MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  logdivsum Structured version   Visualization version   GIF version

Theorem logdivsum 25529
Description: Asymptotic analysis of Σ𝑛𝑥, log𝑛 / 𝑛 = (log𝑥)↑2 / 2 + 𝐿 + 𝑂(log𝑥 / 𝑥). (Contributed by Mario Carneiro, 18-May-2016.)
Hypothesis
Ref Expression
logdivsum.1 𝐹 = (𝑦 ∈ ℝ+ ↦ (Σ𝑖 ∈ (1...(⌊‘𝑦))((log‘𝑖) / 𝑖) − (((log‘𝑦)↑2) / 2)))
Assertion
Ref Expression
logdivsum (𝐹:ℝ+⟶ℝ ∧ 𝐹 ∈ dom ⇝𝑟 ∧ ((𝐹𝑟 𝐿𝐴 ∈ ℝ+ ∧ e ≤ 𝐴) → (abs‘((𝐹𝐴) − 𝐿)) ≤ ((log‘𝐴) / 𝐴)))
Distinct variable group:   𝑦,𝑖,𝐴
Allowed substitution hints:   𝐹(𝑦,𝑖)   𝐿(𝑦,𝑖)

Proof of Theorem logdivsum
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ioorp 12460 . . . 4 (0(,)+∞) = ℝ+
21eqcomi 2774 . . 3 + = (0(,)+∞)
3 nnuz 11930 . . 3 ℕ = (ℤ‘1)
4 1zzd 11661 . . 3 (⊤ → 1 ∈ ℤ)
5 ere 15117 . . . 4 e ∈ ℝ
65a1i 11 . . 3 (⊤ → e ∈ ℝ)
7 0re 10299 . . . . . 6 0 ∈ ℝ
8 epos 15233 . . . . . 6 0 < e
97, 5, 8ltleii 10419 . . . . 5 0 ≤ e
109a1i 11 . . . 4 (⊤ → 0 ≤ e)
11 1re 10297 . . . . 5 1 ∈ ℝ
12 addge02 10798 . . . . 5 ((1 ∈ ℝ ∧ e ∈ ℝ) → (0 ≤ e ↔ 1 ≤ (e + 1)))
1311, 5, 12mp2an 683 . . . 4 (0 ≤ e ↔ 1 ≤ (e + 1))
1410, 13sylib 209 . . 3 (⊤ → 1 ≤ (e + 1))
157a1i 11 . . 3 (⊤ → 0 ∈ ℝ)
16 relogcl 24629 . . . . . 6 (𝑦 ∈ ℝ+ → (log‘𝑦) ∈ ℝ)
1716adantl 473 . . . . 5 ((⊤ ∧ 𝑦 ∈ ℝ+) → (log‘𝑦) ∈ ℝ)
1817resqcld 13249 . . . 4 ((⊤ ∧ 𝑦 ∈ ℝ+) → ((log‘𝑦)↑2) ∈ ℝ)
1918rehalfcld 11530 . . 3 ((⊤ ∧ 𝑦 ∈ ℝ+) → (((log‘𝑦)↑2) / 2) ∈ ℝ)
20 rerpdivcl 12066 . . . . 5 (((log‘𝑦) ∈ ℝ ∧ 𝑦 ∈ ℝ+) → ((log‘𝑦) / 𝑦) ∈ ℝ)
2116, 20mpancom 679 . . . 4 (𝑦 ∈ ℝ+ → ((log‘𝑦) / 𝑦) ∈ ℝ)
2221adantl 473 . . 3 ((⊤ ∧ 𝑦 ∈ ℝ+) → ((log‘𝑦) / 𝑦) ∈ ℝ)
23 nnrp 12048 . . . 4 (𝑦 ∈ ℕ → 𝑦 ∈ ℝ+)
2423, 22sylan2 586 . . 3 ((⊤ ∧ 𝑦 ∈ ℕ) → ((log‘𝑦) / 𝑦) ∈ ℝ)
25 reelprrecn 10285 . . . . . 6 ℝ ∈ {ℝ, ℂ}
2625a1i 11 . . . . 5 (⊤ → ℝ ∈ {ℝ, ℂ})
27 cnelprrecn 10286 . . . . . 6 ℂ ∈ {ℝ, ℂ}
2827a1i 11 . . . . 5 (⊤ → ℂ ∈ {ℝ, ℂ})
2917recnd 10326 . . . . 5 ((⊤ ∧ 𝑦 ∈ ℝ+) → (log‘𝑦) ∈ ℂ)
