MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvlipcn Structured version   Visualization version   GIF version

Theorem dvlipcn 24593
Description: A complex function with derivative bounded by 𝑀 on an open ball is 𝑀-Lipschitz continuous. (Contributed by Mario Carneiro, 18-Mar-2015.)
Hypotheses
Ref Expression
dvlipcn.x (𝜑𝑋 ⊆ ℂ)
dvlipcn.f (𝜑𝐹:𝑋⟶ℂ)
dvlipcn.a (𝜑𝐴 ∈ ℂ)
dvlipcn.r (𝜑𝑅 ∈ ℝ*)
dvlipcn.b 𝐵 = (𝐴(ball‘(abs ∘ − ))𝑅)
dvlipcn.d (𝜑𝐵 ⊆ dom (ℂ D 𝐹))
dvlipcn.m (𝜑𝑀 ∈ ℝ)
dvlipcn.l ((𝜑𝑥𝐵) → (abs‘((ℂ D 𝐹)‘𝑥)) ≤ 𝑀)
Assertion
Ref Expression
dvlipcn ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (abs‘((𝐹𝑌) − (𝐹𝑍))) ≤ (𝑀 · (abs‘(𝑌𝑍))))
Distinct variable groups:   𝑥,𝐵   𝑥,𝐹   𝑥,𝑀   𝜑,𝑥
Allowed substitution hints:   𝐴(𝑥)   𝑅(𝑥)   𝑋(𝑥)   𝑌(𝑥)   𝑍(𝑥)

Proof of Theorem dvlipcn
Dummy variables 𝑡 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1elunit 12859 . . 3 1 ∈ (0[,]1)
2 0elunit 12858 . . 3 0 ∈ (0[,]1)
3 0red 10646 . . . 4 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → 0 ∈ ℝ)
4 1red 10644 . . . 4 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → 1 ∈ ℝ)
5 dvlipcn.d . . . . . . . . . . . . . 14 (𝜑𝐵 ⊆ dom (ℂ D 𝐹))
6 ssidd 3992 . . . . . . . . . . . . . . 15 (𝜑 → ℂ ⊆ ℂ)
7 dvlipcn.f . . . . . . . . . . . . . . 15 (𝜑𝐹:𝑋⟶ℂ)
8 dvlipcn.x . . . . . . . . . . . . . . 15 (𝜑𝑋 ⊆ ℂ)
96, 7, 8dvbss 24501 . . . . . . . . . . . . . 14 (𝜑 → dom (ℂ D 𝐹) ⊆ 𝑋)
105, 9sstrd 3979 . . . . . . . . . . . . 13 (𝜑𝐵𝑋)
1110, 8sstrd 3979 . . . . . . . . . . . 12 (𝜑𝐵 ⊆ ℂ)
1211adantr 483 . . . . . . . . . . 11 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → 𝐵 ⊆ ℂ)
13 simprl 769 . . . . . . . . . . 11 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → 𝑌𝐵)
1412, 13sseldd 3970 . . . . . . . . . 10 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → 𝑌 ∈ ℂ)
1514adantr 483 . . . . . . . . 9 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑡 ∈ (0[,]1)) → 𝑌 ∈ ℂ)
16 unitssre 12888 . . . . . . . . . . 11 (0[,]1) ⊆ ℝ
17 ax-resscn 10596 . . . . . . . . . . 11 ℝ ⊆ ℂ
1816, 17sstri 3978 . . . . . . . . . 10 (0[,]1) ⊆ ℂ
19 simpr 487 . . . . . . . . . 10 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑡 ∈ (0[,]1)) → 𝑡 ∈ (0[,]1))
2018, 19sseldi 3967 . . . . . . . . 9 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑡 ∈ (0[,]1)) → 𝑡 ∈ ℂ)
2115, 20mulcomd 10664 . . . . . . . 8 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑡 ∈ (0[,]1)) → (𝑌 · 𝑡) = (𝑡 · 𝑌))
22 simprr 771 . . . . . . . . . . 11 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → 𝑍𝐵)
2312, 22sseldd 3970 . . . . . . . . . 10 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → 𝑍 ∈ ℂ)
2423adantr 483 . . . . . . . . 9 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑡 ∈ (0[,]1)) → 𝑍 ∈ ℂ)
25 iirev 23535 . . . . . . . . . . 11 (𝑡 ∈ (0[,]1) → (1 − 𝑡) ∈ (0[,]1))
2625adantl 484 . . . . . . . . . 10 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑡 ∈ (0[,]1)) → (1 − 𝑡) ∈ (0[,]1))
2718, 26sseldi 3967 . . . . . . . . 9 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑡 ∈ (0[,]1)) → (1 − 𝑡) ∈ ℂ)
2824, 27mulcomd 10664 . . . . . . . 8 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑡 ∈ (0[,]1)) → (𝑍 · (1 − 𝑡)) = ((1 − 𝑡) · 𝑍))
2921, 28oveq12d 7176 . . . . . . 7 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑡 ∈ (0[,]1)) → ((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡))) = ((𝑡 · 𝑌) + ((1 − 𝑡) · 𝑍)))
30 dvlipcn.a . . . . . . . . 9 (𝜑𝐴 ∈ ℂ)
3130ad2antrr 724 . . . . . . . 8 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑡 ∈ (0[,]1)) → 𝐴 ∈ ℂ)
32 dvlipcn.r . . . . . . . . 9 (𝜑𝑅 ∈ ℝ*)
3332ad2antrr 724 . . . . . . . 8 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑡 ∈ (0[,]1)) → 𝑅 ∈ ℝ*)
3413adantr 483 . . . . . . . 8 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑡 ∈ (0[,]1)) → 𝑌𝐵)
3522adantr 483 . . . . . . . 8 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑡 ∈ (0[,]1)) → 𝑍𝐵)
36 dvlipcn.b . . . . . . . . 9 𝐵 = (𝐴(ball‘(abs ∘ − ))𝑅)
3736blcvx 23408 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝑅 ∈ ℝ*) ∧ (𝑌𝐵𝑍𝐵𝑡 ∈ (0[,]1))) → ((𝑡 · 𝑌) + ((1 − 𝑡) · 𝑍)) ∈ 𝐵)
3831, 33, 34, 35, 19, 37syl23anc 1373 . . . . . . 7 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑡 ∈ (0[,]1)) → ((𝑡 · 𝑌) + ((1 − 𝑡) · 𝑍)) ∈ 𝐵)
3929, 38eqeltrd 2915 . . . . . 6 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑡 ∈ (0[,]1)) → ((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡))) ∈ 𝐵)
40 eqidd 2824 . . . . . 6 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (𝑡 ∈ (0[,]1) ↦ ((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))) = (𝑡 ∈ (0[,]1) ↦ ((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))))
417, 10fssresd 6547 . . . . . . . . 9 (𝜑 → (𝐹𝐵):𝐵⟶ℂ)
4241feqmptd 6735 . . . . . . . 8 (𝜑 → (𝐹𝐵) = (𝑧𝐵 ↦ ((𝐹𝐵)‘𝑧)))
43 fvres 6691 . . . . . . . . 9 (𝑧𝐵 → ((𝐹𝐵)‘𝑧) = (𝐹𝑧))
4443mpteq2ia 5159 . . . . . . . 8 (𝑧𝐵 ↦ ((𝐹𝐵)‘𝑧)) = (𝑧𝐵 ↦ (𝐹𝑧))
4542, 44syl6eq 2874 . . . . . . 7 (𝜑 → (𝐹𝐵) = (𝑧𝐵 ↦ (𝐹𝑧)))
4645adantr 483 . . . . . 6 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (𝐹𝐵) = (𝑧𝐵 ↦ (𝐹𝑧)))
