MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvlipcn Structured version   Visualization version   GIF version

Theorem dvlipcn 24194
Description: A complex function with derivative bounded by 𝑀 on an open ball is 𝑀-Lipschitz continuous. (Contributed by Mario Carneiro, 18-Mar-2015.)
Hypotheses
Ref Expression
dvlipcn.x (𝜑𝑋 ⊆ ℂ)
dvlipcn.f (𝜑𝐹:𝑋⟶ℂ)
dvlipcn.a (𝜑𝐴 ∈ ℂ)
dvlipcn.r (𝜑𝑅 ∈ ℝ*)
dvlipcn.b 𝐵 = (𝐴(ball‘(abs ∘ − ))𝑅)
dvlipcn.d (𝜑𝐵 ⊆ dom (ℂ D 𝐹))
dvlipcn.m (𝜑𝑀 ∈ ℝ)
dvlipcn.l ((𝜑𝑥𝐵) → (abs‘((ℂ D 𝐹)‘𝑥)) ≤ 𝑀)
Assertion
Ref Expression
dvlipcn ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (abs‘((𝐹𝑌) − (𝐹𝑍))) ≤ (𝑀 · (abs‘(𝑌𝑍))))
Distinct variable groups:   𝑥,𝐵   𝑥,𝐹   𝑥,𝑀   𝜑,𝑥
Allowed substitution hints:   𝐴(𝑥)   𝑅(𝑥)   𝑋(𝑥)   𝑌(𝑥)   𝑍(𝑥)

Proof of Theorem dvlipcn
Dummy variables 𝑡 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1elunit 12606 . . 3 1 ∈ (0[,]1)
2 0elunit 12605 . . 3 0 ∈ (0[,]1)
3 0red 10380 . . . 4 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → 0 ∈ ℝ)
4 1red 10377 . . . 4 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → 1 ∈ ℝ)
5 dvlipcn.d . . . . . . . . . . . . . 14 (𝜑𝐵 ⊆ dom (ℂ D 𝐹))
6 ssidd 3842 . . . . . . . . . . . . . . 15 (𝜑 → ℂ ⊆ ℂ)
7 dvlipcn.f . . . . . . . . . . . . . . 15 (𝜑𝐹:𝑋⟶ℂ)
8 dvlipcn.x . . . . . . . . . . . . . . 15 (𝜑𝑋 ⊆ ℂ)
96, 7, 8dvbss 24102 . . . . . . . . . . . . . 14 (𝜑 → dom (ℂ D 𝐹) ⊆ 𝑋)
105, 9sstrd 3830 . . . . . . . . . . . . 13 (𝜑𝐵𝑋)
1110, 8sstrd 3830 . . . . . . . . . . . 12 (𝜑𝐵 ⊆ ℂ)
1211adantr 474 . . . . . . . . . . 11 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → 𝐵 ⊆ ℂ)
13 simprl 761 . . . . . . . . . . 11 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → 𝑌𝐵)
1412, 13sseldd 3821 . . . . . . . . . 10 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → 𝑌 ∈ ℂ)
1514adantr 474 . . . . . . . . 9 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑡 ∈ (0[,]1)) → 𝑌 ∈ ℂ)
16 unitssre 12636 . . . . . . . . . . 11 (0[,]1) ⊆ ℝ
17 ax-resscn 10329 . . . . . . . . . . 11 ℝ ⊆ ℂ
1816, 17sstri 3829 . . . . . . . . . 10 (0[,]1) ⊆ ℂ
19 simpr 479 . . . . . . . . . 10 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑡 ∈ (0[,]1)) → 𝑡 ∈ (0[,]1))
2018, 19sseldi 3818 . . . . . . . . 9 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑡 ∈ (0[,]1)) → 𝑡 ∈ ℂ)
2115, 20mulcomd 10398 . . . . . . . 8 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑡 ∈ (0[,]1)) → (𝑌 · 𝑡) = (𝑡 · 𝑌))
22 simprr 763 . . . . . . . . . . 11 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → 𝑍𝐵)
2312, 22sseldd 3821 . . . . . . . . . 10 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → 𝑍 ∈ ℂ)
2423adantr 474 . . . . . . . . 9 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑡 ∈ (0[,]1)) → 𝑍 ∈ ℂ)
25 iirev 23136 . . . . . . . . . . 11 (𝑡 ∈ (0[,]1) → (1 − 𝑡) ∈ (0[,]1))
2625adantl 475 . . . . . . . . . 10 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑡 ∈ (0[,]1)) → (1 − 𝑡) ∈ (0[,]1))
2718, 26sseldi 3818 . . . . . . . . 9 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑡 ∈ (0[,]1)) → (1 − 𝑡) ∈ ℂ)
2824, 27mulcomd 10398 . . . . . . . 8 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑡 ∈ (0[,]1)) → (𝑍 · (1 − 𝑡)) = ((1 − 𝑡) · 𝑍))
2921, 28oveq12d 6940 . . . . . . 7 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑡 ∈ (0[,]1)) → ((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡))) = ((𝑡 · 𝑌) + ((1 − 𝑡) · 𝑍)))
30 dvlipcn.a . . . . . . . . 9 (𝜑𝐴 ∈ ℂ)
3130ad2antrr 716 . . . . . . . 8 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑡 ∈ (0[,]1)) → 𝐴 ∈ ℂ)
32 dvlipcn.r . . . . . . . . 9 (𝜑𝑅 ∈ ℝ*)
3332ad2antrr 716 . . . . . . . 8 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑡 ∈ (0[,]1)) → 𝑅 ∈ ℝ*)
3413adantr 474 . . . . . . . 8 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑡 ∈ (0[,]1)) → 𝑌𝐵)
3522adantr 474 . . . . . . . 8 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑡 ∈ (0[,]1)) → 𝑍𝐵)
36 dvlipcn.b . . . . . . . . 9 𝐵 = (𝐴(ball‘(abs ∘ − ))𝑅)
3736blcvx 23009 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝑌𝐵𝑍𝐵𝑡 ∈ (0[,]1))) → ((𝑡 · 𝑌) + ((1 − 𝑡) · 𝑍)) ∈ 𝐵)
3831, 33, 34, 35, 19, 37syl23anc 1445 . . . . . . 7 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑡 ∈ (0[,]1)) → ((𝑡 · 𝑌) + ((1 − 𝑡) · 𝑍)) ∈ 𝐵)
3929, 38eqeltrd 2858 . . . . . 6 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑡 ∈ (0[,]1)) → ((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡))) ∈ 𝐵)
40 eqidd 2778 . . . . . 6 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (𝑡 ∈ (0[,]1) ↦ ((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))) = (𝑡 ∈ (0[,]1) ↦ ((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))))
417, 10fssresd 6321 . . . . . . . . 9 (𝜑 → (𝐹𝐵):𝐵⟶ℂ)
4241feqmptd 6509 . . . . . . . 8 (𝜑 → (𝐹𝐵) = (𝑧𝐵 ↦ ((𝐹𝐵)‘𝑧)))
43 fvres 6465 . . . . . . . . 9 (𝑧𝐵 → ((𝐹𝐵)‘𝑧) = (𝐹𝑧))
4443mpteq2ia 4975 . . . . . . . 8 (𝑧𝐵 ↦ ((𝐹𝐵)‘𝑧)) = (𝑧𝐵 ↦ (𝐹𝑧))
4542, 44syl6eq 2829 . . . . . . 7 (𝜑 → (𝐹𝐵) = (𝑧𝐵 ↦ (𝐹𝑧)))
4645adantr 474 . . . . . 6 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (𝐹𝐵) = (𝑧𝐵 ↦ (𝐹𝑧)))
47 fveq2 6446 . . . . . 6 (𝑧 = ((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡))) → (𝐹𝑧) = (𝐹‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))))
