157 | | 1cnd 11256 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → 1 ∈ ℂ) |
| 158 | 115, 157 | dvmptc 25996 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (ℝ D (𝑡 ∈ ℝ ↦ 1)) = (𝑡 ∈ ℝ ↦
0)) |
| 159 | 115, 155,
156, 158, 138, 109, 50, 140 | dvmptres 26001 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (ℝ D (𝑡 ∈ (0(,)1) ↦ 1)) = (𝑡 ∈ (0(,)1) ↦
0)) |
| 160 | 115, 153,
154, 159, 130, 132, 141 | dvmptsub 26005 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (ℝ D (𝑡 ∈ (0(,)1) ↦ (1 − 𝑡))) = (𝑡 ∈ (0(,)1) ↦ (0 −
1))) |
| 161 | | df-neg 11495 |
. . . . . . . . . . . . . 14
⊢ -1 = (0
− 1) |
| 162 | 161 | mpteq2i 5247 |
. . . . . . . . . . . . 13
⊢ (𝑡 ∈ (0(,)1) ↦ -1) =
(𝑡 ∈ (0(,)1) ↦
(0 − 1)) |
| 163 | 160, 162 | eqtr4di 2795 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (ℝ D (𝑡 ∈ (0(,)1) ↦ (1 − 𝑡))) = (𝑡 ∈ (0(,)1) ↦ -1)) |
| 164 | 115, 147,
152, 163, 23 | dvmptcmul 26002 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (ℝ D (𝑡 ∈ (0(,)1) ↦ (𝑍 · (1 − 𝑡)))) = (𝑡 ∈ (0(,)1) ↦ (𝑍 · -1))) |
| 165 | | neg1cn 12380 |
. . . . . . . . . . . . . 14
⊢ -1 ∈
ℂ |
| 166 | | mulcom 11241 |
. . . . . . . . . . . . . 14
⊢ ((𝑍 ∈ ℂ ∧ -1 ∈
ℂ) → (𝑍 ·
-1) = (-1 · 𝑍)) |
| 167 | 23, 165, 166 | sylancl 586 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑍 · -1) = (-1 · 𝑍)) |
| 168 | 23 | mulm1d 11715 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (-1 · 𝑍) = -𝑍) |
| 169 | 167, 168 | eqtrd 2777 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑍 · -1) = -𝑍) |
| 170 | 169 | mpteq2dv 5244 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑡 ∈ (0(,)1) ↦ (𝑍 · -1)) = (𝑡 ∈ (0(,)1) ↦ -𝑍)) |
| 171 | 164, 170 | eqtrd 2777 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (ℝ D (𝑡 ∈ (0(,)1) ↦ (𝑍 · (1 − 𝑡)))) = (𝑡 ∈ (0(,)1) ↦ -𝑍)) |
| 172 | 115, 131,
129, 145, 148, 150, 171 | dvmptadd 25998 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (ℝ D (𝑡 ∈ (0(,)1) ↦ ((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡))))) = (𝑡 ∈ (0(,)1) ↦ (𝑌 + -𝑍))) |
| 173 | 14, 23 | negsubd 11626 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑌 + -𝑍) = (𝑌 − 𝑍)) |
| 174 | 173 | mpteq2dv 5244 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑡 ∈ (0(,)1) ↦ (𝑌 + -𝑍)) = (𝑡 ∈ (0(,)1) ↦ (𝑌 − 𝑍))) |
| 175 | 172, 174 | eqtrd 2777 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (ℝ D (𝑡 ∈ (0(,)1) ↦ ((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡))))) = (𝑡 ∈ (0(,)1) ↦ (𝑌 − 𝑍))) |
| 176 | 8 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → 𝑋 ⊆ ℂ) |
| 177 | 76, 125, 176, 12, 80 | syl22anc 839 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (ℂ D (𝐹 ↾ 𝐵)) = ((ℂ D 𝐹) ↾