47 fveq2 6672 . . . . . 6 (𝑧 = ((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡))) → (𝐹𝑧) = (𝐹‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))))
4839, 40, 46, 47fmptco 6893 . . . . 5 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → ((𝐹𝐵) ∘ (𝑡 ∈ (0[,]1) ↦ ((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡))))) = (𝑡 ∈ (0[,]1) ↦ (𝐹‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡))))))
4939fmpttd 6881 . . . . . . 7 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (𝑡 ∈ (0[,]1) ↦ ((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))):(0[,]1)⟶𝐵)
50 eqid 2823 . . . . . . . . 9 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
5150addcn 23475 . . . . . . . . . 10 + ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld))
5251a1i 11 . . . . . . . . 9 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → + ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld)))
53 ssid 3991 . . . . . . . . . . . 12 ℂ ⊆ ℂ
54 cncfmptc 23521 . . . . . . . . . . . 12 ((𝑌 ∈ ℂ ∧ (0[,]1) ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑡 ∈ (0[,]1) ↦ 𝑌) ∈ ((0[,]1)–cn→ℂ))
5518, 53, 54mp3an23 1449 . . . . . . . . . . 11 (𝑌 ∈ ℂ → (𝑡 ∈ (0[,]1) ↦ 𝑌) ∈ ((0[,]1)–cn→ℂ))
5614, 55syl 17 . . . . . . . . . 10 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (𝑡 ∈ (0[,]1) ↦ 𝑌) ∈ ((0[,]1)–cn→ℂ))
57 cncfmptid 23522 . . . . . . . . . . . 12 (((0[,]1) ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑡 ∈ (0[,]1) ↦ 𝑡) ∈ ((0[,]1)–cn→ℂ))
5818, 53, 57mp2an 690 . . . . . . . . . . 11 (𝑡 ∈ (0[,]1) ↦ 𝑡) ∈ ((0[,]1)–cn→ℂ)
5958a1i 11 . . . . . . . . . 10 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (𝑡 ∈ (0[,]1) ↦ 𝑡) ∈ ((0[,]1)–cn→ℂ))
6056, 59mulcncf 24049 . . . . . . . . 9 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (𝑡 ∈ (0[,]1) ↦ (𝑌 · 𝑡)) ∈ ((0[,]1)–cn→ℂ))
61 cncfmptc 23521 . . . . . . . . . . . 12 ((𝑍 ∈ ℂ ∧ (0[,]1) ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑡 ∈ (0[,]1) ↦ 𝑍) ∈ ((0[,]1)–cn→ℂ))
6218, 53, 61mp3an23 1449 . . . . . . . . . . 11 (𝑍 ∈ ℂ → (𝑡 ∈ (0[,]1) ↦ 𝑍) ∈ ((0[,]1)–cn→ℂ))
6323, 62syl 17 . . . . . . . . . 10 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (𝑡 ∈ (0[,]1) ↦ 𝑍) ∈ ((0[,]1)–cn→ℂ))
6450subcn 23476 . . . . . . . . . . . 12 − ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld))
6564a1i 11 . . . . . . . . . . 11 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → − ∈ (((TopOpen‘ℂfld) ×t (TopOpen‘ℂfld)) Cn (TopOpen‘ℂfld)))
66 ax-1cn 10597 . . . . . . . . . . . . 13 1 ∈ ℂ
67 cncfmptc 23521 . . . . . . . . . . . . 13 ((1 ∈ ℂ ∧ (0[,]1) ⊆ ℂ ∧ ℂ ⊆ ℂ) → (𝑡 ∈ (0[,]1) ↦ 1) ∈ ((0[,]1)–cn→ℂ))
6866, 18, 53, 67mp3an 1457 . . . . . . . . . . . 12 (𝑡 ∈ (0[,]1) ↦ 1) ∈ ((0[,]1)–cn→ℂ)
6968a1i 11 . . . . . . . . . . 11 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (𝑡 ∈ (0[,]1) ↦ 1) ∈ ((0[,]1)–cn→ℂ))
7050, 65, 69, 59cncfmpt2f 23524 . . . . . . . . . 10 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (𝑡 ∈ (0[,]1) ↦ (1 − 𝑡)) ∈ ((0[,]1)–cn→ℂ))
7163, 70mulcncf 24049 . . . . . . . . 9 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (𝑡 ∈ (0[,]1) ↦ (𝑍 · (1 − 𝑡))) ∈ ((0[,]1)–cn→ℂ))
7250, 52, 60, 71cncfmpt2f 23524 . . . . . . . 8 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (𝑡 ∈ (0[,]1) ↦ ((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))) ∈ ((0[,]1)–cn→ℂ))
73 cncffvrn 23508 . . . . . . . 8 ((𝐵 ⊆ ℂ ∧ (𝑡 ∈ (0[,]1) ↦ ((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))) ∈ ((0[,]1)–cn→ℂ)) → ((𝑡 ∈ (0[,]1) ↦ ((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))) ∈ ((0[,]1)–cn𝐵) ↔ (𝑡 ∈ (0[,]1) ↦ ((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))):(0[,]1)⟶𝐵))
7412, 72, 73syl2anc 586 . . . . . . 7 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → ((𝑡 ∈ (0[,]1) ↦ ((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))) ∈ ((0[,]1)–cn𝐵) ↔ (𝑡 ∈ (0[,]1) ↦ ((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))):(0[,]1)⟶𝐵))
7549, 74mpbird 259 . . . . . 6 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (𝑡 ∈ (0[,]1) ↦ ((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))) ∈ ((0[,]1)–cn𝐵))
76 ssidd 3992 . . . . . . 7 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → ℂ ⊆ ℂ)
7741adantr 483 . . . . . . 7 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (𝐹𝐵):𝐵⟶ℂ)
7850cnfldtopon 23393 . . . . . . . . . . . . . 14 (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
7978toponrestid 21531 . . . . . . . . . . . . 13 (TopOpen‘ℂfld) = ((TopOpen‘ℂfld) ↾t ℂ)
8050, 79dvres 24511 . . . . . . . . . . . 12 (((ℂ ⊆ ℂ ∧ 𝐹:𝑋⟶ℂ) ∧ (𝑋 ⊆ ℂ ∧ 𝐵 ⊆ ℂ)) → (ℂ D (𝐹𝐵)) = ((ℂ D 𝐹) ↾ ((int‘(TopOpen‘ℂfld))‘𝐵)))
816, 7, 8, 11, 80syl22anc 836 . . . . . . . . . . 11 (𝜑 → (ℂ D (𝐹𝐵)) = ((ℂ D 𝐹) ↾ ((int‘(TopOpen‘ℂfld))‘𝐵)))
8250cnfldtop 23394 . . . . . . . . . . . . 13 (TopOpen‘ℂfld) ∈ Top
83 cnxmet 23383 . . . . . . . . . . . . . . 15 (abs ∘ − ) ∈ (∞Met‘ℂ)
8450cnfldtopn 23392 . . . . . . . . . . . . . . . 16 (TopOpen‘ℂfld) = (MetOpen‘(abs ∘ − ))