4839, 40, 46, 47fmptco 6661 . . . . 5 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → ((𝐹𝐵) ∘ (𝑡 ∈ (0[,]1) ↦ ((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡))))) = (𝑡 ∈ (0[,]1) ↦ (𝐹‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡))))))
4939fmpttd 6649 . . . . . . 7 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (𝑡 ∈ (0[,]1) ↦ ((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))):(0[,]1)⟶𝐵)
50 eqid 2777 . . . . . . . . 9 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
5150addcn 23076 . . . . . . . . . 10 + ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld))
5251a1i 11 . . . . . . . . 9 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → + ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld)))
53 ssid 3841 . . . . . . . . . . . 12 ℂ ⊆ ℂ
54 cncfmptc 23122 . . . . . . . . . . . 12 ((𝑌 ∈ ℂ ∧ (0[,]1) ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑡 ∈ (0[,]1) ↦ 𝑌) ∈ ((0[,]1)–cn→ℂ))
5518, 53, 54mp3an23 1526 . . . . . . . . . . 11 (𝑌 ∈ ℂ → (𝑡 ∈ (0[,]1) ↦ 𝑌) ∈ ((0[,]1)–cn→ℂ))
5614, 55syl 17 . . . . . . . . . 10 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (𝑡 ∈ (0[,]1) ↦ 𝑌) ∈ ((0[,]1)–cn→ℂ))
57 cncfmptid 23123 . . . . . . . . . . . 12 (((0[,]1) ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑡 ∈ (0[,]1) ↦ 𝑡) ∈ ((0[,]1)–cn→ℂ))
5818, 53, 57mp2an 682 . . . . . . . . . . 11 (𝑡 ∈ (0[,]1) ↦ 𝑡) ∈ ((0[,]1)–cn→ℂ)
5958a1i 11 . . . . . . . . . 10 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (𝑡 ∈ (0[,]1) ↦ 𝑡) ∈ ((0[,]1)–cn→ℂ))
6056, 59mulcncf 23650 . . . . . . . . 9 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (𝑡 ∈ (0[,]1) ↦ (𝑌 · 𝑡)) ∈ ((0[,]1)–cn→ℂ))
61 cncfmptc 23122 . . . . . . . . . . . 12 ((𝑍 ∈ ℂ ∧ (0[,]1) ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑡 ∈ (0[,]1) ↦ 𝑍) ∈ ((0[,]1)–cn→ℂ))
6218, 53, 61mp3an23 1526 . . . . . . . . . . 11 (𝑍 ∈ ℂ → (𝑡 ∈ (0[,]1) ↦ 𝑍) ∈ ((0[,]1)–cn→ℂ))
6323, 62syl 17 . . . . . . . . . 10 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (𝑡 ∈ (0[,]1) ↦ 𝑍) ∈ ((0[,]1)–cn→ℂ))
6450subcn 23077 . . . . . . . . . . . 12 − ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld))
6564a1i 11 . . . . . . . . . . 11 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → − ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld)))
66 ax-1cn 10330 . . . . . . . . . . . . 13 1 ∈ ℂ
67 cncfmptc 23122 . . . . . . . . . . . . 13 ((1 ∈ ℂ ∧ (0[,]1) ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑡 ∈ (0[,]1) ↦ 1) ∈ ((0[,]1)–cn→ℂ))
6866, 18, 53, 67mp3an 1534 . . . . . . . . . . . 12 (𝑡 ∈ (0[,]1) ↦ 1) ∈ ((0[,]1)–cn→ℂ)
6968a1i 11 . . . . . . . . . . 11 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (𝑡 ∈ (0[,]1) ↦ 1) ∈ ((0[,]1)–cn→ℂ))
7050, 65, 69, 59cncfmpt2f 23125 . . . . . . . . . 10 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (𝑡 ∈ (0[,]1) ↦ (1 − 𝑡)) ∈ ((0[,]1)–cn→ℂ))
7163, 70mulcncf 23650 . . . . . . . . 9 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (𝑡 ∈ (0[,]1) ↦ (𝑍 · (1 − 𝑡))) ∈ ((0[,]1)–cn→ℂ))
7250, 52, 60, 71cncfmpt2f 23125 . . . . . . . 8 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (𝑡 ∈ (0[,]1) ↦ ((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))) ∈ ((0[,]1)–cn→ℂ))
73 cncffvrn 23109 . . . . . . . 8 ((𝐵 ⊆ ℂ ∧ (𝑡 ∈ (0[,]1) ↦ ((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))) ∈ ((0[,]1)–cn→ℂ)) → ((𝑡 ∈ (0[,]1) ↦ ((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))) ∈ ((0[,]1)–cn𝐵) ↔ (𝑡 ∈ (0[,]1) ↦ ((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))):(0[,]1)⟶𝐵))
7412, 72, 73syl2anc 579 . . . . . . 7 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → ((𝑡 ∈ (0[,]1) ↦ ((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))) ∈ ((0[,]1)–cn𝐵) ↔ (𝑡 ∈ (0[,]1) ↦ ((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))):(0[,]1)⟶𝐵))
7549, 74mpbird 249 . . . . . 6 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (𝑡 ∈ (0[,]1) ↦ ((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))) ∈ ((0[,]1)–cn𝐵))
76 ssidd 3842 . . . . . . 7 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → ℂ ⊆ ℂ)
7741adantr 474 . . . . . . 7 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (𝐹𝐵):𝐵⟶ℂ)
7850cnfldtopon 22994 . . . . . . . . . . . . . 14 (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
7978toponrestid 21133 . . . . . . . . . . . . 13 (TopOpen‘ℂfld) = ((TopOpen‘ℂfld) ↾t ℂ)
8050, 79dvres 24112 . . . . . . . . . . . 12 (((ℂ ⊆ ℂ ∧ 𝐹:𝑋⟶ℂ) ∧ (𝑋 ⊆ ℂ ∧ 𝐵 ⊆ ℂ)) → (ℂ D (𝐹𝐵)) = ((ℂ D 𝐹) ↾ ((int‘(TopOpen‘ℂfld))‘𝐵)))
816, 7, 8, 11, 80syl22anc 829 . . . . . . . . . . 11 (𝜑 → (ℂ D (𝐹𝐵)) = ((ℂ D 𝐹) ↾ ((int‘(TopOpen‘ℂfld))‘𝐵)))
8250cnfldtop 22995 . . . . . . . . . . . . 13 (TopOpen‘ℂfld) ∈ Top
83 cnxmet 22984 . . . . . . . . . . . . . . . 16 (abs ∘ − ) ∈ (∞Met‘ℂ)
8483a1i 11 . . . . . . . . . . . . . . 15 (𝜑 → (abs ∘ − ) ∈ (∞Met‘ℂ))
8550cnfldtopn 22993 . . . . . . . . . . . . . . . 16 (TopOpen‘ℂfld) = (MetOpen‘(abs ∘ − ))
8685blopn 22713 . . . . . . . . . . . . . . 15 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝐴 ∈ ℂ ∧ 𝑅 ∈ ℝ*) → (𝐴(ball‘(abs ∘ − ))𝑅) ∈ (TopOpen‘ℂfld))
8784, 30, 32, 86syl3anc 1439 . . . . . . . . . . . . . 14 (𝜑 → (𝐴(ball‘(abs ∘ − ))𝑅) ∈ (TopOpen‘ℂfld))
8836, 87syl5eqel 2862 . . . . . . . . . . . . 13 (𝜑𝐵 ∈ (TopOpen‘ℂfld))