30 ovexd 6880 . . . . 5 ((⊤ ∧ 𝑦 ∈ ℝ+) → (1 / 𝑦) ∈ V)
31 sqcl 13139 . . . . . . 7 (𝑥 ∈ ℂ → (𝑥↑2) ∈ ℂ)
3231adantl 473 . . . . . 6 ((⊤ ∧ 𝑥 ∈ ℂ) → (𝑥↑2) ∈ ℂ)
3332halfcld 11528 . . . . 5 ((⊤ ∧ 𝑥 ∈ ℂ) → ((𝑥↑2) / 2) ∈ ℂ)
34 simpr 477 . . . . 5 ((⊤ ∧ 𝑥 ∈ ℂ) → 𝑥 ∈ ℂ)
35 dvrelog 24690 . . . . . 6 (ℝ D (log ↾ ℝ+)) = (𝑦 ∈ ℝ+ ↦ (1 / 𝑦))
36 relogf1o 24620 . . . . . . . . . 10 (log ↾ ℝ+):ℝ+1-1-onto→ℝ
37 f1of 6324 . . . . . . . . . 10 ((log ↾ ℝ+):ℝ+1-1-onto→ℝ → (log ↾ ℝ+):ℝ+⟶ℝ)
3836, 37mp1i 13 . . . . . . . . 9 (⊤ → (log ↾ ℝ+):ℝ+⟶ℝ)
3938feqmptd 6442 . . . . . . . 8 (⊤ → (log ↾ ℝ+) = (𝑦 ∈ ℝ+ ↦ ((log ↾ ℝ+)‘𝑦)))
40 fvres 6398 . . . . . . . . 9 (𝑦 ∈ ℝ+ → ((log ↾ ℝ+)‘𝑦) = (log‘𝑦))
4140mpteq2ia 4901 . . . . . . . 8 (𝑦 ∈ ℝ+ ↦ ((log ↾ ℝ+)‘𝑦)) = (𝑦 ∈ ℝ+ ↦ (log‘𝑦))
4239, 41syl6eq 2815 . . . . . . 7 (⊤ → (log ↾ ℝ+) = (𝑦 ∈ ℝ+ ↦ (log‘𝑦)))
4342oveq2d 6862 . . . . . 6 (⊤ → (ℝ D (log ↾ ℝ+)) = (ℝ D (𝑦 ∈ ℝ+ ↦ (log‘𝑦))))
4435, 43syl5reqr 2814 . . . . 5 (⊤ → (ℝ D (𝑦 ∈ ℝ+ ↦ (log‘𝑦))) = (𝑦 ∈ ℝ+ ↦ (1 / 𝑦)))
45 ovexd 6880 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ ℂ) → (2 · 𝑥) ∈ V)
46 2nn 11350 . . . . . . . . 9 2 ∈ ℕ
47 dvexp 24023 . . . . . . . . 9 (2 ∈ ℕ → (ℂ D (𝑥 ∈ ℂ ↦ (𝑥↑2))) = (𝑥 ∈ ℂ ↦ (2 · (𝑥↑(2 − 1)))))
4846, 47mp1i 13 . . . . . . . 8 (⊤ → (ℂ D (𝑥 ∈ ℂ ↦ (𝑥↑2))) = (𝑥 ∈ ℂ ↦ (2 · (𝑥↑(2 − 1)))))
49 2m1e1 11410 . . . . . . . . . . . 12 (2 − 1) = 1
5049oveq2i 6857 . . . . . . . . . . 11 (𝑥↑(2 − 1)) = (𝑥↑1)
51 exp1 13080 . . . . . . . . . . . 12 (𝑥 ∈ ℂ → (𝑥↑1) = 𝑥)
5251adantl 473 . . . . . . . . . . 11 ((⊤ ∧ 𝑥 ∈ ℂ) → (𝑥↑1) = 𝑥)
5350, 52syl5eq 2811 . . . . . . . . . 10 ((⊤ ∧ 𝑥 ∈ ℂ) → (𝑥↑(2 − 1)) = 𝑥)
5453oveq2d 6862 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ ℂ) → (2 · (𝑥↑(2 − 1))) = (2 · 𝑥))
5554mpteq2dva 4905 . . . . . . . 8 (⊤ → (𝑥 ∈ ℂ ↦ (2 · (𝑥↑(2 − 1)))) = (𝑥 ∈ ℂ ↦ (2 · 𝑥)))
5648, 55eqtrd 2799 . . . . . . 7 (⊤ → (ℂ D (𝑥 ∈ ℂ ↦ (𝑥↑2))) = (𝑥 ∈ ℂ ↦ (2 · 𝑥)))
57 2cn 11352 . . . . . . . 8 2 ∈ ℂ