8584blopn 23112 . . . . . . . . . . . . . . 15 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝐴 ∈ ℂ ∧ 𝑅 ∈ ℝ*) → (𝐴(ball‘(abs ∘ − ))𝑅) ∈ (TopOpen‘ℂfld))
8683, 30, 32, 85mp3an2i 1462 . . . . . . . . . . . . . 14 (𝜑 → (𝐴(ball‘(abs ∘ − ))𝑅) ∈ (TopOpen‘ℂfld))
8736, 86eqeltrid 2919 . . . . . . . . . . . . 13 (𝜑𝐵 ∈ (TopOpen‘ℂfld))
88 isopn3i 21692 . . . . . . . . . . . . 13 (((TopOpen‘ℂfld) ∈ Top ∧ 𝐵 ∈ (TopOpen‘ℂfld)) → ((int‘(TopOpen‘ℂfld))‘𝐵) = 𝐵)
8982, 87, 88sylancr 589 . . . . . . . . . . . 12 (𝜑 → ((int‘(TopOpen‘ℂfld))‘𝐵) = 𝐵)
9089reseq2d 5855 . . . . . . . . . . 11 (𝜑 → ((ℂ D 𝐹) ↾ ((int‘(TopOpen‘ℂfld))‘𝐵)) = ((ℂ D 𝐹) ↾ 𝐵))
9181, 90eqtrd 2858 . . . . . . . . . 10 (𝜑 → (ℂ D (𝐹𝐵)) = ((ℂ D 𝐹) ↾ 𝐵))
9291dmeqd 5776 . . . . . . . . 9 (𝜑 → dom (ℂ D (𝐹𝐵)) = dom ((ℂ D 𝐹) ↾ 𝐵))
93 dmres 5877 . . . . . . . . . 10 dom ((ℂ D 𝐹) ↾ 𝐵) = (𝐵 ∩ dom (ℂ D 𝐹))
94 df-ss 3954 . . . . . . . . . . 11 (𝐵 ⊆ dom (ℂ D 𝐹) ↔ (𝐵 ∩ dom (ℂ D 𝐹)) = 𝐵)
955, 94sylib 220 . . . . . . . . . 10 (𝜑 → (𝐵 ∩ dom (ℂ D 𝐹)) = 𝐵)
9693, 95syl5eq 2870 . . . . . . . . 9 (𝜑 → dom ((ℂ D 𝐹) ↾ 𝐵) = 𝐵)
9792, 96eqtrd 2858 . . . . . . . 8 (𝜑 → dom (ℂ D (𝐹𝐵)) = 𝐵)
9897adantr 483 . . . . . . 7 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → dom (ℂ D (𝐹𝐵)) = 𝐵)
99 dvcn 24520 . . . . . . 7 (((ℂ ⊆ ℂ ∧ (𝐹𝐵):𝐵⟶ℂ ∧ 𝐵 ⊆ ℂ) ∧ dom (ℂ D (𝐹𝐵)) = 𝐵) → (𝐹𝐵) ∈ (𝐵cn→ℂ))
10076, 77, 12, 98, 99syl31anc 1369 . . . . . 6 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (𝐹𝐵) ∈ (𝐵cn→ℂ))
10175, 100cncfco 23517 . . . . 5 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → ((𝐹𝐵) ∘ (𝑡 ∈ (0[,]1) ↦ ((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡))))) ∈ ((0[,]1)–cn→ℂ))
10248, 101eqeltrrd 2916 . . . 4 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (𝑡 ∈ (0[,]1) ↦ (𝐹‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡))))) ∈ ((0[,]1)–cn→ℂ))
10317a1i 11 . . . . . . . 8 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → ℝ ⊆ ℂ)
10416a1i 11 . . . . . . . 8 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (0[,]1) ⊆ ℝ)
1057ad2antrr 724 . . . . . . . . 9 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑡 ∈ (0[,]1)) → 𝐹:𝑋⟶ℂ)
10610ad2antrr 724 . . . . . . . . . 10 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑡 ∈ (0[,]1)) → 𝐵𝑋)
107106, 39sseldd 3970 . . . . . . . . 9 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑡 ∈ (0[,]1)) → ((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡))) ∈ 𝑋)
108105, 107ffvelrnd 6854 . . . . . . . 8 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑡 ∈ (0[,]1)) → (𝐹‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))) ∈ ℂ)
10950tgioo2 23413 . . . . . . . 8 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
110 1re 10643 . . . . . . . . 9 1 ∈ ℝ
111 iccntr 23431 . . . . . . . . 9 ((0 ∈ ℝ ∧ 1 ∈ ℝ) → ((int‘(topGen‘ran (,)))‘(0[,]1)) = (0(,)1))
1123, 110, 111sylancl 588 . . . . . . . 8 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → ((int‘(topGen‘ran (,)))‘(0[,]1)) = (0(,)1))
113103, 104, 108, 109, 50, 112dvmptntr 24570 . . . . . . 7 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (ℝ D (𝑡 ∈ (0[,]1) ↦ (𝐹‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))))) = (ℝ D (𝑡 ∈ (0(,)1) ↦ (𝐹‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))))))
114 reelprrecn 10631 . . . . . . . . 9 ℝ ∈ {ℝ, ℂ}
115114a1i 11 . . . . . . . 8 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → ℝ ∈ {ℝ, ℂ})
116 cnelprrecn 10632 . . . . . . . . 9 ℂ ∈ {ℝ, ℂ}
117116a1i 11 . . . . . . . 8 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → ℂ ∈ {ℝ, ℂ})
118 ioossicc 12825 . . . . . . . . . 10 (0(,)1) ⊆ (0[,]1)
119118sseli 3965 . . . . . . . . 9 (𝑡 ∈ (0(,)1) → 𝑡 ∈ (0[,]1))
120119, 39sylan2 594 . . . . . . . 8 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑡 ∈ (0(,)1)) → ((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡))) ∈ 𝐵)
12114, 23subcld 10999 . . . . . . . . 9 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (𝑌𝑍) ∈ ℂ)
122121adantr 483 . . . . . . . 8 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑡 ∈ (0(,)1)) → (𝑌𝑍) ∈ ℂ)
12310adantr 483 . . . . . . . . . 10 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → 𝐵𝑋)
124123sselda 3969 . . . . . . . . 9 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑧𝐵) → 𝑧𝑋)
1257adantr 483 . . . . . . . . . 10 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → 𝐹:𝑋⟶ℂ)
126125ffvelrnda 6853 . . . . . . . . 9 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑧𝑋) → (𝐹𝑧) ∈ ℂ)
127124, 126syldan 593 . . . . . . . 8 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑧𝐵) → (𝐹𝑧) ∈ ℂ)
128 fvexd 6687 . . . . . . . 8 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑧𝐵) → ((ℂ D 𝐹)‘𝑧) ∈ V)
12914adantr 483 . . . . . . . . . . 11 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑡 ∈ (0(,)1)) → 𝑌 ∈ ℂ)
130119, 20sylan2 594 . . . . . . . . . . 11 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑡 ∈ (0(,)1)) → 𝑡 ∈ ℂ)
131129, 130mulcld 10663 . . . . . . . . . 10 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑡 ∈ (0(,)1)) → (𝑌 · 𝑡) ∈ ℂ)
