MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  logdivsum Structured version   Visualization version   GIF version

Theorem logdivsum 27577
Description: Asymptotic analysis of Σ𝑛𝑥, log𝑛 / 𝑛 = (log𝑥)↑2 / 2 + 𝐿 + 𝑂(log𝑥 / 𝑥). (Contributed by Mario Carneiro, 18-May-2016.)
Hypothesis
Ref Expression
logdivsum.1 𝐹 = (𝑦 ∈ ℝ+ ↦ (Σ𝑖 ∈ (1...(⌊‘𝑦))((log‘𝑖) / 𝑖) − (((log‘𝑦)↑2) / 2)))
Assertion
Ref Expression
logdivsum (𝐹:ℝ+⟶ℝ ∧ 𝐹 ∈ dom ⇝𝑟 ∧ ((𝐹𝑟 𝐿𝐴 ∈ ℝ+ ∧ e ≤ 𝐴) → (abs‘((𝐹𝐴) − 𝐿)) ≤ ((log‘𝐴) / 𝐴)))
Distinct variable group:   𝑦,𝑖,𝐴
Allowed substitution hints:   𝐹(𝑦,𝑖)   𝐿(𝑦,𝑖)

Proof of Theorem logdivsum
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ioorp 13465 . . . 4 (0(,)+∞) = ℝ+
21eqcomi 2746 . . 3 + = (0(,)+∞)
3 nnuz 12921 . . 3 ℕ = (ℤ‘1)
4 1zzd 12648 . . 3 (⊤ → 1 ∈ ℤ)
5 ere 16125 . . . 4 e ∈ ℝ
65a1i 11 . . 3 (⊤ → e ∈ ℝ)
7 0re 11263 . . . . . 6 0 ∈ ℝ
8 epos 16243 . . . . . 6 0 < e
97, 5, 8ltleii 11384 . . . . 5 0 ≤ e
109a1i 11 . . . 4 (⊤ → 0 ≤ e)
11 1re 11261 . . . . 5 1 ∈ ℝ
12 addge02 11774 . . . . 5 ((1 ∈ ℝ ∧ e ∈ ℝ) → (0 ≤ e ↔ 1 ≤ (e + 1)))
1311, 5, 12mp2an 692 . . . 4 (0 ≤ e ↔ 1 ≤ (e + 1))
1410, 13sylib 218 . . 3 (⊤ → 1 ≤ (e + 1))
157a1i 11 . . 3 (⊤ → 0 ∈ ℝ)
16 relogcl 26617 . . . . . 6 (𝑦 ∈ ℝ+ → (log‘𝑦) ∈ ℝ)
1716adantl 481 . . . . 5 ((⊤ ∧ 𝑦 ∈ ℝ+) → (log‘𝑦) ∈ ℝ)
1817resqcld 14165 . . . 4 ((⊤ ∧ 𝑦 ∈ ℝ+) → ((log‘𝑦)↑2) ∈ ℝ)
1918rehalfcld 12513 . . 3 ((⊤ ∧ 𝑦 ∈ ℝ+) → (((log‘𝑦)↑2) / 2) ∈ ℝ)
20 rerpdivcl 13065 . . . . 5 (((log‘𝑦) ∈ ℝ ∧ 𝑦 ∈ ℝ+) → ((log‘𝑦) / 𝑦) ∈ ℝ)
2116, 20mpancom 688 . . . 4 (𝑦 ∈ ℝ+ → ((log‘𝑦) / 𝑦) ∈ ℝ)
2221adantl 481 . . 3 ((⊤ ∧ 𝑦 ∈ ℝ+) → ((log‘𝑦) / 𝑦) ∈ ℝ)
23 nnrp 13046 . . . 4 (𝑦 ∈ ℕ → 𝑦 ∈ ℝ+)
2423, 22sylan2 593 . . 3 ((⊤ ∧ 𝑦 ∈ ℕ) → ((log‘𝑦) / 𝑦) ∈ ℝ)
25 reelprrecn 11247 . . . . . 6 ℝ ∈ {ℝ, ℂ}