5857a1i 11 . . . . . . 7 (⊤ → 2 ∈ ℂ)
59 2ne0 11388 . . . . . . . 8 2 ≠ 0
6059a1i 11 . . . . . . 7 (⊤ → 2 ≠ 0)
6128, 32, 45, 56, 58, 60dvmptdivc 24035 . . . . . 6 (⊤ → (ℂ D (𝑥 ∈ ℂ ↦ ((𝑥↑2) / 2))) = (𝑥 ∈ ℂ ↦ ((2 · 𝑥) / 2)))
62 divcan3 10970 . . . . . . . . 9 ((𝑥 ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0) → ((2 · 𝑥) / 2) = 𝑥)
6357, 59, 62mp3an23 1577 . . . . . . . 8 (𝑥 ∈ ℂ → ((2 · 𝑥) / 2) = 𝑥)
6463adantl 473 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ ℂ) → ((2 · 𝑥) / 2) = 𝑥)
6564mpteq2dva 4905 . . . . . 6 (⊤ → (𝑥 ∈ ℂ ↦ ((2 · 𝑥) / 2)) = (𝑥 ∈ ℂ ↦ 𝑥))
6661, 65eqtrd 2799 . . . . 5 (⊤ → (ℂ D (𝑥 ∈ ℂ ↦ ((𝑥↑2) / 2))) = (𝑥 ∈ ℂ ↦ 𝑥))
67 oveq1 6853 . . . . . 6 (𝑥 = (log‘𝑦) → (𝑥↑2) = ((log‘𝑦)↑2))
6867oveq1d 6861 . . . . 5 (𝑥 = (log‘𝑦) → ((𝑥↑2) / 2) = (((log‘𝑦)↑2) / 2))
69 id 22 . . . . 5 (𝑥 = (log‘𝑦) → 𝑥 = (log‘𝑦))
7026, 28, 29, 30, 33, 34, 44, 66, 68, 69dvmptco 24042 . . . 4 (⊤ → (ℝ D (𝑦 ∈ ℝ+ ↦ (((log‘𝑦)↑2) / 2))) = (𝑦 ∈ ℝ+ ↦ ((log‘𝑦) · (1 / 𝑦))))
71 rpcn 12047 . . . . . . 7 (𝑦 ∈ ℝ+𝑦 ∈ ℂ)
7271adantl 473 . . . . . 6 ((⊤ ∧ 𝑦 ∈ ℝ+) → 𝑦 ∈ ℂ)
73 rpne0 12053 . . . . . . 7 (𝑦 ∈ ℝ+𝑦 ≠ 0)
7473adantl 473 . . . . . 6 ((⊤ ∧ 𝑦 ∈ ℝ+) → 𝑦 ≠ 0)
7529, 72, 74divrecd 11063 . . . . 5 ((⊤ ∧ 𝑦 ∈ ℝ+) → ((log‘𝑦) / 𝑦) = ((log‘𝑦) · (1 / 𝑦)))
7675mpteq2dva 4905 . . . 4 (⊤ → (𝑦 ∈ ℝ+ ↦ ((log‘𝑦) / 𝑦)) = (𝑦 ∈ ℝ+ ↦ ((log‘𝑦) · (1 / 𝑦))))
7770, 76eqtr4d 2802 . . 3 (⊤ → (ℝ D (𝑦 ∈ ℝ+ ↦ (((log‘𝑦)↑2) / 2))) = (𝑦 ∈ ℝ+ ↦ ((log‘𝑦) / 𝑦)))
78 fveq2 6379 . . . 4 (𝑦 = 𝑖 → (log‘𝑦) = (log‘𝑖))
79 id 22 . . . 4 (𝑦 = 𝑖𝑦 = 𝑖)
8078, 79oveq12d 6864 . . 3 (𝑦 = 𝑖 → ((log‘𝑦) / 𝑦) = ((log‘𝑖) / 𝑖))
81 simp3r 1259 . . . 4 ((⊤ ∧ (𝑦 ∈ ℝ+𝑖 ∈ ℝ+) ∧ (e ≤ 𝑦𝑦𝑖)) → 𝑦𝑖)
82 simp2l 1256 . . . . . 6 ((⊤ ∧ (𝑦 ∈ ℝ+𝑖 ∈ ℝ+) ∧ (e ≤ 𝑦𝑦𝑖)) → 𝑦 ∈ ℝ+)
8382rpred 12077 . . . . 5 ((⊤ ∧ (𝑦 ∈ ℝ+𝑖 ∈ ℝ+) ∧ (e ≤ 𝑦𝑦𝑖)) → 𝑦 ∈ ℝ)
84 simp3l 1258 . . . . 5 ((⊤ ∧ (𝑦 ∈ ℝ+𝑖 ∈ ℝ+) ∧ (e ≤ 𝑦𝑦𝑖)) → e ≤ 𝑦)
85 simp2r 1257 . . . . . 6 ((⊤ ∧ (𝑦 ∈ ℝ+𝑖 ∈ ℝ+) ∧ (e ≤ 𝑦𝑦𝑖)) → 𝑖 ∈ ℝ+)