132 1red 10644 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑡 ∈ (0(,)1)) → 1 ∈ ℝ)
133 simpr 487 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑡 ∈ ℝ) → 𝑡 ∈ ℝ)
134133recnd 10671 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑡 ∈ ℝ) → 𝑡 ∈ ℂ)
135 1red 10644 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑡 ∈ ℝ) → 1 ∈ ℝ)
136115dvmptid 24556 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (ℝ D (𝑡 ∈ ℝ ↦ 𝑡)) = (𝑡 ∈ ℝ ↦ 1))
137 ioossre 12801 . . . . . . . . . . . . . 14 (0(,)1) ⊆ ℝ
138137a1i 11 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (0(,)1) ⊆ ℝ)
139 iooretop 23376 . . . . . . . . . . . . . 14 (0(,)1) ∈ (topGen‘ran (,))
140139a1i 11 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (0(,)1) ∈ (topGen‘ran (,)))
141115, 134, 135, 136, 138, 109, 50, 140dvmptres 24562 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (ℝ D (𝑡 ∈ (0(,)1) ↦ 𝑡)) = (𝑡 ∈ (0(,)1) ↦ 1))
142115, 130, 132, 141, 14dvmptcmul 24563 . . . . . . . . . . 11 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (ℝ D (𝑡 ∈ (0(,)1) ↦ (𝑌 · 𝑡))) = (𝑡 ∈ (0(,)1) ↦ (𝑌 · 1)))
14314mulid1d 10660 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (𝑌 · 1) = 𝑌)
144143mpteq2dv 5164 . . . . . . . . . . 11 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (𝑡 ∈ (0(,)1) ↦ (𝑌 · 1)) = (𝑡 ∈ (0(,)1) ↦ 𝑌))
145142, 144eqtrd 2858 . . . . . . . . . 10 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (ℝ D (𝑡 ∈ (0(,)1) ↦ (𝑌 · 𝑡))) = (𝑡 ∈ (0(,)1) ↦ 𝑌))
14623adantr 483 . . . . . . . . . . 11 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑡 ∈ (0(,)1)) → 𝑍 ∈ ℂ)
147119, 27sylan2 594 . . . . . . . . . . 11 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑡 ∈ (0(,)1)) → (1 − 𝑡) ∈ ℂ)
148146, 147mulcld 10663 . . . . . . . . . 10 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑡 ∈ (0(,)1)) → (𝑍 · (1 − 𝑡)) ∈ ℂ)
149 negex 10886 . . . . . . . . . . 11 -𝑍 ∈ V
150149a1i 11 . . . . . . . . . 10 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑡 ∈ (0(,)1)) → -𝑍 ∈ V)
151 negex 10886 . . . . . . . . . . . . 13 -1 ∈ V
152151a1i 11 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑡 ∈ (0(,)1)) → -1 ∈ V)
153 1cnd 10638 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑡 ∈ (0(,)1)) → 1 ∈ ℂ)
154 0red 10646 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑡 ∈ (0(,)1)) → 0 ∈ ℝ)
155 1cnd 10638 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑡 ∈ ℝ) → 1 ∈ ℂ)
156 0red 10646 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑡 ∈ ℝ) → 0 ∈ ℝ)
157 1cnd 10638 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → 1 ∈ ℂ)
158115, 157dvmptc 24557 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (ℝ D (𝑡 ∈ ℝ ↦ 1)) = (𝑡 ∈ ℝ ↦ 0))
159115, 155, 156, 158, 138, 109, 50, 140dvmptres 24562 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (ℝ D (𝑡 ∈ (0(,)1) ↦ 1)) = (𝑡 ∈ (0(,)1) ↦ 0))
160115, 153, 154, 159, 130, 132, 141dvmptsub 24566 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (ℝ D (𝑡 ∈ (0(,)1) ↦ (1 − 𝑡))) = (𝑡 ∈ (0(,)1) ↦ (0 − 1)))
161 df-neg 10875 . . . . . . . . . . . . . 14 -1 = (0 − 1)
162161mpteq2i 5160 . . . . . . . . . . . . 13 (𝑡 ∈ (0(,)1) ↦ -1) = (𝑡 ∈ (0(,)1) ↦ (0 − 1))
163160, 162syl6eqr 2876 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (ℝ D (𝑡 ∈ (0(,)1) ↦ (1 − 𝑡))) = (𝑡 ∈ (0(,)1) ↦ -1))
164115, 147, 152, 163, 23dvmptcmul 24563 . . . . . . . . . . 11 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (ℝ D (𝑡 ∈ (0(,)1) ↦ (𝑍 · (1 − 𝑡)))) = (𝑡 ∈ (0(,)1) ↦ (𝑍 · -1)))
165 neg1cn 11754 . . . . . . . . . . . . . 14 -1 ∈ ℂ
166 mulcom 10625 . . . . . . . . . . . . . 14 ((𝑍 ∈ ℂ ∧ -1 ∈ ℂ) → (𝑍 · -1) = (-1 · 𝑍))
16723, 165, 166sylancl 588 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (𝑍 · -1) = (-1 · 𝑍))
16823mulm1d 11094 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (-1 · 𝑍) = -𝑍)
169167, 168eqtrd 2858 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (𝑍 · -1) = -𝑍)
170169mpteq2dv 5164 . . . . . . . . . . 11 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (𝑡 ∈ (0(,)1) ↦ (𝑍 · -1)) = (𝑡 ∈ (0(,)1) ↦ -𝑍))
171164, 170eqtrd 2858 . . . . . . . . . 10 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (ℝ D (𝑡 ∈ (0(,)1) ↦ (𝑍 · (1 − 𝑡)))) = (𝑡 ∈ (0(,)1) ↦ -𝑍))
172115, 131, 129, 145, 148, 150, 171dvmptadd 24559 . . . . . . . . 9 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (ℝ D (𝑡 ∈ (0(,)1) ↦ ((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡))))) = (𝑡 ∈ (0(,)1) ↦ (𝑌 + -𝑍)))
17314, 23negsubd 11005 . . . . . . . . . 10 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (𝑌 + -𝑍) = (𝑌𝑍))
174173mpteq2dv 5164 . . . . . . . . 9 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (𝑡 ∈ (0(,)1) ↦ (𝑌 + -𝑍)) = (𝑡 ∈ (0(,)1) ↦ (𝑌𝑍)))
175172, 174eqtrd 2858 . . . . . . . 8 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (ℝ D (𝑡 ∈ (0(,)1) ↦ ((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡))))) = (𝑡 ∈ (0(,)1) ↦ (𝑌𝑍)))
1768adantr 483 . . . . . . . . . . 11 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → 𝑋 ⊆ ℂ)