((int‘(TopOpen‘ℂfld))‘𝐵))) |
| 178 | 89 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) →
((int‘(TopOpen‘ℂfld))‘𝐵) = 𝐵) |
| 179 | 178 | reseq2d 5997 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((ℂ D 𝐹) ↾
((int‘(TopOpen‘ℂfld))‘𝐵)) = ((ℂ D 𝐹) ↾ 𝐵)) |
| 180 | 177, 179 | eqtrd 2777 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (ℂ D (𝐹 ↾ 𝐵)) = ((ℂ D 𝐹) ↾ 𝐵)) |
| 181 | 46 | oveq2d 7447 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (ℂ D (𝐹 ↾ 𝐵)) = (ℂ D (𝑧 ∈ 𝐵 ↦ (𝐹‘𝑧)))) |
| 182 | | dvfcn 25943 |
. . . . . . . . . . . . 13
⊢ (ℂ
D (𝐹 ↾ 𝐵)):dom (ℂ D (𝐹 ↾ 𝐵))⟶ℂ |
| 183 | 98 | feq2d 6722 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((ℂ D (𝐹 ↾ 𝐵)):dom (ℂ D (𝐹 ↾ 𝐵))⟶ℂ ↔ (ℂ D (𝐹 ↾ 𝐵)):𝐵⟶ℂ)) |
| 184 | 182, 183 | mpbii 233 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (ℂ D (𝐹 ↾ 𝐵)):𝐵⟶ℂ) |
| 185 | 180 | feq1d 6720 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((ℂ D (𝐹 ↾ 𝐵)):𝐵⟶ℂ ↔ ((ℂ D 𝐹) ↾ 𝐵):𝐵⟶ℂ)) |
| 186 | 184, 185 | mpbid 232 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((ℂ D 𝐹) ↾ 𝐵):𝐵⟶ℂ) |
| 187 | 186 | feqmptd 6977 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((ℂ D 𝐹) ↾ 𝐵) = (𝑧 ∈ 𝐵 ↦ (((ℂ D 𝐹) ↾ 𝐵)‘𝑧))) |
| 188 | | fvres 6925 |
. . . . . . . . . . 11
⊢ (𝑧 ∈ 𝐵 → (((ℂ D 𝐹) ↾ 𝐵)‘𝑧) = ((ℂ D 𝐹)‘𝑧)) |
| 189 | 188 | mpteq2ia 5245 |
. . . . . . . . . 10
⊢ (𝑧 ∈ 𝐵 ↦ (((ℂ D 𝐹) ↾ 𝐵)‘𝑧)) = (𝑧 ∈ 𝐵 ↦ ((ℂ D 𝐹)‘𝑧)) |
| 190 | 187, 189 | eqtrdi 2793 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((ℂ D 𝐹) ↾ 𝐵) = (𝑧 ∈ 𝐵 ↦ ((ℂ D 𝐹)‘𝑧))) |
| 191 | 180, 181,
190 | 3eqtr3d 2785 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (ℂ D (𝑧 ∈ 𝐵 ↦ (𝐹‘𝑧))) = (𝑧 ∈ 𝐵 ↦ ((ℂ D 𝐹)‘𝑧))) |
| 192 | | fveq2 6906 |
. . . . . . . 8
⊢ (𝑧 = ((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡))) → ((ℂ D 𝐹)‘𝑧) = ((ℂ D 𝐹)‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡))))) |
| 193 | 115, 117,
120, 122, 127, 128, 175, 191, 47, 192 | dvmptco 26010 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (ℝ D (𝑡 ∈ (0(,)1) ↦ (𝐹‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))))) = (𝑡 ∈ (0(,)1) ↦ (((ℂ D 𝐹)‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))) · (𝑌 − 𝑍)))) |
| 194 | 113, 193 | eqtrd 2777 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (ℝ D (𝑡 ∈ (0[,]1) ↦ (𝐹‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))))) = (𝑡 ∈ (0(,)1) ↦ (((ℂ D 𝐹)‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))) · (𝑌 − 𝑍)))) |
| 195 | 194 | dmeqd 5916 |
. . . . 5
⊢ ((𝜑 ∧ (𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → dom (ℝ D (𝑡 ∈ (0[,]1) ↦ (𝐹‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))))) = dom (𝑡 ∈ (0(,)1) ↦ (((ℂ D 𝐹)‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))) · (𝑌 − 𝑍)))) |