8685rpred 12077 . . . . 5 ((⊤ ∧ (𝑦 ∈ ℝ+𝑖 ∈ ℝ+) ∧ (e ≤ 𝑦𝑦𝑖)) → 𝑖 ∈ ℝ)
875a1i 11 . . . . . 6 ((⊤ ∧ (𝑦 ∈ ℝ+𝑖 ∈ ℝ+) ∧ (e ≤ 𝑦𝑦𝑖)) → e ∈ ℝ)
8887, 83, 86, 84, 81letrd 10453 . . . . 5 ((⊤ ∧ (𝑦 ∈ ℝ+𝑖 ∈ ℝ+) ∧ (e ≤ 𝑦𝑦𝑖)) → e ≤ 𝑖)
89 logdivle 24675 . . . . 5 (((𝑦 ∈ ℝ ∧ e ≤ 𝑦) ∧ (𝑖 ∈ ℝ ∧ e ≤ 𝑖)) → (𝑦𝑖 ↔ ((log‘𝑖) / 𝑖) ≤ ((log‘𝑦) / 𝑦)))
9083, 84, 86, 88, 89syl22anc 867 . . . 4 ((⊤ ∧ (𝑦 ∈ ℝ+𝑖 ∈ ℝ+) ∧ (e ≤ 𝑦𝑦𝑖)) → (𝑦𝑖 ↔ ((log‘𝑖) / 𝑖) ≤ ((log‘𝑦) / 𝑦)))
9181, 90mpbid 223 . . 3 ((⊤ ∧ (𝑦 ∈ ℝ+𝑖 ∈ ℝ+) ∧ (e ≤ 𝑦𝑦𝑖)) → ((log‘𝑖) / 𝑖) ≤ ((log‘𝑦) / 𝑦))
92 logdivsum.1 . . 3 𝐹 = (𝑦 ∈ ℝ+ ↦ (Σ𝑖 ∈ (1...(⌊‘𝑦))((log‘𝑖) / 𝑖) − (((log‘𝑦)↑2) / 2)))
9371cxp1d 24759 . . . . . 6 (𝑦 ∈ ℝ+ → (𝑦𝑐1) = 𝑦)
9493oveq2d 6862 . . . . 5 (𝑦 ∈ ℝ+ → ((log‘𝑦) / (𝑦𝑐1)) = ((log‘𝑦) / 𝑦))
9594mpteq2ia 4901 . . . 4 (𝑦 ∈ ℝ+ ↦ ((log‘𝑦) / (𝑦𝑐1))) = (𝑦 ∈ ℝ+ ↦ ((log‘𝑦) / 𝑦))
96 1rp 12039 . . . . 5 1 ∈ ℝ+
97 cxploglim 25011 . . . . 5 (1 ∈ ℝ+ → (𝑦 ∈ ℝ+ ↦ ((log‘𝑦) / (𝑦𝑐1))) ⇝𝑟 0)
9896, 97mp1i 13 . . . 4 (⊤ → (𝑦 ∈ ℝ+ ↦ ((log‘𝑦) / (𝑦𝑐1))) ⇝𝑟 0)
9995, 98syl5eqbrr 4847 . . 3 (⊤ → (𝑦 ∈ ℝ+ ↦ ((log‘𝑦) / 𝑦)) ⇝𝑟 0)
100 fveq2 6379 . . . 4 (𝑦 = 𝐴 → (log‘𝑦) = (log‘𝐴))
101 id 22 . . . 4 (𝑦 = 𝐴𝑦 = 𝐴)
102100, 101oveq12d 6864 . . 3 (𝑦 = 𝐴 → ((log‘𝑦) / 𝑦) = ((log‘𝐴) / 𝐴))
1032, 3, 4, 6, 14, 15, 19, 22, 24, 77, 80, 91, 92, 99, 102dvfsumrlim3 24103 . 2 (⊤ → (𝐹:ℝ+⟶ℝ ∧ 𝐹 ∈ dom ⇝𝑟 ∧ ((𝐹𝑟 𝐿𝐴 ∈ ℝ+ ∧ e ≤ 𝐴) → (abs‘((𝐹𝐴) − 𝐿)) ≤ ((log‘𝐴) / 𝐴))))
104103mptru 1660 1 (𝐹:ℝ+⟶ℝ ∧ 𝐹 ∈ dom ⇝𝑟 ∧ ((𝐹𝑟 𝐿𝐴 ∈ ℝ+ ∧ e ≤ 𝐴) → (abs‘((𝐹𝐴) − 𝐿)) ≤ ((log‘𝐴) / 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 197  wa 384  w3a 1107   = wceq 1652  wtru 1653  wcel 2155  wne 2937  Vcvv 3350  {cpr 4338   class class class wbr 4811  cmpt 4890  dom cdm 5279  cres 5281  wf 6066  1-1-ontowf1o 6069  cfv 6070  (class class class)co 6846  cc 10191  cr 10192  0cc0 10193  1c1 10194   + caddc 10196   · cmul 10198  +∞cpnf 10329  cle 10333  cmin 10525   / cdiv 10943  cn 11279  2c2 11332  +crp 12035  (,)cioo 12384  ...cfz 12540  cfl 12806  cexp 13074  abscabs 14275  𝑟 crli 14517  Σcsu 14717  eceu 15091   D cdv 23934  logclog 24608  𝑐ccxp 24609