17776, 125, 176, 12, 80syl22anc 836 . . . . . . . . . 10 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (ℂ D (𝐹𝐵)) = ((ℂ D 𝐹) ↾ ((int‘(TopOpen‘ℂfld))‘𝐵)))
17889adantr 483 . . . . . . . . . . 11 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → ((int‘(TopOpen‘ℂfld))‘𝐵) = 𝐵)
179178reseq2d 5855 . . . . . . . . . 10 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → ((ℂ D 𝐹) ↾ ((int‘(TopOpen‘ℂfld))‘𝐵)) = ((ℂ D 𝐹) ↾ 𝐵))
180177, 179eqtrd 2858 . . . . . . . . 9 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (ℂ D (𝐹𝐵)) = ((ℂ D 𝐹) ↾ 𝐵))
18146oveq2d 7174 . . . . . . . . 9 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (ℂ D (𝐹𝐵)) = (ℂ D (𝑧𝐵 ↦ (𝐹𝑧))))
182 dvfcn 24508 . . . . . . . . . . . . 13 (ℂ D (𝐹𝐵)):dom (ℂ D (𝐹𝐵))⟶ℂ
18398feq2d 6502 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → ((ℂ D (𝐹𝐵)):dom (ℂ D (𝐹𝐵))⟶ℂ ↔ (ℂ D (𝐹𝐵)):𝐵⟶ℂ))
184182, 183mpbii 235 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (ℂ D (𝐹𝐵)):𝐵⟶ℂ)
185180feq1d 6501 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → ((ℂ D (𝐹𝐵)):𝐵⟶ℂ ↔ ((ℂ D 𝐹) ↾ 𝐵):𝐵⟶ℂ))
186184, 185mpbid 234 . . . . . . . . . . 11 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → ((ℂ D 𝐹) ↾ 𝐵):𝐵⟶ℂ)
187186feqmptd 6735 . . . . . . . . . 10 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → ((ℂ D 𝐹) ↾ 𝐵) = (𝑧𝐵 ↦ (((ℂ D 𝐹) ↾ 𝐵)‘𝑧)))
188 fvres 6691 . . . . . . . . . . 11 (𝑧𝐵 → (((ℂ D 𝐹) ↾ 𝐵)‘𝑧) = ((ℂ D 𝐹)‘𝑧))
189188mpteq2ia 5159 . . . . . . . . . 10 (𝑧𝐵 ↦ (((ℂ D 𝐹) ↾ 𝐵)‘𝑧)) = (𝑧𝐵 ↦ ((ℂ D 𝐹)‘𝑧))
190187, 189syl6eq 2874 . . . . . . . . 9 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → ((ℂ D 𝐹) ↾ 𝐵) = (𝑧𝐵 ↦ ((ℂ D 𝐹)‘𝑧)))
191180, 181, 1903eqtr3d 2866 . . . . . . . 8 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (ℂ D (𝑧𝐵 ↦ (𝐹𝑧))) = (𝑧𝐵 ↦ ((ℂ D 𝐹)‘𝑧)))
192 fveq2 6672 . . . . . . . 8 (𝑧 = ((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡))) → ((ℂ D 𝐹)‘𝑧) = ((ℂ D 𝐹)‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))))
193115, 117, 120, 122, 127, 128, 175, 191, 47, 192dvmptco 24571 . . . . . . 7 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (ℝ D (𝑡 ∈ (0(,)1) ↦ (𝐹‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))))) = (𝑡 ∈ (0(,)1) ↦ (((ℂ D 𝐹)‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))) · (𝑌𝑍))))
194113, 193eqtrd 2858 . . . . . 6 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (ℝ D (𝑡 ∈ (0[,]1) ↦ (𝐹‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))))) = (𝑡 ∈ (0(,)1) ↦ (((ℂ D 𝐹)‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))) · (𝑌𝑍))))
195194dmeqd 5776 . . . . 5 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → dom (ℝ D (𝑡 ∈ (0[,]1) ↦ (𝐹‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))))) = dom (𝑡 ∈ (0(,)1) ↦ (((ℂ D 𝐹)‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))) · (𝑌𝑍))))
196 ovex 7191 . . . . . . 7 (((ℂ D 𝐹)‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))) · (𝑌𝑍)) ∈ V
197196rgenw 3152 . . . . . 6 𝑡 ∈ (0(,)1)(((ℂ D 𝐹)‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))) · (𝑌𝑍)) ∈ V
198 dmmptg 6098 . . . . . 6 (∀𝑡 ∈ (0(,)1)(((ℂ D 𝐹)‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))) · (𝑌𝑍)) ∈ V → dom (𝑡 ∈ (0(,)1) ↦ (((ℂ D 𝐹)‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))) · (𝑌𝑍))) = (0(,)1))
199197, 198mp1i 13 . . . . 5 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → dom (𝑡 ∈ (0(,)1) ↦ (((ℂ D 𝐹)‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))) · (𝑌𝑍))) = (0(,)1))
200195, 199eqtrd 2858 . . . 4 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → dom (ℝ D (𝑡 ∈ (0[,]1) ↦ (𝐹‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))))) = (0(,)1))
201 dvlipcn.m . . . . . 6 (𝜑𝑀 ∈ ℝ)
202201adantr 483 . . . . 5 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → 𝑀 ∈ ℝ)
203121abscld 14798 . . . . 5 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (abs‘(𝑌𝑍)) ∈ ℝ)
204202, 203remulcld 10673 . . . 4 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (𝑀 · (abs‘(𝑌𝑍))) ∈ ℝ)
205194fveq1d 6674 . . . . . . . . . . 11 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → ((ℝ D (𝑡 ∈ (0[,]1) ↦ (𝐹‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡))))))‘𝑡) = ((𝑡 ∈ (0(,)1) ↦ (((ℂ D 𝐹)‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))) · (𝑌𝑍)))‘𝑡))
206 eqid 2823 . . . . . . . . . . . . 13 (𝑡 ∈ (0(,)1) ↦ (((ℂ D 𝐹)‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))) · (𝑌𝑍))) = (𝑡 ∈ (0(,)1) ↦ (((ℂ D 𝐹)‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))) · (𝑌𝑍)))
207206fvmpt2 6781 . . . . . . . . . . . 12 ((𝑡 ∈ (0(,)1) ∧ (((ℂ D 𝐹)‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))) · (𝑌𝑍)) ∈ V) → ((𝑡 ∈ (0(,)1) ↦ (((ℂ D 𝐹)‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))) · (𝑌𝑍)))‘𝑡) = (((ℂ D 𝐹)‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))) · (𝑌𝑍)))
208196, 207mpan2 689 . . . . . . . . . . 11 (𝑡 ∈ (0(,)1) → ((𝑡 ∈ (0(,)1) ↦ (((ℂ D 𝐹)‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))) · (𝑌𝑍)))‘𝑡) = (((ℂ D 𝐹)‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))) · (𝑌𝑍)))