2625a1i 11 . . . . 5 (⊤ → ℝ ∈ {ℝ, ℂ})
27 cnelprrecn 11248 . . . . . 6 ℂ ∈ {ℝ, ℂ}
2827a1i 11 . . . . 5 (⊤ → ℂ ∈ {ℝ, ℂ})
2917recnd 11289 . . . . 5 ((⊤ ∧ 𝑦 ∈ ℝ+) → (log‘𝑦) ∈ ℂ)
30 ovexd 7466 . . . . 5 ((⊤ ∧ 𝑦 ∈ ℝ+) → (1 / 𝑦) ∈ V)
31 sqcl 14158 . . . . . . 7 (𝑥 ∈ ℂ → (𝑥↑2) ∈ ℂ)
3231adantl 481 . . . . . 6 ((⊤ ∧ 𝑥 ∈ ℂ) → (𝑥↑2) ∈ ℂ)
3332halfcld 12511 . . . . 5 ((⊤ ∧ 𝑥 ∈ ℂ) → ((𝑥↑2) / 2) ∈ ℂ)
34 simpr 484 . . . . 5 ((⊤ ∧ 𝑥 ∈ ℂ) → 𝑥 ∈ ℂ)
35 relogf1o 26608 . . . . . . . . . 10 (log ↾ ℝ+):ℝ+1-1-onto→ℝ
36 f1of 6848 . . . . . . . . . 10 ((log ↾ ℝ+):ℝ+1-1-onto→ℝ → (log ↾ ℝ+):ℝ+⟶ℝ)
3735, 36mp1i 13 . . . . . . . . 9 (⊤ → (log ↾ ℝ+):ℝ+⟶ℝ)
3837feqmptd 6977 . . . . . . . 8 (⊤ → (log ↾ ℝ+) = (𝑦 ∈ ℝ+ ↦ ((log ↾ ℝ+)‘𝑦)))
39 fvres 6925 . . . . . . . . 9 (𝑦 ∈ ℝ+ → ((log ↾ ℝ+)‘𝑦) = (log‘𝑦))
4039mpteq2ia 5245 . . . . . . . 8 (𝑦 ∈ ℝ+ ↦ ((log ↾ ℝ+)‘𝑦)) = (𝑦 ∈ ℝ+ ↦ (log‘𝑦))
4138, 40eqtrdi 2793 . . . . . . 7 (⊤ → (log ↾ ℝ+) = (𝑦 ∈ ℝ+ ↦ (log‘𝑦)))
4241oveq2d 7447 . . . . . 6 (⊤ → (ℝ D (log ↾ ℝ+)) = (ℝ D (𝑦 ∈ ℝ+ ↦ (log‘𝑦))))
43 dvrelog 26679 . . . . . 6 (ℝ D (log ↾ ℝ+)) = (𝑦 ∈ ℝ+ ↦ (1 / 𝑦))
4442, 43eqtr3di 2792 . . . . 5 (⊤ → (ℝ D (𝑦 ∈ ℝ+ ↦ (log‘𝑦))) = (𝑦 ∈ ℝ+ ↦ (1 / 𝑦)))
45 ovexd 7466 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ ℂ) → (2 · 𝑥) ∈ V)
46 2nn 12339 . . . . . . . . 9 2 ∈ ℕ
47 dvexp 25991 . . . . . . . . 9 (2 ∈ ℕ → (ℂ D (𝑥 ∈ ℂ ↦ (𝑥↑2))) = (𝑥 ∈ ℂ ↦ (2 · (𝑥↑(2 − 1)))))
4846, 47mp1i 13 . . . . . . . 8 (⊤ → (ℂ D (𝑥 ∈ ℂ ↦ (𝑥↑2))) = (𝑥 ∈ ℂ ↦ (2 · (𝑥↑(2 − 1)))))
49 2m1e1 12392 . . . . . . . . . . . 12 (2 − 1) = 1
5049oveq2i 7442 . . . . . . . . . . 11 (𝑥↑(2 − 1)) = (𝑥↑1)
51 exp1 14108 . . . . . . . . . . . 12 (𝑥 ∈ ℂ → (𝑥↑1) = 𝑥)
5251adantl 481 . . . . . . . . . . 11 ((⊤ ∧ 𝑥 ∈ ℂ) → (𝑥↑1) = 𝑥)