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-rep 4932  ax-sep 4943  ax-nul 4951  ax-pow 5003  ax-pr 5064  ax-un 7151  ax-inf2 8757  ax-cnex 10249  ax-resscn 10250  ax-1cn 10251  ax-icn 10252  ax-addcl 10253  ax-addrcl 10254  ax-mulcl 10255  ax-mulrcl 10256  ax-mulcom 10257  ax-addass 10258  ax-mulass 10259  ax-distr 10260  ax-i2m1 10261  ax-1ne0 10262  ax-1rid 10263  ax-rnegex 10264  ax-rrecex 10265  ax-cnre 10266  ax-pre-lttri 10267  ax-pre-lttrn 10268  ax-pre-ltadd 10269  ax-pre-mulgt0 10270  ax-pre-sup 10271  ax-addf 10272  ax-mulf 10273
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-fal 1666  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-reu 3062  df-rmo 3063  df-rab 3064  df-v 3352  df-sbc 3599  df-csb 3694  df-dif 3737  df-un 3739  df-in 3741  df-ss 3748  df-pss 3750  df-nul 4082  df-if 4246  df-pw 4319  df-sn 4337  df-pr 4339  df-tp 4341  df-op 4343  df-uni 4597  df-int 4636  df-iun 4680  df-iin 4681  df-br 4812  df-opab 4874  df-mpt 4891  df-tr 4914  df-id 5187  df-eprel 5192  df-po 5200  df-so 5201  df-fr 5238  df-se 5239  df-we 5240  df-xp 5285  df-rel 5286  df-cnv 5287  df-co 5288  df-dm 5289  df-rn 5290  df-res 5291  df-ima 5292  df-pred 5867  df-ord 5913  df-on 5914  df-lim 5915  df-suc 5916  df-iota 6033  df-fun 6072  df-fn 6073  df-f 6074  df-f1 6075  df-fo 6076  df-f1o 6077  df-fv 6078  df-isom 6079  df-riota 6807  df-ov 6849  df-oprab 6850  df-mpt2 6851  df-of 7099  df-om 7268  df-1st 7370  df-2nd 7371  df-supp 7502  df-wrecs 7614  df-recs 7676  df-rdg 7714  df-1o 7768  df-2o 7769  df-oadd 7772  df-er 7951  df-map 8066  df-pm 8067  df-ixp 8118  df-en 8165  df-dom 8166  df-sdom 8167  df-fin 8168  df-fsupp 8487  df-fi 8528  df-sup 8559  df-inf 8560  df-oi 8626  df-card 9020  df-cda 9247  df-pnf 10334  df-mnf 10335  df-xr 10336  