89 isopn3i 21294 . . . . . . . . . . . . 13 (((TopOpen‘ℂfld) ∈ Top ∧ 𝐵 ∈ (TopOpen‘ℂfld)) → ((int‘(TopOpen‘ℂfld))‘𝐵) = 𝐵)
9082, 88, 89sylancr 581 . . . . . . . . . . . 12 (𝜑 → ((int‘(TopOpen‘ℂfld))‘𝐵) = 𝐵)
9190reseq2d 5642 . . . . . . . . . . 11 (𝜑 → ((ℂ D 𝐹) ↾ ((int‘(TopOpen‘ℂfld))‘𝐵)) = ((ℂ D 𝐹) ↾ 𝐵))
9281, 91eqtrd 2813 . . . . . . . . . 10 (𝜑 → (ℂ D (𝐹𝐵)) = ((ℂ D 𝐹) ↾ 𝐵))
9392dmeqd 5571 . . . . . . . . 9 (𝜑 → dom (ℂ D (𝐹𝐵)) = dom ((ℂ D 𝐹) ↾ 𝐵))
94 dmres 5668 . . . . . . . . . 10 dom ((ℂ D 𝐹) ↾ 𝐵) = (𝐵 ∩ dom (ℂ D 𝐹))
95 df-ss 3805 . . . . . . . . . . 11 (𝐵 ⊆ dom (ℂ D 𝐹) ↔ (𝐵 ∩ dom (ℂ D 𝐹)) = 𝐵)
965, 95sylib 210 . . . . . . . . . 10 (𝜑 → (𝐵 ∩ dom (ℂ D 𝐹)) = 𝐵)
9794, 96syl5eq 2825 . . . . . . . . 9 (𝜑 → dom ((ℂ D 𝐹) ↾ 𝐵) = 𝐵)
9893, 97eqtrd 2813 . . . . . . . 8 (𝜑 → dom (ℂ D (𝐹𝐵)) = 𝐵)
9998adantr 474 . . . . . . 7 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → dom (ℂ D (𝐹𝐵)) = 𝐵)
100 dvcn 24121 . . . . . . 7 (((ℂ ⊆ ℂ ∧ (𝐹𝐵):𝐵⟶ℂ ∧ 𝐵 ⊆ ℂ) ∧ dom (ℂ D (𝐹𝐵)) = 𝐵) → (𝐹𝐵) ∈ (𝐵cn→ℂ))
10176, 77, 12, 99, 100syl31anc 1441 . . . . . 6 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (𝐹𝐵) ∈ (𝐵cn→ℂ))
10275, 101cncfco 23118 . . . . 5 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → ((𝐹𝐵) ∘ (𝑡 ∈ (0[,]1) ↦ ((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡))))) ∈ ((0[,]1)–cn→ℂ))
10348, 102eqeltrrd 2859 . . . 4 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (𝑡 ∈ (0[,]1) ↦ (𝐹‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡))))) ∈ ((0[,]1)–cn→ℂ))
10417a1i 11 . . . . . . . 8 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → ℝ ⊆ ℂ)
10516a1i 11 . . . . . . . 8 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (0[,]1) ⊆ ℝ)
1067ad2antrr 716 . . . . . . . . 9 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑡 ∈ (0[,]1)) → 𝐹:𝑋⟶ℂ)
10710ad2antrr 716 . . . . . . . . . 10 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑡 ∈ (0[,]1)) → 𝐵𝑋)
108107, 39sseldd 3821 . . . . . . . . 9 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑡 ∈ (0[,]1)) → ((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡))) ∈ 𝑋)
109106, 108ffvelrnd 6624 . . . . . . . 8 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑡 ∈ (0[,]1)) → (𝐹‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))) ∈ ℂ)
11050tgioo2 23014 . . . . . . . 8 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
111 1re 10376 . . . . . . . . 9 1 ∈ ℝ
112 iccntr 23032 . . . . . . . . 9 ((0 ∈ ℝ ∧ 1 ∈ ℝ) → ((int‘(topGen‘ran (,)))‘(0[,]1)) = (0(,)1))
1133, 111, 112sylancl 580 . . . . . . . 8 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → ((int‘(topGen‘ran (,)))‘(0[,]1)) = (0(,)1))
114104, 105, 109, 110, 50, 113dvmptntr 24171 . . . . . . 7 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (ℝ D (𝑡 ∈ (0[,]1) ↦ (𝐹‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))))) = (ℝ D (𝑡 ∈ (0(,)1) ↦ (𝐹‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))))))
115 reelprrecn 10364 . . . . . . . . 9 ℝ ∈ {ℝ, ℂ}
116115a1i 11 . . . . . . . 8 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → ℝ ∈ {ℝ, ℂ})
117 cnelprrecn 10365 . . . . . . . . 9 ℂ ∈ {ℝ, ℂ}
118117a1i 11 . . . . . . . 8 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → ℂ ∈ {ℝ, ℂ})
119 ioossicc 12571 . . . . . . . . . 10 (0(,)1) ⊆ (0[,]1)
120119sseli 3816 . . . . . . . . 9 (𝑡 ∈ (0(,)1) → 𝑡 ∈ (0[,]1))
121120, 39sylan2 586 . . . . . . . 8 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑡 ∈ (0(,)1)) → ((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡))) ∈ 𝐵)
12214, 23subcld 10734 . . . . . . . . 9 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (𝑌𝑍) ∈ ℂ)
123122adantr 474 . . . . . . . 8 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑡 ∈ (0(,)1)) → (𝑌𝑍) ∈ ℂ)
12410adantr 474 . . . . . . . . . 10 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → 𝐵𝑋)
125124sselda 3820 . . . . . . . . 9 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑧𝐵) → 𝑧𝑋)
1267adantr 474 . . . . . . . . . 10 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → 𝐹:𝑋⟶ℂ)
127126ffvelrnda 6623 . . . . . . . . 9 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑧𝑋) → (𝐹𝑧) ∈ ℂ)
128125, 127syldan 585 . . . . . . . 8 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑧𝐵) → (𝐹𝑧) ∈ ℂ)
129 fvexd 6461 . . . . . . . 8 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑧𝐵) → ((ℂ D 𝐹)‘𝑧) ∈ V)
13014adantr 474 . . . . . . . . . . 11 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑡 ∈ (0(,)1)) → 𝑌 ∈ ℂ)
131120, 20sylan2 586 . . . . . . . . . . 11 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑡 ∈ (0(,)1)) → 𝑡 ∈ ℂ)
132130, 131mulcld 10397 . . . . . . . . . 10 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑡 ∈ (0(,)1)) → (𝑌 · 𝑡) ∈ ℂ)
133 1red 10377 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑡 ∈ (0(,)1)) → 1 ∈ ℝ)
134 simpr 479 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑡 ∈ ℝ) → 𝑡 ∈ ℝ)
135134recnd 10405 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑡 ∈ ℝ) → 𝑡 ∈ ℂ)
136 1red 10377 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑡 ∈ ℝ) → 1 ∈ ℝ)
137116dvmptid 24157 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (ℝ D (𝑡 ∈ ℝ ↦ 𝑡)) = (𝑡 ∈ ℝ ↦ 1))