| 196 | | ovex 7464 |
. . . . . . 7
⊢
(((ℂ D 𝐹)‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))) · (𝑌 − 𝑍)) ∈ V |
| 197 | 196 | rgenw 3065 |
. . . . . 6
⊢
∀𝑡 ∈
(0(,)1)(((ℂ D 𝐹)‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))) · (𝑌 − 𝑍)) ∈ V |
| 198 | | dmmptg 6262 |
. . . . . 6
⊢
(∀𝑡 ∈
(0(,)1)(((ℂ D 𝐹)‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))) · (𝑌 − 𝑍)) ∈ V → dom (𝑡 ∈ (0(,)1) ↦ (((ℂ D 𝐹)‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))) · (𝑌 − 𝑍))) = (0(,)1)) |
| 199 | 197, 198 | mp1i 13 |
. . . . 5
⊢ ((𝜑 ∧ (𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → dom (𝑡 ∈ (0(,)1) ↦ (((ℂ D 𝐹)‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))) · (𝑌 − 𝑍))) = (0(,)1)) |
| 200 | 195, 199 | eqtrd 2777 |
. . . 4
⊢ ((𝜑 ∧ (𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → dom (ℝ D (𝑡 ∈ (0[,]1) ↦ (𝐹‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))))) = (0(,)1)) |
| 201 | | dvlipcn.m |
. . . . . 6
⊢ (𝜑 → 𝑀 ∈ ℝ) |
| 202 | 201 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ (𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → 𝑀 ∈ ℝ) |
| 203 | 121 | abscld 15475 |
. . . . 5
⊢ ((𝜑 ∧ (𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (abs‘(𝑌 − 𝑍)) ∈ ℝ) |
| 204 | 202, 203 | remulcld 11291 |
. . . 4
⊢ ((𝜑 ∧ (𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑀 · (abs‘(𝑌 − 𝑍))) ∈ ℝ) |
| 205 | 194 | fveq1d 6908 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((ℝ D (𝑡 ∈ (0[,]1) ↦ (𝐹‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡))))))‘𝑡) = ((𝑡 ∈ (0(,)1) ↦ (((ℂ D 𝐹)‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))) · (𝑌 − 𝑍)))‘𝑡)) |
| 206 | | eqid 2737 |
. . . . . . . . . . . . 13
⊢ (𝑡 ∈ (0(,)1) ↦
(((ℂ D 𝐹)‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))) · (𝑌 − 𝑍))) = (𝑡 ∈ (0(,)1) ↦ (((ℂ D 𝐹)‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))) · (𝑌 − 𝑍))) |
| 207 | 206 | fvmpt2 7027 |
. . . . . . . . . . . 12
⊢ ((𝑡 ∈ (0(,)1) ∧ (((ℂ
D 𝐹)‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))) · (𝑌 − 𝑍)) ∈ V) → ((𝑡 ∈ (0(,)1) ↦ (((ℂ D 𝐹)‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))) · (𝑌 − 𝑍)))‘𝑡) = (((ℂ D 𝐹)‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))) · (𝑌 − 𝑍))) |
| 208 | 196, 207 | mpan2 691 |
. . . . . . . . . . 11
⊢ (𝑡 ∈ (0(,)1) → ((𝑡 ∈ (0(,)1) ↦
(((ℂ D 𝐹)‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))) · (𝑌 − 𝑍)))‘𝑡) = (((ℂ D 𝐹)‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))) · (𝑌 − 𝑍))) |