df-ltxr 10337  df-le 10338  df-sub 10527  df-neg 10528  df-div 10944  df-nn 11280  df-2 11340  df-3 11341  df-4 11342  df-5 11343  df-6 11344  df-7 11345  df-8 11346  df-9 11347  df-n0 11544  df-z 11630  df-dec 11747  df-uz 11894  df-q 11997  df-rp 12036  df-xneg 12153  df-xadd 12154  df-xmul 12155  df-ioo 12388  df-ioc 12389  df-ico 12390  df-icc 12391  df-fz 12541  df-fzo 12681  df-fl 12808  df-mod 12884  df-seq 13016  df-exp 13075  df-fac 13272  df-bc 13301  df-hash 13329  df-shft 14108  df-cj 14140  df-re 14141  df-im 14142  df-sqrt 14276  df-abs 14277  df-limsup 14503  df-clim 14520  df-rlim 14521  df-sum 14718  df-ef 15096  df-e 15097  df-sin 15098  df-cos 15099  df-pi 15101  df-struct 16148  df-ndx 16149  df-slot 16150  df-base 16152  df-sets 16153  df-ress 16154  df-plusg 16243  df-mulr 16244  df-starv 16245  df-sca 16246  df-vsca 16247  df-ip 16248  df-tset 16249  df-ple 16250  df-ds 16252  df-unif 16253  df-hom 16254  df-cco 16255  df-rest 16365  df-topn 16366  df-0g 16384  df-gsum 16385  df-topgen 16386  df-pt 16387  df-prds 16390  df-xrs 16444  df-qtop 16449  df-imas 16450  df-xps 16452  df-mre 16528  df-mrc 16529  df-acs 16531  df-mgm 17524  df-sgrp 17566  df-mnd 17577  df-submnd 17618  df-mulg 17824  df-cntz 18029  df-cmn 18477  df-psmet 20027  df-xmet 20028  df-met 20029  df-bl 20030  df-mopn 20031  df-fbas 20032  df-fg 20033  df-cnfld 20036  df-top 20994  df-topon 21011  df-topsp 21033  df-bases 21046  df-cld 21119  df-ntr 21120  df-cls 21121  df-nei 21198  df-lp 21236  df-perf 21237  df-cn 21327  df-cnp 21328  df-haus 21415  df-cmp 21486  df-tx 21661  df-hmeo 21854  df-fil 21945  df-fm 22037  df-flim 22038  df-flf 22039  df-xms 22420  df-ms 22421  df-tms 22422  df-cncf 22976  df-limc 23937  df-dv 23938  df-log 24610  df-cxp 24611
This theorem is referenced by:  mulog2sumlem1  25530  mulog2sum  25533  vmalogdivsum2  25534
  Copyright terms: Public domain W3C validator