138 ioossre 12547 . . . . . . . . . . . . . 14 (0(,)1) ⊆ ℝ
139138a1i 11 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (0(,)1) ⊆ ℝ)
140 iooretop 22977 . . . . . . . . . . . . . 14 (0(,)1) ∈ (topGen‘ran (,))
141140a1i 11 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (0(,)1) ∈ (topGen‘ran (,)))
142116, 135, 136, 137, 139, 110, 50, 141dvmptres 24163 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (ℝ D (𝑡 ∈ (0(,)1) ↦ 𝑡)) = (𝑡 ∈ (0(,)1) ↦ 1))
143116, 131, 133, 142, 14dvmptcmul 24164 . . . . . . . . . . 11 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (ℝ D (𝑡 ∈ (0(,)1) ↦ (𝑌 · 𝑡))) = (𝑡 ∈ (0(,)1) ↦ (𝑌 · 1)))
14414mulid1d 10394 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (𝑌 · 1) = 𝑌)
145144mpteq2dv 4980 . . . . . . . . . . 11 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (𝑡 ∈ (0(,)1) ↦ (𝑌 · 1)) = (𝑡 ∈ (0(,)1) ↦ 𝑌))
146143, 145eqtrd 2813 . . . . . . . . . 10 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (ℝ D (𝑡 ∈ (0(,)1) ↦ (𝑌 · 𝑡))) = (𝑡 ∈ (0(,)1) ↦ 𝑌))
14723adantr 474 . . . . . . . . . . 11 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑡 ∈ (0(,)1)) → 𝑍 ∈ ℂ)
148120, 27sylan2 586 . . . . . . . . . . 11 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑡 ∈ (0(,)1)) → (1 − 𝑡) ∈ ℂ)
149147, 148mulcld 10397 . . . . . . . . . 10 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑡 ∈ (0(,)1)) → (𝑍 · (1 − 𝑡)) ∈ ℂ)
150 negex 10620 . . . . . . . . . . 11 -𝑍 ∈ V
151150a1i 11 . . . . . . . . . 10 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑡 ∈ (0(,)1)) → -𝑍 ∈ V)
152 negex 10620 . . . . . . . . . . . . 13 -1 ∈ V
153152a1i 11 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑡 ∈ (0(,)1)) → -1 ∈ V)
154 1cnd 10371 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑡 ∈ (0(,)1)) → 1 ∈ ℂ)
155 0red 10380 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑡 ∈ (0(,)1)) → 0 ∈ ℝ)
156 1cnd 10371 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑡 ∈ ℝ) → 1 ∈ ℂ)
157 0red 10380 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑡 ∈ ℝ) → 0 ∈ ℝ)
158 1cnd 10371 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → 1 ∈ ℂ)
159116, 158dvmptc 24158 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (ℝ D (𝑡 ∈ ℝ ↦ 1)) = (𝑡 ∈ ℝ ↦ 0))
160116, 156, 157, 159, 139, 110, 50, 141dvmptres 24163 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (ℝ D (𝑡 ∈ (0(,)1) ↦ 1)) = (𝑡 ∈ (0(,)1) ↦ 0))
161116, 154, 155, 160, 131, 133, 142dvmptsub 24167 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (ℝ D (𝑡 ∈ (0(,)1) ↦ (1 − 𝑡))) = (𝑡 ∈ (0(,)1) ↦ (0 − 1)))
162 df-neg 10609 . . . . . . . . . . . . . 14 -1 = (0 − 1)
163162mpteq2i 4976 . . . . . . . . . . . . 13 (𝑡 ∈ (0(,)1) ↦ -1) = (𝑡 ∈ (0(,)1) ↦ (0 − 1))
164161, 163syl6eqr 2831 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (ℝ D (𝑡 ∈ (0(,)1) ↦ (1 − 𝑡))) = (𝑡 ∈ (0(,)1) ↦ -1))
165116, 148, 153, 164, 23dvmptcmul 24164 . . . . . . . . . . 11 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (ℝ D (𝑡 ∈ (0(,)1) ↦ (𝑍 · (1 − 𝑡)))) = (𝑡 ∈ (0(,)1) ↦ (𝑍 · -1)))
166 neg1cn 11496 . . . . . . . . . . . . . 14 -1 ∈ ℂ
167 mulcom 10358 . . . . . . . . . . . . . 14 ((𝑍 ∈ ℂ ∧ -1 ∈ ℂ) → (𝑍 · -1) = (-1 · 𝑍))
16823, 166, 167sylancl 580 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (𝑍 · -1) = (-1 · 𝑍))
16923mulm1d 10827 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (-1 · 𝑍) = -𝑍)
170168, 169eqtrd 2813 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (𝑍 · -1) = -𝑍)
171170mpteq2dv 4980 . . . . . . . . . . 11 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (𝑡 ∈ (0(,)1) ↦ (𝑍 · -1)) = (𝑡 ∈ (0(,)1) ↦ -𝑍))
172165, 171eqtrd 2813 . . . . . . . . . 10 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (ℝ D (𝑡 ∈ (0(,)1) ↦ (𝑍 · (1 − 𝑡)))) = (𝑡 ∈ (0(,)1) ↦ -𝑍))
173116, 132, 130, 146, 149, 151, 172dvmptadd 24160 . . . . . . . . 9 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (ℝ D (𝑡 ∈ (0(,)1) ↦ ((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡))))) = (𝑡 ∈ (0(,)1) ↦ (𝑌 + -𝑍)))
17414, 23negsubd 10740 . . . . . . . . . 10 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (𝑌 + -𝑍) = (𝑌𝑍))
175174mpteq2dv 4980 . . . . . . . . 9 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (𝑡 ∈ (0(,)1) ↦ (𝑌 + -𝑍)) = (𝑡 ∈ (0(,)1) ↦ (𝑌𝑍)))
176173, 175eqtrd 2813 . . . . . . . 8 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (ℝ D (𝑡 ∈ (0(,)1) ↦ ((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡))))) = (𝑡 ∈ (0(,)1) ↦ (𝑌𝑍)))
1778adantr 474 . . . . . . . . . . 11 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → 𝑋 ⊆ ℂ)
17876, 126, 177, 12, 80syl22anc 829 . . . . . . . . . 10 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (ℂ D (𝐹𝐵)) = ((ℂ D 𝐹) ↾ ((int‘(TopOpen‘ℂfld))‘𝐵)))
17990adantr 474 . . . . . . . . . . 11 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → ((int‘(TopOpen‘ℂfld))‘𝐵) = 𝐵)
180179reseq2d 5642 . . . . . . . . . 10 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → ((ℂ D 𝐹) ↾ ((int‘(TopOpen‘ℂfld))‘𝐵)) = ((ℂ D 𝐹) ↾ 𝐵))
181178, 180eqtrd 2813 . . . . . . . . 9 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (ℂ D (𝐹𝐵)) = ((ℂ D 𝐹) ↾ 𝐵))
18246oveq2d 6938 . . . . . . . . 9 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (ℂ D (𝐹𝐵)) = (ℂ D (𝑧𝐵 ↦ (𝐹𝑧))))