| 209 | 205, 208 | sylan9eq 2797 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ 𝑡 ∈ (0(,)1)) → ((ℝ D (𝑡 ∈ (0[,]1) ↦ (𝐹‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡))))))‘𝑡) = (((ℂ D 𝐹)‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))) · (𝑌 − 𝑍))) |
| 210 | 209 | fveq2d 6910 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ 𝑡 ∈ (0(,)1)) → (abs‘((ℝ
D (𝑡 ∈ (0[,]1) ↦
(𝐹‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡))))))‘𝑡)) = (abs‘(((ℂ D 𝐹)‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))) · (𝑌 − 𝑍)))) |
| 211 | | dvfcn 25943 |
. . . . . . . . . . 11
⊢ (ℂ
D 𝐹):dom (ℂ D 𝐹)⟶ℂ |
| 212 | 5 | ad2antrr 726 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ 𝑡 ∈ (0(,)1)) → 𝐵 ⊆ dom (ℂ D 𝐹)) |
| 213 | 212, 120 | sseldd 3984 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ 𝑡 ∈ (0(,)1)) → ((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡))) ∈ dom (ℂ D 𝐹)) |
| 214 | | ffvelcdm 7101 |
. . . . . . . . . . 11
⊢
(((ℂ D 𝐹):dom
(ℂ D 𝐹)⟶ℂ ∧ ((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡))) ∈ dom (ℂ D 𝐹)) → ((ℂ D 𝐹)‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))) ∈ ℂ) |
| 215 | 211, 213,
214 | sylancr 587 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ 𝑡 ∈ (0(,)1)) → ((ℂ D 𝐹)‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))) ∈ ℂ) |
| 216 | 215, 122 | absmuld 15493 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ 𝑡 ∈ (0(,)1)) → (abs‘(((ℂ
D 𝐹)‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))) · (𝑌 − 𝑍))) = ((abs‘((ℂ D 𝐹)‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡))))) · (abs‘(𝑌 − 𝑍)))) |
| 217 | 210, 216 | eqtrd 2777 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ 𝑡 ∈ (0(,)1)) → (abs‘((ℝ
D (𝑡 ∈ (0[,]1) ↦
(𝐹‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡))))))‘𝑡)) = ((abs‘((ℂ D 𝐹)‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡))))) · (abs‘(𝑌 − 𝑍)))) |
| 218 | 215 | abscld 15475 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ 𝑡 ∈ (0(,)1)) → (abs‘((ℂ
D 𝐹)‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡))))) ∈ ℝ) |
| 219 | 201 | ad2antrr 726 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ 𝑡 ∈ (0(,)1)) → 𝑀 ∈ ℝ) |
| 220 | 122 | abscld 15475 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ 𝑡 ∈ (0(,)1)) → (abs‘(𝑌 − 𝑍)) ∈ ℝ) |
| 221 | 122 | absge0d 15483 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ 𝑡 ∈ (0(,)1)) → 0 ≤
(abs‘(𝑌 − 𝑍))) |
| 222 | | 2fveq3 6911 |
. . . . . . . . . . 11
⊢ (𝑦 = ((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡))) → (abs‘((ℂ D 𝐹)‘𝑦)) = (abs‘((ℂ D 𝐹)‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))))) |
| 223 | 222 | breq1d 5153 |