209205, 208sylan9eq 2878 . . . . . . . . . 10 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑡 ∈ (0(,)1)) → ((ℝ D (𝑡 ∈ (0[,]1) ↦ (𝐹‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡))))))‘𝑡) = (((ℂ D 𝐹)‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))) · (𝑌𝑍)))
210209fveq2d 6676 . . . . . . . . 9 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑡 ∈ (0(,)1)) → (abs‘((ℝ D (𝑡 ∈ (0[,]1) ↦ (𝐹‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡))))))‘𝑡)) = (abs‘(((ℂ D 𝐹)‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))) · (𝑌𝑍))))
211 dvfcn 24508 . . . . . . . . . . 11 (ℂ D 𝐹):dom (ℂ D 𝐹)⟶ℂ
2125ad2antrr 724 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑡 ∈ (0(,)1)) → 𝐵 ⊆ dom (ℂ D 𝐹))
213212, 120sseldd 3970 . . . . . . . . . . 11 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑡 ∈ (0(,)1)) → ((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡))) ∈ dom (ℂ D 𝐹))
214 ffvelrn 6851 . . . . . . . . . . 11 (((ℂ D 𝐹):dom (ℂ D 𝐹)⟶ℂ ∧ ((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡))) ∈ dom (ℂ D 𝐹)) → ((ℂ D 𝐹)‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))) ∈ ℂ)
215211, 213, 214sylancr 589 . . . . . . . . . 10 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑡 ∈ (0(,)1)) → ((ℂ D 𝐹)‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))) ∈ ℂ)
216215, 122absmuld 14816 . . . . . . . . 9 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑡 ∈ (0(,)1)) → (abs‘(((ℂ D 𝐹)‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))) · (𝑌𝑍))) = ((abs‘((ℂ D 𝐹)‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡))))) · (abs‘(𝑌𝑍))))
217210, 216eqtrd 2858 . . . . . . . 8 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑡 ∈ (0(,)1)) → (abs‘((ℝ D (𝑡 ∈ (0[,]1) ↦ (𝐹‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡))))))‘𝑡)) = ((abs‘((ℂ D 𝐹)‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡))))) · (abs‘(𝑌𝑍))))
218215abscld 14798 . . . . . . . . 9 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑡 ∈ (0(,)1)) → (abs‘((ℂ D 𝐹)‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡))))) ∈ ℝ)
219201ad2antrr 724 . . . . . . . . 9 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑡 ∈ (0(,)1)) → 𝑀 ∈ ℝ)
220122abscld 14798 . . . . . . . . 9 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑡 ∈ (0(,)1)) → (abs‘(𝑌𝑍)) ∈ ℝ)
221122absge0d 14806 . . . . . . . . 9 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑡 ∈ (0(,)1)) → 0 ≤ (abs‘(𝑌𝑍)))
222 2fveq3 6677 . . . . . . . . . . 11 (𝑦 = ((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡))) → (abs‘((ℂ D 𝐹)‘𝑦)) = (abs‘((ℂ D 𝐹)‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡))))))
223222breq1d 5078 . . . . . . . . . 10 (𝑦 = ((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡))) → ((abs‘((ℂ D 𝐹)‘𝑦)) ≤ 𝑀 ↔ (abs‘((ℂ D 𝐹)‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡))))) ≤ 𝑀))
224 dvlipcn.l . . . . . . . . . . . . 13 ((𝜑𝑥𝐵) → (abs‘((ℂ D 𝐹)‘𝑥)) ≤ 𝑀)
225224ralrimiva 3184 . . . . . . . . . . . 12 (𝜑 → ∀𝑥𝐵 (abs‘((ℂ D 𝐹)‘𝑥)) ≤ 𝑀)
226 2fveq3 6677 . . . . . . . . . . . . . 14 (𝑥 = 𝑦 → (abs‘((ℂ D 𝐹)‘𝑥)) = (abs‘((ℂ D 𝐹)‘𝑦)))
227226breq1d 5078 . . . . . . . . . . . . 13 (𝑥 = 𝑦 → ((abs‘((ℂ D 𝐹)‘𝑥)) ≤ 𝑀 ↔ (abs‘((ℂ D 𝐹)‘𝑦)) ≤ 𝑀))
228227cbvralvw 3451 . . . . . . . . . . . 12 (∀𝑥𝐵 (abs‘((ℂ D 𝐹)‘𝑥)) ≤ 𝑀 ↔ ∀𝑦𝐵 (abs‘((ℂ D 𝐹)‘𝑦)) ≤ 𝑀)
229225, 228sylib 220 . . . . . . . . . . 11 (𝜑 → ∀𝑦𝐵 (abs‘((ℂ D 𝐹)‘𝑦)) ≤ 𝑀)
230229ad2antrr 724 . . . . . . . . . 10 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑡 ∈ (0(,)1)) → ∀𝑦𝐵 (abs‘((ℂ D 𝐹)‘𝑦)) ≤ 𝑀)
231223, 230, 120rspcdva 3627 . . . . . . . . 9 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑡 ∈ (0(,)1)) → (abs‘((ℂ D 𝐹)‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡))))) ≤ 𝑀)
232218, 219, 220, 221, 231lemul1ad 11581 . . . . . . . 8 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑡 ∈ (0(,)1)) → ((abs‘((ℂ D 𝐹)‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡))))) · (abs‘(𝑌𝑍))) ≤ (𝑀 · (abs‘(𝑌𝑍))))
233217, 232eqbrtrd 5090 . . . . . . 7 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑡 ∈ (0(,)1)) → (abs‘((ℝ D (𝑡 ∈ (0[,]1) ↦ (𝐹‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡))))))‘𝑡)) ≤ (𝑀 · (abs‘(𝑌𝑍))))
234233ralrimiva 3184 . . . . . 6 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → ∀𝑡 ∈ (0(,)1)(abs‘((ℝ D (𝑡 ∈ (0[,]1) ↦ (𝐹‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡))))))‘𝑡)) ≤ (𝑀 · (abs‘(𝑌𝑍))))
235 nfv 1915 . . . . . . 7 𝑧(abs‘((ℝ D (𝑡 ∈ (0[,]1) ↦ (𝐹‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡))))))‘𝑡)) ≤ (𝑀 · (abs‘(𝑌𝑍)))
236 nfcv 2979 . . . . . . . . 9 𝑡abs
237 nfcv 2979 . . . . . . . . . . 11 𝑡
238 nfcv 2979 . . . . . . . . . . 11 𝑡 D
239 nfmpt1 5166 . . . . . . . . . . 11 𝑡(𝑡 ∈ (0[,]1) ↦ (𝐹‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))))
240237, 238, 239nfov 7188 . . . . . . . . . 10 𝑡(ℝ D (𝑡 ∈ (0[,]1) ↦ (𝐹‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡))))))
241 nfcv 2979 . . . . . . . . . 10 𝑡𝑧