183 dvfcn 24109 . . . . . . . . . . . . 13 (ℂ D (𝐹𝐵)):dom (ℂ D (𝐹𝐵))⟶ℂ
18499feq2d 6277 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → ((ℂ D (𝐹𝐵)):dom (ℂ D (𝐹𝐵))⟶ℂ ↔ (ℂ D (𝐹𝐵)):𝐵⟶ℂ))
185183, 184mpbii 225 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (ℂ D (𝐹𝐵)):𝐵⟶ℂ)
186181feq1d 6276 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → ((ℂ D (𝐹𝐵)):𝐵⟶ℂ ↔ ((ℂ D 𝐹) ↾ 𝐵):𝐵⟶ℂ))
187185, 186mpbid 224 . . . . . . . . . . 11 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → ((ℂ D 𝐹) ↾ 𝐵):𝐵⟶ℂ)
188187feqmptd 6509 . . . . . . . . . 10 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → ((ℂ D 𝐹) ↾ 𝐵) = (𝑧𝐵 ↦ (((ℂ D 𝐹) ↾ 𝐵)‘𝑧)))
189 fvres 6465 . . . . . . . . . . 11 (𝑧𝐵 → (((ℂ D 𝐹) ↾ 𝐵)‘𝑧) = ((ℂ D 𝐹)‘𝑧))
190189mpteq2ia 4975 . . . . . . . . . 10 (𝑧𝐵 ↦ (((ℂ D 𝐹) ↾ 𝐵)‘𝑧)) = (𝑧𝐵 ↦ ((ℂ D 𝐹)‘𝑧))
191188, 190syl6eq 2829 . . . . . . . . 9 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → ((ℂ D 𝐹) ↾ 𝐵) = (𝑧𝐵 ↦ ((ℂ D 𝐹)‘𝑧)))
192181, 182, 1913eqtr3d 2821 . . . . . . . 8 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (ℂ D (𝑧𝐵 ↦ (𝐹𝑧))) = (𝑧𝐵 ↦ ((ℂ D 𝐹)‘𝑧)))
193 fveq2 6446 . . . . . . . 8 (𝑧 = ((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡))) → ((ℂ D 𝐹)‘𝑧) = ((ℂ D 𝐹)‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))))
194116, 118, 121, 123, 128, 129, 176, 192, 47, 193dvmptco 24172 . . . . . . 7 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (ℝ D (𝑡 ∈ (0(,)1) ↦ (𝐹‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))))) = (𝑡 ∈ (0(,)1) ↦ (((ℂ D 𝐹)‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))) · (𝑌𝑍))))
195114, 194eqtrd 2813 . . . . . 6 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (ℝ D (𝑡 ∈ (0[,]1) ↦ (𝐹‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))))) = (𝑡 ∈ (0(,)1) ↦ (((ℂ D 𝐹)‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))) · (𝑌𝑍))))
196195dmeqd 5571 . . . . 5 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → dom (ℝ D (𝑡 ∈ (0[,]1) ↦ (𝐹‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))))) = dom (𝑡 ∈ (0(,)1) ↦ (((ℂ D 𝐹)‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))) · (𝑌𝑍))))
197 ovex 6954 . . . . . . 7 (((ℂ D 𝐹)‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))) · (𝑌𝑍)) ∈ V
198197rgenw 3105 . . . . . 6 𝑡 ∈ (0(,)1)(((ℂ D 𝐹)‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))) · (𝑌𝑍)) ∈ V
199 dmmptg 5886 . . . . . 6 (∀𝑡 ∈ (0(,)1)(((ℂ D 𝐹)‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))) · (𝑌𝑍)) ∈ V → dom (𝑡 ∈ (0(,)1) ↦ (((ℂ D 𝐹)‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))) · (𝑌𝑍))) = (0(,)1))
200198, 199mp1i 13 . . . . 5 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → dom (𝑡 ∈ (0(,)1) ↦ (((ℂ D 𝐹)‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))) · (𝑌𝑍))) = (0(,)1))
201196, 200eqtrd 2813 . . . 4 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → dom (ℝ D (𝑡 ∈ (0[,]1) ↦ (𝐹‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))))) = (0(,)1))
202 dvlipcn.m . . . . . 6 (𝜑𝑀 ∈ ℝ)
203202adantr 474 . . . . 5 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → 𝑀 ∈ ℝ)
204122abscld 14583 . . . . 5 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (abs‘(𝑌𝑍)) ∈ ℝ)
205203, 204remulcld 10407 . . . 4 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (𝑀 · (abs‘(𝑌𝑍))) ∈ ℝ)
206195fveq1d 6448 . . . . . . . . . . 11 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → ((ℝ D (𝑡 ∈ (0[,]1) ↦ (𝐹‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡))))))‘𝑡) = ((𝑡 ∈ (0(,)1) ↦ (((ℂ D 𝐹)‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))) · (𝑌𝑍)))‘𝑡))
207 eqid 2777 . . . . . . . . . . . . 13 (𝑡 ∈ (0(,)1) ↦ (((ℂ D 𝐹)‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))) · (𝑌𝑍))) = (𝑡 ∈ (0(,)1) ↦ (((ℂ D 𝐹)‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))) · (𝑌𝑍)))
208207fvmpt2 6552 . . . . . . . . . . . 12 ((𝑡 ∈ (0(,)1) ∧ (((ℂ D 𝐹)‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))) · (𝑌𝑍)) ∈ V) → ((𝑡 ∈ (0(,)1) ↦ (((ℂ D 𝐹)‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))) · (𝑌𝑍)))‘𝑡) = (((ℂ D 𝐹)‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))) · (𝑌𝑍)))
209197, 208mpan2 681 . . . . . . . . . . 11 (𝑡 ∈ (0(,)1) → ((𝑡 ∈ (0(,)1) ↦ (((ℂ D 𝐹)‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))) · (𝑌𝑍)))‘𝑡) = (((ℂ D 𝐹)‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))) · (𝑌𝑍)))
210206, 209sylan9eq 2833 . . . . . . . . . 10 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑡 ∈ (0(,)1)) → ((ℝ D (𝑡 ∈ (0[,]1) ↦ (𝐹‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡))))))‘𝑡) = (((ℂ D 𝐹)‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))) · (𝑌𝑍)))
211210fveq2d 6450 . . . . . . . . 9 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑡 ∈ (0(,)1)) → (abs‘((ℝ D (𝑡 ∈ (0[,]1) ↦ (𝐹‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡))))))‘𝑡)) = (abs‘(((ℂ D 𝐹)‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))) · (𝑌𝑍))))
212 dvfcn 24109 . . . . . . . . . . 11 (ℂ D 𝐹):dom (ℂ D 𝐹)⟶ℂ
2135ad2antrr 716 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑡 ∈ (0(,)1)) → 𝐵 ⊆ dom (ℂ D 𝐹))