. . . . . . . . . 10
⊢ (𝑦 = ((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡))) → ((abs‘((ℂ D 𝐹)‘𝑦)) ≤ 𝑀 ↔ (abs‘((ℂ D 𝐹)‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡))))) ≤ 𝑀)) |
| 224 | | dvlipcn.l |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (abs‘((ℂ D 𝐹)‘𝑥)) ≤ 𝑀) |
| 225 | 224 | ralrimiva 3146 |
. . . . . . . . . . . 12
⊢ (𝜑 → ∀𝑥 ∈ 𝐵 (abs‘((ℂ D 𝐹)‘𝑥)) ≤ 𝑀) |
| 226 | | 2fveq3 6911 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑦 → (abs‘((ℂ D 𝐹)‘𝑥)) = (abs‘((ℂ D 𝐹)‘𝑦))) |
| 227 | 226 | breq1d 5153 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑦 → ((abs‘((ℂ D 𝐹)‘𝑥)) ≤ 𝑀 ↔ (abs‘((ℂ D 𝐹)‘𝑦)) ≤ 𝑀)) |
| 228 | 227 | cbvralvw 3237 |
. . . . . . . . . . . 12
⊢
(∀𝑥 ∈
𝐵 (abs‘((ℂ D
𝐹)‘𝑥)) ≤ 𝑀 ↔ ∀𝑦 ∈ 𝐵 (abs‘((ℂ D 𝐹)‘𝑦)) ≤ 𝑀) |
| 229 | 225, 228 | sylib 218 |
. . . . . . . . . . 11
⊢ (𝜑 → ∀𝑦 ∈ 𝐵 (abs‘((ℂ D 𝐹)‘𝑦)) ≤ 𝑀) |
| 230 | 229 | ad2antrr 726 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ 𝑡 ∈ (0(,)1)) → ∀𝑦 ∈ 𝐵 (abs‘((ℂ D 𝐹)‘𝑦)) ≤ 𝑀) |
| 231 | 223, 230,
120 | rspcdva 3623 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ 𝑡 ∈ (0(,)1)) → (abs‘((ℂ
D 𝐹)‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡))))) ≤ 𝑀) |
| 232 | 218, 219,
220, 221, 231 | lemul1ad 12207 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ 𝑡 ∈ (0(,)1)) → ((abs‘((ℂ
D 𝐹)‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡))))) · (abs‘(𝑌 − 𝑍))) ≤ (𝑀 · (abs‘(𝑌 − 𝑍)))) |
| 233 | 217, 232 | eqbrtrd 5165 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ 𝑡 ∈ (0(,)1)) → (abs‘((ℝ
D (𝑡 ∈ (0[,]1) ↦
(𝐹‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡))))))‘𝑡)) ≤ (𝑀 · (abs‘(𝑌 − 𝑍)))) |
| 234 | 233 | ralrimiva 3146 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ∀𝑡 ∈ (0(,)1)(abs‘((ℝ D (𝑡 ∈ (0[,]1) ↦ (𝐹‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡))))))‘𝑡)) ≤ (𝑀 · (abs‘(𝑌 − 𝑍)))) |
| 235 | | nfv 1914 |
. . . . . . 7
⊢
Ⅎ𝑧(abs‘((ℝ D (𝑡 ∈ (0[,]1) ↦ (𝐹‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡))))))‘𝑡)) ≤ (𝑀 · (abs‘(𝑌 − 𝑍))) |
| 236 | | nfcv 2905 |
. . . . . . . . 9
⊢
Ⅎ𝑡abs |
| 237 | | nfcv 2905 |
. . . . . . . . . . 11
⊢
Ⅎ𝑡ℝ |
| 238 | | nfcv 2905 |
. . . . . . . . . . 11
⊢
Ⅎ𝑡
D |
| 239 | | nfmpt1 5250 |
. . . . . . . . . . 11
⊢
Ⅎ𝑡(𝑡 ∈ (0[,]1) ↦ (𝐹‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡))))) |
| 240 | 237, 238,
239 | nfov 7461 |
. . . . . . . . . 10
⊢
Ⅎ𝑡(ℝ D (𝑡 ∈ (0[,]1) ↦ (𝐹‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))))) |
| 241 | | nfcv 2905 |
. . . . . . . . . 10
⊢
Ⅎ𝑡𝑧 |
| 242 | 240, 241 | nffv 6916 |
. . . . . . . . 9
⊢
Ⅎ𝑡((ℝ D (𝑡 ∈ (0[,]1) ↦ (𝐹‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡))))))‘𝑧) |