242240, 241nffv 6682 . . . . . . . . 9 𝑡((ℝ D (𝑡 ∈ (0[,]1) ↦ (𝐹‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡))))))‘𝑧)
243236, 242nffv 6682 . . . . . . . 8 𝑡(abs‘((ℝ D (𝑡 ∈ (0[,]1) ↦ (𝐹‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡))))))‘𝑧))
244 nfcv 2979 . . . . . . . 8 𝑡
245 nfcv 2979 . . . . . . . 8 𝑡(𝑀 · (abs‘(𝑌𝑍)))
246243, 244, 245nfbr 5115 . . . . . . 7 𝑡(abs‘((ℝ D (𝑡 ∈ (0[,]1) ↦ (𝐹‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡))))))‘𝑧)) ≤ (𝑀 · (abs‘(𝑌𝑍)))
247 2fveq3 6677 . . . . . . . 8 (𝑡 = 𝑧 → (abs‘((ℝ D (𝑡 ∈ (0[,]1) ↦ (𝐹‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡))))))‘𝑡)) = (abs‘((ℝ D (𝑡 ∈ (0[,]1) ↦ (𝐹‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡))))))‘𝑧)))
248247breq1d 5078 . . . . . . 7 (𝑡 = 𝑧 → ((abs‘((ℝ D (𝑡 ∈ (0[,]1) ↦ (𝐹‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡))))))‘𝑡)) ≤ (𝑀 · (abs‘(𝑌𝑍))) ↔ (abs‘((ℝ D (𝑡 ∈ (0[,]1) ↦ (𝐹‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡))))))‘𝑧)) ≤ (𝑀 · (abs‘(𝑌𝑍)))))
249235, 246, 248cbvralw 3443 . . . . . 6 (∀𝑡 ∈ (0(,)1)(abs‘((ℝ D (𝑡 ∈ (0[,]1) ↦ (𝐹‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡))))))‘𝑡)) ≤ (𝑀 · (abs‘(𝑌𝑍))) ↔ ∀𝑧 ∈ (0(,)1)(abs‘((ℝ D (𝑡 ∈ (0[,]1) ↦ (𝐹‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡))))))‘𝑧)) ≤ (𝑀 · (abs‘(𝑌𝑍))))
250234, 249sylib 220 . . . . 5 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → ∀𝑧 ∈ (0(,)1)(abs‘((ℝ D (𝑡 ∈ (0[,]1) ↦ (𝐹‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡))))))‘𝑧)) ≤ (𝑀 · (abs‘(𝑌𝑍))))
251250r19.21bi 3210 . . . 4 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ 𝑧 ∈ (0(,)1)) → (abs‘((ℝ D (𝑡 ∈ (0[,]1) ↦ (𝐹‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡))))))‘𝑧)) ≤ (𝑀 · (abs‘(𝑌𝑍))))
2523, 4, 102, 200, 204, 251dvlip 24592 . . 3 (((𝜑 ∧ (𝑌𝐵𝑍𝐵)) ∧ (1 ∈ (0[,]1) ∧ 0 ∈ (0[,]1))) → (abs‘(((𝑡 ∈ (0[,]1) ↦ (𝐹‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))))‘1) − ((𝑡 ∈ (0[,]1) ↦ (𝐹‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))))‘0))) ≤ ((𝑀 · (abs‘(𝑌𝑍))) · (abs‘(1 − 0))))
2531, 2, 252mpanr12 703 . 2 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (abs‘(((𝑡 ∈ (0[,]1) ↦ (𝐹‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))))‘1) − ((𝑡 ∈ (0[,]1) ↦ (𝐹‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))))‘0))) ≤ ((𝑀 · (abs‘(𝑌𝑍))) · (abs‘(1 − 0))))
254 oveq2 7166 . . . . . . . . 9 (𝑡 = 1 → (𝑌 · 𝑡) = (𝑌 · 1))
255 oveq2 7166 . . . . . . . . . . 11 (𝑡 = 1 → (1 − 𝑡) = (1 − 1))
256 1m1e0 11712 . . . . . . . . . . 11 (1 − 1) = 0
257255, 256syl6eq 2874 . . . . . . . . . 10 (𝑡 = 1 → (1 − 𝑡) = 0)
258257oveq2d 7174 . . . . . . . . 9 (𝑡 = 1 → (𝑍 · (1 − 𝑡)) = (𝑍 · 0))
259254, 258oveq12d 7176 . . . . . . . 8 (𝑡 = 1 → ((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡))) = ((𝑌 · 1) + (𝑍 · 0)))
260259fveq2d 6676 . . . . . . 7 (𝑡 = 1 → (𝐹‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))) = (𝐹‘((𝑌 · 1) + (𝑍 · 0))))
261 eqid 2823 . . . . . . 7 (𝑡 ∈ (0[,]1) ↦ (𝐹‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡))))) = (𝑡 ∈ (0[,]1) ↦ (𝐹‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))))
262 fvex 6685 . . . . . . 7 (𝐹‘((𝑌 · 1) + (𝑍 · 0))) ∈ V
263260, 261, 262fvmpt 6770 . . . . . 6 (1 ∈ (0[,]1) → ((𝑡 ∈ (0[,]1) ↦ (𝐹‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))))‘1) = (𝐹‘((𝑌 · 1) + (𝑍 · 0))))
2641, 263ax-mp 5 . . . . 5 ((𝑡 ∈ (0[,]1) ↦ (𝐹‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))))‘1) = (𝐹‘((𝑌 · 1) + (𝑍 · 0)))
26523mul01d 10841 . . . . . . . 8 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (𝑍 · 0) = 0)
266143, 265oveq12d 7176 . . . . . . 7 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → ((𝑌 · 1) + (𝑍 · 0)) = (𝑌 + 0))
26714addid1d 10842 . . . . . . 7 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (𝑌 + 0) = 𝑌)
268266, 267eqtrd 2858 . . . . . 6 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → ((𝑌 · 1) + (𝑍 · 0)) = 𝑌)
269268fveq2d 6676 . . . . 5 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (𝐹‘((𝑌 · 1) + (𝑍 · 0))) = (𝐹𝑌))
270264, 269syl5eq 2870 . . . 4 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → ((𝑡 ∈ (0[,]1) ↦ (𝐹‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))))‘1) = (𝐹𝑌))
271 oveq2 7166 . . . . . . . . 9 (𝑡 = 0 → (𝑌 · 𝑡) = (𝑌 · 0))
272 oveq2 7166 . . . . . . . . . . 11 (𝑡 = 0 → (1 − 𝑡) = (1 − 0))
273 1m0e1 11761 . . . . . . . . . . 11 (1 − 0) = 1
274272, 273syl6eq 2874 . . . . . . . . . 10 (𝑡 = 0 → (1 − 𝑡) = 1)
275274oveq2d 7174 . . . . . . . . 9 (𝑡 = 0 → (𝑍 · (1 − 𝑡)) = (𝑍 · 1))
276271, 275oveq12d 7176 . . . . . . . 8 (𝑡 = 0 → ((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡))) = ((𝑌 · 0) + (𝑍 · 1)))
277276fveq2d 6676 . . . . . . 7 (𝑡 = 0 → (𝐹‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))) = (𝐹‘((𝑌 · 0) + (𝑍 · 1))))
278 fvex 6685 . . . . . . 7 (𝐹‘((𝑌 · 0) + (𝑍 · 1))) ∈ V
279277, 261, 278fvmpt 6770 . . . . . 6 (0 ∈ (0[,]1) → ((𝑡 ∈ (0[,]1) ↦ (𝐹‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))))‘0) = (𝐹‘((𝑌 · 0) + (𝑍 · 1))))