214213, 121sseldd 3821 . . . . . . . . . . 11 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑡 ∈ (0(,)1)) → ((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡))) ∈ dom (ℂ D 𝐹))
215 ffvelrn 6621 . . . . . . . . . . 11 (((ℂ D 𝐹):dom (ℂ D 𝐹)⟶ℂ ∧ ((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡))) ∈ dom (ℂ D 𝐹)) → ((ℂ D 𝐹)‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))) ∈ ℂ)
216212, 214, 215sylancr 581 . . . . . . . . . 10 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑡 ∈ (0(,)1)) → ((ℂ D 𝐹)‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))) ∈ ℂ)
217216, 123absmuld 14601 . . . . . . . . 9 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑡 ∈ (0(,)1)) → (abs‘(((ℂ D 𝐹)‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))) · (𝑌𝑍))) = ((abs‘((ℂ D 𝐹)‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡))))) · (abs‘(𝑌𝑍))))
218211, 217eqtrd 2813 . . . . . . . 8 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑡 ∈ (0(,)1)) → (abs‘((ℝ D (𝑡 ∈ (0[,]1) ↦ (𝐹‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡))))))‘𝑡)) = ((abs‘((ℂ D 𝐹)‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡))))) · (abs‘(𝑌𝑍))))
219216abscld 14583 . . . . . . . . 9 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑡 ∈ (0(,)1)) → (abs‘((ℂ D 𝐹)‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡))))) ∈ ℝ)
220202ad2antrr 716 . . . . . . . . 9 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑡 ∈ (0(,)1)) → 𝑀 ∈ ℝ)
221123abscld 14583 . . . . . . . . 9 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑡 ∈ (0(,)1)) → (abs‘(𝑌𝑍)) ∈ ℝ)
222123absge0d 14591 . . . . . . . . 9 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑡 ∈ (0(,)1)) → 0 ≤ (abs‘(𝑌𝑍)))
223 2fveq3 6451 . . . . . . . . . . 11 (𝑦 = ((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡))) → (abs‘((ℂ D 𝐹)‘𝑦)) = (abs‘((ℂ D 𝐹)‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡))))))
224223breq1d 4896 . . . . . . . . . 10 (𝑦 = ((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡))) → ((abs‘((ℂ D 𝐹)‘𝑦)) ≤ 𝑀 ↔ (abs‘((ℂ D 𝐹)‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡))))) ≤ 𝑀))
225 dvlipcn.l . . . . . . . . . . . . 13 ((𝜑𝑥𝐵) → (abs‘((ℂ D 𝐹)‘𝑥)) ≤ 𝑀)
226225ralrimiva 3147 . . . . . . . . . . . 12 (𝜑 → ∀𝑥𝐵 (abs‘((ℂ D 𝐹)‘𝑥)) ≤ 𝑀)
227 2fveq3 6451 . . . . . . . . . . . . . 14 (𝑥 = 𝑦 → (abs‘((ℂ D 𝐹)‘𝑥)) = (abs‘((ℂ D 𝐹)‘𝑦)))
228227breq1d 4896 . . . . . . . . . . . . 13 (𝑥 = 𝑦 → ((abs‘((ℂ D 𝐹)‘𝑥)) ≤ 𝑀 ↔ (abs‘((ℂ D 𝐹)‘𝑦)) ≤ 𝑀))
229228cbvralv 3366 . . . . . . . . . . . 12 (∀𝑥𝐵 (abs‘((ℂ D 𝐹)‘𝑥)) ≤ 𝑀 ↔ ∀𝑦𝐵 (abs‘((ℂ D 𝐹)‘𝑦)) ≤ 𝑀)
230226, 229sylib 210 . . . . . . . . . . 11 (𝜑 → ∀𝑦𝐵 (abs‘((ℂ D 𝐹)‘𝑦)) ≤ 𝑀)
231230ad2antrr 716 . . . . . . . . . 10 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑡 ∈ (0(,)1)) → ∀𝑦𝐵 (abs‘((ℂ D 𝐹)‘𝑦)) ≤ 𝑀)
232224, 231, 121rspcdva 3516 . . . . . . . . 9 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑡 ∈ (0(,)1)) → (abs‘((ℂ D 𝐹)‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡))))) ≤ 𝑀)
233219, 220, 221, 222, 232lemul1ad 11317 . . . . . . . 8 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑡 ∈ (0(,)1)) → ((abs‘((ℂ D 𝐹)‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡))))) · (abs‘(𝑌𝑍))) ≤ (𝑀 · (abs‘(𝑌𝑍))))
234218, 233eqbrtrd 4908 . . . . . . 7 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑡 ∈ (0(,)1)) → (abs‘((ℝ D (𝑡 ∈ (0[,]1) ↦ (𝐹‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡))))))‘𝑡)) ≤ (𝑀 · (abs‘(𝑌𝑍))))
235234ralrimiva 3147 . . . . . 6 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → ∀𝑡 ∈ (0(,)1)(abs‘((ℝ D (𝑡 ∈ (0[,]1) ↦ (𝐹‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡))))))‘𝑡)) ≤ (𝑀 · (abs‘(𝑌𝑍))))
236 nfv 1957 . . . . . . 7 𝑧(abs‘((ℝ D (𝑡 ∈ (0[,]1) ↦ (𝐹‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡))))))‘𝑡)) ≤ (𝑀 · (abs‘(𝑌𝑍)))
237 nfcv 2933 . . . . . . . . 9 𝑡abs
238 nfcv 2933 . . . . . . . . . . 11 𝑡
239 nfcv 2933 . . . . . . . . . . 11 𝑡 D
240 nfmpt1 4982 . . . . . . . . . . 11 𝑡(𝑡 ∈ (0[,]1) ↦ (𝐹‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))))
241238, 239, 240nfov 6952 . . . . . . . . . 10 𝑡(ℝ D (𝑡 ∈ (0[,]1) ↦ (𝐹‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡))))))
242 nfcv 2933 . . . . . . . . . 10 𝑡𝑧
243241, 242nffv 6456 . . . . . . . . 9 𝑡((ℝ D (𝑡 ∈ (0[,]1) ↦ (𝐹‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡))))))‘𝑧)
244237, 243nffv 6456 . . . . . . . 8 𝑡(abs‘((ℝ D (𝑡 ∈ (0[,]1) ↦ (𝐹‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡))))))‘𝑧))
245 nfcv 2933 . . . . . . . 8 𝑡
246 nfcv 2933 . . . . . . . 8 𝑡(𝑀 · (abs‘(𝑌𝑍)))
247244, 245, 246nfbr 4933 . . . . . . 7 𝑡(abs‘((ℝ D (𝑡 ∈ (0[,]1) ↦ (𝐹‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡))))))‘𝑧)) ≤ (𝑀 · (abs‘(𝑌𝑍)))
248 2fveq3 6451 . . . . . . . 8 (𝑡 = 𝑧 → (abs‘((ℝ D (𝑡 ∈ (0[,]1) ↦ (𝐹‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡))))))‘𝑡)) = (abs‘((ℝ D (𝑡 ∈ (0[,]1) ↦ (𝐹‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡))))))‘𝑧)))
249248breq1d 4896 . . . . . . 7 (𝑡 = 𝑧 → ((abs‘((ℝ D (𝑡 ∈ (0[,]1) ↦ (𝐹‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡))))))‘𝑡)) ≤ (𝑀 · (abs‘(𝑌𝑍))) ↔ (abs‘((ℝ D (𝑡 ∈ (0[,]1) ↦ (𝐹‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡))))))‘𝑧)) ≤ (𝑀 · (abs‘(𝑌𝑍)))))