| 243 | 236, 242 | nffv 6916 |
. . . . . . . 8
⊢
Ⅎ𝑡(abs‘((ℝ D (𝑡 ∈ (0[,]1) ↦ (𝐹‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡))))))‘𝑧)) |
| 244 | | nfcv 2905 |
. . . . . . . 8
⊢
Ⅎ𝑡
≤ |
| 245 | | nfcv 2905 |
. . . . . . . 8
⊢
Ⅎ𝑡(𝑀 · (abs‘(𝑌 − 𝑍))) |
| 246 | 243, 244,
245 | nfbr 5190 |
. . . . . . 7
⊢
Ⅎ𝑡(abs‘((ℝ D (𝑡 ∈ (0[,]1) ↦ (𝐹‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡))))))‘𝑧)) ≤ (𝑀 · (abs‘(𝑌 − 𝑍))) |
| 247 | | 2fveq3 6911 |
. . . . . . . 8
⊢ (𝑡 = 𝑧 → (abs‘((ℝ D (𝑡 ∈ (0[,]1) ↦ (𝐹‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡))))))‘𝑡)) = (abs‘((ℝ D (𝑡 ∈ (0[,]1) ↦ (𝐹‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡))))))‘𝑧))) |
| 248 | 247 | breq1d 5153 |
. . . . . . 7
⊢ (𝑡 = 𝑧 → ((abs‘((ℝ D (𝑡 ∈ (0[,]1) ↦ (𝐹‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡))))))‘𝑡)) ≤ (𝑀 · (abs‘(𝑌 − 𝑍))) ↔ (abs‘((ℝ D (𝑡 ∈ (0[,]1) ↦ (𝐹‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡))))))‘𝑧)) ≤ (𝑀 · (abs‘(𝑌 − 𝑍))))) |
| 249 | 235, 246,
248 | cbvralw 3306 |
. . . . . 6
⊢
(∀𝑡 ∈
(0(,)1)(abs‘((ℝ D (𝑡 ∈ (0[,]1) ↦ (𝐹‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡))))))‘𝑡)) ≤ (𝑀 · (abs‘(𝑌 − 𝑍))) ↔ ∀𝑧 ∈ (0(,)1)(abs‘((ℝ D (𝑡 ∈ (0[,]1) ↦ (𝐹‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡))))))‘𝑧)) ≤ (𝑀 · (abs‘(𝑌 − 𝑍)))) |
| 250 | 234, 249 | sylib 218 |
. . . . 5
⊢ ((𝜑 ∧ (𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ∀𝑧 ∈ (0(,)1)(abs‘((ℝ D (𝑡 ∈ (0[,]1) ↦ (𝐹‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡))))))‘𝑧)) ≤ (𝑀 · (abs‘(𝑌 − 𝑍)))) |
| 251 | 250 | r19.21bi 3251 |
. . . 4
⊢ (((𝜑 ∧ (𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ 𝑧 ∈ (0(,)1)) → (abs‘((ℝ
D (𝑡 ∈ (0[,]1) ↦
(𝐹‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡))))))‘𝑧)) ≤ (𝑀 · (abs‘(𝑌 − 𝑍)))) |
| 252 | 3, 4, 102, 200, 204, 251 | dvlip 26032 |
. . 3
⊢ (((𝜑 ∧ (𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) ∧ (1 ∈ (0[,]1) ∧ 0 ∈
(0[,]1))) → (abs‘(((𝑡 ∈ (0[,]1) ↦ (𝐹‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))))‘1) − ((𝑡 ∈ (0[,]1) ↦ (𝐹‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))))‘0))) ≤ ((𝑀 · (abs‘(𝑌 − 𝑍))) · (abs‘(1 −
0)))) |
| 253 | 1, 2, 252 | mpanr12 705 |
. 2
⊢ ((𝜑 ∧ (𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (abs‘(((𝑡 ∈ (0[,]1) ↦ (𝐹‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))))‘1) − ((𝑡 ∈ (0[,]1) ↦ (𝐹‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))))‘0))) ≤ ((𝑀 · (abs‘(𝑌 − 𝑍))) · (abs‘(1 −
0)))) |
| 254 | | oveq2 7439 |
. . . . . . . . 9
⊢ (𝑡 = 1 → (𝑌 · 𝑡) = (𝑌 · 1)) |
| 255 | | oveq2 7439 |
. . . . . . . . . . 11
⊢ (𝑡 = 1 → (1 − 𝑡) = (1 −