2802, 279ax-mp 5 . . . . 5 ((𝑡 ∈ (0[,]1) ↦ (𝐹‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))))‘0) = (𝐹‘((𝑌 · 0) + (𝑍 · 1)))
28114mul01d 10841 . . . . . . . 8 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (𝑌 · 0) = 0)
28223mulid1d 10660 . . . . . . . 8 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (𝑍 · 1) = 𝑍)
283281, 282oveq12d 7176 . . . . . . 7 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → ((𝑌 · 0) + (𝑍 · 1)) = (0 + 𝑍))
28423addid2d 10843 . . . . . . 7 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (0 + 𝑍) = 𝑍)
285283, 284eqtrd 2858 . . . . . 6 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → ((𝑌 · 0) + (𝑍 · 1)) = 𝑍)
286285fveq2d 6676 . . . . 5 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (𝐹‘((𝑌 · 0) + (𝑍 · 1))) = (𝐹𝑍))
287280, 286syl5eq 2870 . . . 4 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → ((𝑡 ∈ (0[,]1) ↦ (𝐹‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))))‘0) = (𝐹𝑍))
288270, 287oveq12d 7176 . . 3 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (((𝑡 ∈ (0[,]1) ↦ (𝐹‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))))‘1) − ((𝑡 ∈ (0[,]1) ↦ (𝐹‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))))‘0)) = ((𝐹𝑌) − (𝐹𝑍)))
289288fveq2d 6676 . 2 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (abs‘(((𝑡 ∈ (0[,]1) ↦ (𝐹‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))))‘1) − ((𝑡 ∈ (0[,]1) ↦ (𝐹‘((𝑌 · 𝑡) + (𝑍 · (1 − 𝑡)))))‘0))) = (abs‘((𝐹𝑌) − (𝐹𝑍))))
290273fveq2i 6675 . . . . 5 (abs‘(1 − 0)) = (abs‘1)
291 abs1 14659 . . . . 5 (abs‘1) = 1
292290, 291eqtri 2846 . . . 4 (abs‘(1 − 0)) = 1
293292oveq2i 7169 . . 3 ((𝑀 · (abs‘(𝑌𝑍))) · (abs‘(1 − 0))) = ((𝑀 · (abs‘(𝑌𝑍))) · 1)
294204recnd 10671 . . . 4 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (𝑀 · (abs‘(𝑌𝑍))) ∈ ℂ)
295294mulid1d 10660 . . 3 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → ((𝑀 · (abs‘(𝑌𝑍))) · 1) = (𝑀 · (abs‘(𝑌𝑍))))
296293, 295syl5eq 2870 . 2 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → ((𝑀 · (abs‘(𝑌𝑍))) · (abs‘(1 − 0))) = (𝑀 · (abs‘(𝑌𝑍))))
297253, 289, 2963brtr3d 5099 1 ((𝜑 ∧ (𝑌𝐵𝑍𝐵)) → (abs‘((𝐹𝑌) − (𝐹𝑍))) ≤ (𝑀 · (abs‘(𝑌𝑍))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  wral 3140  Vcvv 3496  cin 3937  wss 3938  {cpr 4571   class class class wbr 5068  cmpt 5148  dom cdm 5557  ran crn 5558  cres 5559  ccom 5561  wf 6353  cfv 6357  (class class class)co 7158  cc 10537  cr 10538  0cc0 10539  1c1 10540   + caddc 10542   · cmul 10544  *cxr 10676  cle 10678  cmin 10872  -cneg 10873  (,)cioo 12741  [,]cicc 12744  abscabs 14595  TopOpenctopn 16697  topGenctg 16713  ∞Metcxmet 20532  ballcbl 20534  fldccnfld 20547  Topctop 21503  intcnt 21627   Cn ccn 21834   ×t ctx 22170  cnccncf 23486   D cdv 24463
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616  ax-pre-sup 10617  ax-addf 10618  ax-mulf 10619
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-iin 4924  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-se 5517  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-isom 6366  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-of 7411  df-om 7583  df-1st 7691  df-2nd 7692  df-supp 7833  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-2o 8105  df-oadd 8108  df-er 8291  df-map 8410  df-pm 8411  df-ixp 8464  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-fsupp 8836  df-fi 8877  df-sup 8908  df-inf 8909  df-oi 8976  df-card 9370  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-div 11300  df-nn 11641  df-2 11703  df-3 11704  df-4 11705  df-5 11706  df-6 11707  df-7 11708  df-8 11709  df-9 11710  df-n0 11901  df-z 11985  df-dec 12102  df-uz 12247  df-q 12352  df-rp 12393  df-xneg 12510  df-xadd 12511  df-xmul 12512  df-ioo 12745  df-ico 12747  df-icc 12748  df-fz 12896  df-fzo 13037  df-seq 13373  df-exp 13433  df-hash 13694  df-cj 14460  df-re 14461  df-im 14462  df-sqrt 14596  df-abs 14597  df-struct 16487  df-ndx 16488  df-slot 16489  df-base 16491  df-sets 16492  df-ress 16493  df-plusg 16580  df-mulr 16581  df-starv 16582  df-sca 16583  df-vsca 16584  df-ip 16585  df-tset 16586  df-ple 16587  df-ds 16589  df-unif 16590  df-hom 16591  df-cco 16592  df-rest 16698  df-topn 16699  df-0g 16717  df-gsum 16718  df-topgen 16719  df-pt 16720  df-prds 16723  df-xrs 16777  df-qtop 16782  df-imas 16783  df-xps 16785  df-mre 16859  df-mrc 16860  df-acs 16862  df-mgm 17854  df-sgrp 17903  df-mnd 17914  df-submnd 17959  df-mulg 18227  df-cntz 18449  df-cmn 18910  df-psmet 20539  df-xmet 20540  df-met 20541  df-bl 20542  df-mopn 20543  df-fbas 20544  df-fg 20545  df-cnfld 20548  df-top 21504  df-topon 21521  df-topsp 21543  df-bases 21556  df-cld 21629  df-ntr 21630  df-cls 21631  df-nei 21708  df-lp 21746  df-perf 21747  df-cn 21837  df-cnp 21838  df-haus 21925  df-cmp 21997  df-tx 22172  df-hmeo 22365  df-fil 22456  df-fm 22548  df-flim 22549  df-flf 22550  df-xms 22932  df-ms 22933  df-tms 22934  df-cncf 23488  df-limc 24466  df-dv 24467
This theorem is referenced by:  dvlip2  24594  dv11cn  24600
  Copyright terms: Public domain W3C validator