250236, 247, 249cbvral 3362 . . . . . 6 (∀𝑡 ∈ (0(,)1)(abs‘((ℝ D (𝑡 ∈ (0[,]1) ↦ (𝐹‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡))))))‘𝑡)) ≤ (𝑀 · (abs‘(𝑌𝑍))) ↔ ∀𝑧 ∈ (0(,)1)(abs‘((ℝ D (𝑡 ∈ (0[,]1) ↦ (𝐹‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡))))))‘𝑧)) ≤ (𝑀 · (abs‘(𝑌𝑍))))
251235, 250sylib 210 . . . . 5 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → ∀𝑧 ∈ (0(,)1)(abs‘((ℝ D (𝑡 ∈ (0[,]1) ↦ (𝐹‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡))))))‘𝑧)) ≤ (𝑀 · (abs‘(𝑌𝑍))))
252251r19.21bi 3113 . . . 4 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑧 ∈ (0(,)1)) → (abs‘((ℝ D (𝑡 ∈ (0[,]1) ↦ (𝐹‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡))))))‘𝑧)) ≤ (𝑀 · (abs‘(𝑌𝑍))))
2533, 4, 103, 201, 205, 252dvlip 24193 . . 3 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ (1 ∈ (0[,]1) ∧ 0 ∈ (0[,]1))) → (abs‘(((𝑡 ∈ (0[,]1) ↦ (𝐹‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))))‘1) − ((𝑡 ∈ (0[,]1) ↦ (𝐹‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))))‘0))) ≤ ((𝑀 · (abs‘(𝑌𝑍))) · (abs‘(1 − 0))))
2541, 2, 253mpanr12 695 . 2 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (abs‘(((𝑡 ∈ (0[,]1) ↦ (𝐹‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))))‘1) − ((𝑡 ∈ (0[,]1) ↦ (𝐹‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))))‘0))) ≤ ((𝑀 · (abs‘(𝑌𝑍))) · (abs‘(1 − 0))))
255 oveq2 6930 . . . . . . . . 9 (𝑡 = 1 → (𝑌 · 𝑡) = (𝑌 · 1))
256 oveq2 6930 . . . . . . . . . . 11 (𝑡 = 1 → (1 − 𝑡) = (1 − 1))
257 1m1e0 11447 . . . . . . . . . . 11 (1 − 1) = 0
258256, 257syl6eq 2829 . . . . . . . . . 10 (𝑡 = 1 → (1 − 𝑡) = 0)
259258oveq2d 6938 . . . . . . . . 9 (𝑡 = 1 → (𝑍 · (1 − 𝑡)) = (𝑍 · 0))
260255, 259oveq12d 6940 . . . . . . . 8 (𝑡 = 1 → ((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡))) = ((𝑌 · 1) + (𝑍 · 0)))
261260fveq2d 6450 . . . . . . 7 (𝑡 = 1 → (𝐹‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))) = (𝐹‘((𝑌 · 1) + (𝑍 · 0))))
262 eqid 2777 . . . . . . 7 (𝑡 ∈ (0[,]1) ↦ (𝐹‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡))))) = (𝑡 ∈ (0[,]1) ↦ (𝐹‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))))
263 fvex 6459 . . . . . . 7 (𝐹‘((𝑌 · 1) + (𝑍 · 0))) ∈ V
264261, 262, 263fvmpt 6542 . . . . . 6 (1 ∈ (0[,]1) → ((𝑡 ∈ (0[,]1) ↦ (𝐹‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))))‘1) = (𝐹‘((𝑌 · 1) + (𝑍 · 0))))
2651, 264ax-mp 5 . . . . 5 ((𝑡 ∈ (0[,]1) ↦ (𝐹‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))))‘1) = (𝐹‘((𝑌 · 1) + (𝑍 · 0)))
26623mul01d 10575 . . . . . . . 8 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (𝑍 · 0) = 0)
267144, 266oveq12d 6940 . . . . . . 7 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → ((𝑌 · 1) + (𝑍 · 0)) = (𝑌 + 0))
26814addid1d 10576 . . . . . . 7 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (𝑌 + 0) = 𝑌)
269267, 268eqtrd 2813 . . . . . 6 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → ((𝑌 · 1) + (𝑍 · 0)) = 𝑌)
270269fveq2d 6450 . . . . 5 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (𝐹‘((𝑌 · 1) + (𝑍 · 0))) = (𝐹𝑌))
271265, 270syl5eq 2825 . . . 4 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → ((𝑡 ∈ (0[,]1) ↦ (𝐹‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))))‘1) = (𝐹𝑌))
272 oveq2 6930 . . . . . . . . 9 (𝑡 = 0 → (𝑌 · 𝑡) = (𝑌 · 0))
273 oveq2 6930 . . . . . . . . . . 11 (𝑡 = 0 → (1 − 𝑡) = (1 − 0))
274 1m0e1 11503 . . . . . . . . . . 11 (1 − 0) = 1
275273, 274syl6eq 2829 . . . . . . . . . 10 (𝑡 = 0 → (1 − 𝑡) = 1)
276275oveq2d 6938 . . . . . . . . 9 (𝑡 = 0 → (𝑍 · (1 − 𝑡)) = (𝑍 · 1))
277272, 276oveq12d 6940 . . . . . . . 8 (𝑡 = 0 → ((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡))) = ((𝑌 · 0) + (𝑍 · 1)))
278277fveq2d 6450 . . . . . . 7 (𝑡 = 0 → (𝐹‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))) = (𝐹‘((𝑌 · 0) + (𝑍 · 1))))
279 fvex 6459 . . . . . . 7 (𝐹‘((𝑌 · 0) + (𝑍 · 1))) ∈ V
280278, 262, 279fvmpt 6542 . . . . . 6 (0 ∈ (0[,]1) → ((𝑡 ∈ (0[,]1) ↦ (𝐹‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))))‘0) = (𝐹‘((𝑌 · 0) + (𝑍 · 1))))
2812, 280ax-mp 5 . . . . 5 ((𝑡 ∈ (0[,]1) ↦ (𝐹‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))))‘0) = (𝐹‘((𝑌 · 0) + (𝑍 · 1)))
28214mul01d 10575 . . . . . . . 8 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (𝑌 · 0) = 0)
28323mulid1d 10394 . . . . . . . 8 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (𝑍 · 1) = 𝑍)
284282, 283oveq12d 6940 . . . . . . 7 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → ((𝑌 · 0) + (𝑍 · 1)) = (0 + 𝑍))
28523addid2d 10577 . . . . . . 7 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (0 + 𝑍) = 𝑍)
286284, 285eqtrd 2813 . . . . . 6 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → ((𝑌 · 0) + (𝑍 · 1)) = 𝑍)
287286fveq2d 6450 . . . . 5 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (𝐹‘((𝑌 · 0) + (𝑍 · 1))) = (𝐹𝑍))
288281, 287syl5eq 2825 . . . 4 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → ((𝑡 ∈ (0[,]1) ↦ (𝐹‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))))‘0) = (𝐹𝑍))
289271, 288oveq12d 6940 . . 3 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (((𝑡 ∈ (0[,]1) ↦ (𝐹‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))))‘1) − ((𝑡 ∈ (0[,]1) ↦ (𝐹‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))))‘0)) = ((𝐹𝑌) − (𝐹𝑍)))