1)) |
| 256 | | 1m1e0 12338 |
. . . . . . . . . . 11
⊢ (1
− 1) = 0 |
| 257 | 255, 256 | eqtrdi 2793 |
. . . . . . . . . 10
⊢ (𝑡 = 1 → (1 − 𝑡) = 0) |
| 258 | 257 | oveq2d 7447 |
. . . . . . . . 9
⊢ (𝑡 = 1 → (𝑍 · (1 − 𝑡)) = (𝑍 · 0)) |
| 259 | 254, 258 | oveq12d 7449 |
. . . . . . . 8
⊢ (𝑡 = 1 → ((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡))) = ((𝑌 · 1) + (𝑍 · 0))) |
| 260 | 259 | fveq2d 6910 |
. . . . . . 7
⊢ (𝑡 = 1 → (𝐹‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))) = (𝐹‘((𝑌 · 1) + (𝑍 · 0)))) |
| 261 | | eqid 2737 |
. . . . . . 7
⊢ (𝑡 ∈ (0[,]1) ↦ (𝐹‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡))))) = (𝑡 ∈ (0[,]1) ↦ (𝐹‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡))))) |
| 262 | | fvex 6919 |
. . . . . . 7
⊢ (𝐹‘((𝑌 · 1) + (𝑍 · 0))) ∈ V |
| 263 | 260, 261,
262 | fvmpt 7016 |
. . . . . 6
⊢ (1 ∈
(0[,]1) → ((𝑡 ∈
(0[,]1) ↦ (𝐹‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))))‘1) = (𝐹‘((𝑌 · 1) + (𝑍 · 0)))) |
| 264 | 1, 263 | ax-mp 5 |
. . . . 5
⊢ ((𝑡 ∈ (0[,]1) ↦ (𝐹‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))))‘1) = (𝐹‘((𝑌 · 1) + (𝑍 · 0))) |
| 265 | 23 | mul01d 11460 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑍 · 0) = 0) |
| 266 | 143, 265 | oveq12d 7449 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑌 · 1) + (𝑍 · 0)) = (𝑌 + 0)) |
| 267 | 14 | addridd 11461 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑌 + 0) = 𝑌) |
| 268 | 266, 267 | eqtrd 2777 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑌 · 1) + (𝑍 · 0)) = 𝑌) |
| 269 | 268 | fveq2d 6910 |
. . . . 5
⊢ ((𝜑 ∧ (𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝐹‘((𝑌 · 1) + (𝑍 · 0))) = (𝐹‘𝑌)) |
| 270 | 264, 269 | eqtrid 2789 |
. . . 4
⊢ ((𝜑 ∧ (𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑡 ∈ (0[,]1) ↦ (𝐹‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))))‘1) = (𝐹‘𝑌)) |
| 271 | | oveq2 7439 |
. . . . . . . . 9
⊢ (𝑡 = 0 → (𝑌 · 𝑡) = (𝑌 · 0)) |
| 272 | | oveq2 7439 |
. . . . . . . . . . 11
⊢ (𝑡 = 0 → (1 − 𝑡) = (1 −
0)) |
| 273 | | 1m0e1 12387 |
. . . . . . . . . . 11
⊢ (1
− 0) = 1 |
| 274 | 272, 273 | eqtrdi 2793 |
. . . . . . . . . 10
⊢ (𝑡 = 0 → (1 − 𝑡) = 1) |
| 275 | 274 | oveq2d 7447 |
. . . . . . . . 9
⊢ (𝑡 = 0 → (𝑍 · (1 − 𝑡)) = (𝑍 · 1)) |
| 276 | 271, 275 | oveq12d 7449 |
. . . . . . . 8
⊢ (𝑡 = 0 → ((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡))) = ((𝑌 · 0) + (𝑍 · 1))) |
| 277 | 276 | fveq2d 6910 |
. . . . . . 7
⊢ (𝑡 = 0 → (𝐹‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))) = (𝐹‘((𝑌 · 0) + (𝑍 · 1)))) |
| 278 | | fvex 6919 |
. . . . . . 7
⊢ (𝐹‘((𝑌 · 0) + (𝑍 · 1))) ∈ V |