290289fveq2d 6450 . 2 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (abs‘(((𝑡 ∈ (0[,]1) ↦ (𝐹‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))))‘1) − ((𝑡 ∈ (0[,]1) ↦ (𝐹‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))))‘0))) = (abs‘((𝐹𝑌) − (𝐹𝑍))))
291274fveq2i 6449 . . . . 5 (abs‘(1 − 0)) = (abs‘1)
292 abs1 14444 . . . . 5 (abs‘1) = 1
293291, 292eqtri 2801 . . . 4 (abs‘(1 − 0)) = 1
294293oveq2i 6933 . . 3 ((𝑀 · (abs‘(𝑌𝑍))) · (abs‘(1 − 0))) = ((𝑀 · (abs‘(𝑌𝑍))) · 1)
295205recnd 10405 . . . 4 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (𝑀 · (abs‘(𝑌𝑍))) ∈ ℂ)
296295mulid1d 10394 . . 3 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → ((𝑀 · (abs‘(𝑌𝑍))) · 1) = (𝑀 · (abs‘(𝑌𝑍))))
297294, 296syl5eq 2825 . 2 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → ((𝑀 · (abs‘(𝑌𝑍))) · (abs‘(1 − 0))) = (𝑀 · (abs‘(𝑌𝑍))))
298254, 290, 2973brtr3d 4917 1 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (abs‘((𝐹𝑌) − (𝐹𝑍))) ≤ (𝑀 · (abs‘(𝑌𝑍))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 386   = wceq 1601  wcel 2106  wral 3089  Vcvv 3397  cin 3790  wss 3791  {cpr 4399   class class class wbr 4886  cmpt 4965  dom cdm 5355  ran crn 5356  cres 5357  ccom 5359  wf 6131  cfv 6135  (class class class)co 6922  cc 10270  cr 10271  0cc0 10272  1c1 10273   + caddc 10275   · cmul 10277  *cxr 10410  cle 10412  cmin 10606  -cneg 10607  (,)cioo 12487  [,]cicc 12490  abscabs 14381  TopOpenctopn 16468  topGenctg 16484  ∞Metcxmet 20127  ballcbl 20129  fldccnfld 20142  Topctop 21105  intcnt 21229   Cn ccn 21436   ×t ctx 21772  cnccncf 23087   D cdv 24064
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2054  ax-8 2108  ax-9 2115  ax-10 2134  ax-11 2149  ax-12 2162  ax-13 2333  ax-ext 2753  ax-rep 5006  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226  ax-inf2 8835  ax-cnex 10328  ax-resscn 10329  ax-1cn 10330  ax-icn 10331  ax-addcl 10332  ax-addrcl 10333  ax-mulcl 10334  ax-mulrcl 10335  ax-mulcom 10336  ax-addass 10337  ax-mulass 10338  ax-distr 10339  ax-i2m1 10340  ax-1ne0 10341  ax-1rid 10342  ax-rnegex 10343  ax-rrecex 10344  ax-cnre 10345  ax-pre-lttri 10346  ax-pre-lttrn 10347  ax-pre-ltadd 10348  ax-pre-mulgt0 10349  ax-pre-sup 10350  ax-addf 10351  ax-mulf 10352
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2550  df-eu 2586  df-clab 2763  df-cleq 2769  df-clel 2773  df-nfc 2920  df-ne 2969  df-nel 3075  df-ral 3094  df-rex 3095  df-reu 3096  df-rmo 3097  df-rab 3098  df-v 3399  df-sbc 3652  df-csb 3751  df-dif 3794  df-un 3796  df-in 3798  df-ss 3805  df-pss 3807  df-nul 4141  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-tp 4402  df-op 4404  df-uni 4672  df-int 4711  df-iun 4755  df-iin 4756  df-br 4887  df-opab 4949  df-mpt 4966  df-tr 4988  df-id 5261  df-eprel 5266  df-po 5274  df-so 5275  df-fr 5314  df-se 5315  df-we 5316  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-pred 5933  df-ord 5979  df-on 5980  df-lim 5981  df-suc 5982  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-f1 6140  df-fo 6141  df-f1o 6142  df-fv 6143  df-isom 6144  df-riota 6883  df-ov 6925  df-oprab 6926  df-mpt2 6927  df-of 7174  df-om 7344  df-1st 7445  df-2nd 7446  df-supp 7577  df-wrecs 7689  df-recs 7751  df-rdg 7789  df-1o 7843  df-2o 7844  df-oadd 7847  df-er 8026  df-map 8142  df-pm 8143  df-ixp 8195  df-en 8242  df-dom 8243  df-sdom 8244  df-fin 8245  df-fsupp 8564  df-fi 8605  df-sup 8636  df-inf 8637  df-oi 8704  df-card 9098  df-cda 9325  df-pnf 10413  df-mnf 10414  df-xr 10415  df-ltxr 10416  df-le 10417  df-sub 10608  df-neg 10609  df-div 11033  df-nn 11375  df-2 11438  df-3 11439  df-4 11440  df-5 11441  df-6 11442  df-7 11443  df-8 11444  df-9 11445  df-n0 11643  df-z 11729  df-dec 11846  df-uz 11993  df-q 12096  df-rp 12138  df-xneg 12257  df-xadd 12258  df-xmul 12259  df-ioo 12491  df-ico 12493  df-icc 12494  df-fz 12644  df-fzo 12785  df-seq 13120  df-exp 13179  df-hash 13436  df-cj 14246  df-re 14247  df-im 14248  df-sqrt 14382  df-abs 14383  df-struct 16257  df-ndx 16258  df-slot 16259  df-base 16261  df-sets 16262  df-ress 16263  df-plusg 16351  df-mulr 16352  df-starv 16353  df-sca 16354  df-vsca 16355  df-ip 16356  df-tset 16357  df-ple 16358  df-ds 16360  df-unif 16361  df-hom 16362  df-cco 16363  df-rest 16469  df-topn 16470  df-0g 16488  df-gsum 16489  df-topgen 16490  df-pt 16491  df-prds 16494  df-xrs 16548  df-qtop 16553  df-imas 16554  df-xps 16556  df-mre 16632  df-mrc 16633  df-acs 16635  df-mgm 17628  df-sgrp 17670  df-mnd 17681  df-submnd 17722  df-mulg 17928  df-cntz 18133  df-cmn 18581  df-psmet 20134  df-xmet 20135  df-met 20136  df-bl 20137  df-mopn 20138  df-fbas 20139  df-fg 20140  df-cnfld 20143  df-top 21106  df-topon 21123  df-topsp 21145  df-bases 21158  df-cld 21231  df-ntr 21232  df-cls 21233  df-nei 21310  df-lp 21348  df-perf 21349  df-cn 21439  df-cnp 21440  df-haus 21527  df-cmp 21599  df-tx 21774  df-hmeo 21967  df-fil 22058  df-fm 22150  df-flim 22151  df-flf 22152  df-xms 22533  df-ms 22534  df-tms 22535  df-cncf 23089  df-limc 24067  df-dv 24068
This theorem is referenced by:  dvlip2  24195  dv11cn  24201
  Copyright terms: Public domain W3C validator