| 279 | 277, 261,
278 | fvmpt 7016 |
. . . . . 6
⊢ (0 ∈
(0[,]1) → ((𝑡 ∈
(0[,]1) ↦ (𝐹‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))))‘0) = (𝐹‘((𝑌 · 0) + (𝑍 · 1)))) |
| 280 | 2, 279 | ax-mp 5 |
. . . . 5
⊢ ((𝑡 ∈ (0[,]1) ↦ (𝐹‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))))‘0) = (𝐹‘((𝑌 · 0) + (𝑍 · 1))) |
| 281 | 14 | mul01d 11460 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑌 · 0) = 0) |
| 282 | 23 | mulridd 11278 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑍 · 1) = 𝑍) |
| 283 | 281, 282 | oveq12d 7449 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑌 · 0) + (𝑍 · 1)) = (0 + 𝑍)) |
| 284 | 23 | addlidd 11462 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (0 + 𝑍) = 𝑍) |
| 285 | 283, 284 | eqtrd 2777 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑌 · 0) + (𝑍 · 1)) = 𝑍) |
| 286 | 285 | fveq2d 6910 |
. . . . 5
⊢ ((𝜑 ∧ (𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝐹‘((𝑌 · 0) + (𝑍 · 1))) = (𝐹‘𝑍)) |
| 287 | 280, 286 | eqtrid 2789 |
. . . 4
⊢ ((𝜑 ∧ (𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑡 ∈ (0[,]1) ↦ (𝐹‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))))‘0) = (𝐹‘𝑍)) |
| 288 | 270, 287 | oveq12d 7449 |
. . 3
⊢ ((𝜑 ∧ (𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (((𝑡 ∈ (0[,]1) ↦ (𝐹‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))))‘1) − ((𝑡 ∈ (0[,]1) ↦ (𝐹‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))))‘0)) = ((𝐹‘𝑌) − (𝐹‘𝑍))) |
| 289 | 288 | fveq2d 6910 |
. 2
⊢ ((𝜑 ∧ (𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (abs‘(((𝑡 ∈ (0[,]1) ↦ (𝐹‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))))‘1) − ((𝑡 ∈ (0[,]1) ↦ (𝐹‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))))‘0))) = (abs‘((𝐹‘𝑌) − (𝐹‘𝑍)))) |
| 290 | 273 | fveq2i 6909 |
. . . . 5
⊢
(abs‘(1 − 0)) = (abs‘1) |
| 291 | | abs1 15336 |
. . . . 5
⊢
(abs‘1) = 1 |
| 292 | 290, 291 | eqtri 2765 |
. . . 4
⊢
(abs‘(1 − 0)) = 1 |
| 293 | 292 | oveq2i 7442 |
. . 3
⊢ ((𝑀 · (abs‘(𝑌 − 𝑍))) · (abs‘(1 − 0))) =
((𝑀 ·
(abs‘(𝑌 − 𝑍))) · 1) |
| 294 | 204 | recnd 11289 |
. . . 4
⊢ ((𝜑 ∧ (𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑀 · (abs‘(𝑌 − 𝑍))) ∈ ℂ) |
| 295 | 294 | mulridd 11278 |
. . 3
⊢ ((𝜑 ∧ (𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑀 · (abs‘(𝑌 − 𝑍))) · 1) = (𝑀 · (abs‘(𝑌 − 𝑍)))) |
| 296 | 293, 295 | eqtrid 2789 |
. 2
⊢ ((𝜑 ∧ (𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑀 · (abs‘(𝑌 − 𝑍))) · (abs‘(1 − 0))) =
(𝑀 ·
(abs‘(𝑌 − 𝑍)))) |
| 297 | 253, 289,
296 | 3brtr3d 5174 |
1
⊢ ((𝜑 ∧ (𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (abs‘((𝐹‘𝑌) − (𝐹‘𝑍))) ≤ (𝑀 · (abs‘(𝑌 − 𝑍)))) |