5350, 52eqtrid 2789 . . . . . . . . . 10 ((⊤ ∧ 𝑥 ∈ ℂ) → (𝑥↑(2 − 1)) = 𝑥)
5453oveq2d 7447 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ ℂ) → (2 · (𝑥↑(2 − 1))) = (2 · 𝑥))
5554mpteq2dva 5242 . . . . . . . 8 (⊤ → (𝑥 ∈ ℂ ↦ (2 · (𝑥↑(2 − 1)))) = (𝑥 ∈ ℂ ↦ (2 · 𝑥)))
5648, 55eqtrd 2777 . . . . . . 7 (⊤ → (ℂ D (𝑥 ∈ ℂ ↦ (𝑥↑2))) = (𝑥 ∈ ℂ ↦ (2 · 𝑥)))
57 2cnd 12344 . . . . . . 7 (⊤ → 2 ∈ ℂ)
58 2ne0 12370 . . . . . . . 8 2 ≠ 0
5958a1i 11 . . . . . . 7 (⊤ → 2 ≠ 0)
6028, 32, 45, 56, 57, 59dvmptdivc 26003 . . . . . 6 (⊤ → (ℂ D (𝑥 ∈ ℂ ↦ ((𝑥↑2) / 2))) = (𝑥 ∈ ℂ ↦ ((2 · 𝑥) / 2)))
61 2cn 12341 . . . . . . . . 9 2 ∈ ℂ
62 divcan3 11948 . . . . . . . . 9 ((𝑥 ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0) → ((2 · 𝑥) / 2) = 𝑥)
6361, 58, 62mp3an23 1455 . . . . . . . 8 (𝑥 ∈ ℂ → ((2 · 𝑥) / 2) = 𝑥)
6463adantl 481 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ ℂ) → ((2 · 𝑥) / 2) = 𝑥)
6564mpteq2dva 5242 . . . . . 6 (⊤ → (𝑥 ∈ ℂ ↦ ((2 · 𝑥) / 2)) = (𝑥 ∈ ℂ ↦ 𝑥))
6660, 65eqtrd 2777 . . . . 5 (⊤ → (ℂ D (𝑥 ∈ ℂ ↦ ((𝑥↑2) / 2))) = (𝑥 ∈ ℂ ↦ 𝑥))
67 oveq1 7438 . . . . . 6 (𝑥 = (log‘𝑦) → (𝑥↑2) = ((log‘𝑦)↑2))
6867oveq1d 7446 . . . . 5 (𝑥 = (log‘𝑦) → ((𝑥↑2) / 2) = (((log‘𝑦)↑2) / 2))
69 id 22 . . . . 5 (𝑥 = (log‘𝑦) → 𝑥 = (log‘𝑦))
7026, 28, 29, 30, 33, 34, 44, 66, 68, 69dvmptco 26010 . . . 4 (⊤ → (ℝ D (𝑦 ∈ ℝ+ ↦ (((log‘𝑦)↑2) / 2))) = (𝑦 ∈ ℝ+ ↦ ((log‘𝑦) · (1 / 𝑦))))
71 rpcn 13045 . . . . . . 7 (𝑦 ∈ ℝ+𝑦 ∈ ℂ)
7271adantl 481 . . . . . 6 ((⊤ ∧ 𝑦 ∈ ℝ+) → 𝑦 ∈ ℂ)
73 rpne0 13051 . . . . . . 7 (𝑦 ∈ ℝ+𝑦 ≠ 0)
7473adantl 481 . . . . . 6 ((⊤ ∧ 𝑦 ∈ ℝ+) → 𝑦 ≠ 0)
7529, 72, 74divrecd 12046 . . . . 5 ((⊤ ∧ 𝑦 ∈ ℝ+) → ((log‘𝑦) / 𝑦) = ((log‘𝑦) · (1 / 𝑦)))
7675mpteq2dva 5242 . . . 4 (⊤ → (𝑦 ∈ ℝ+ ↦ ((log‘𝑦) / 𝑦)) = (𝑦 ∈ ℝ+ ↦ ((log‘𝑦) · (1 / 𝑦))))
7770, 76eqtr4d 2780 . . 3 (⊤ → (ℝ D (𝑦 ∈ ℝ+ ↦ (((log‘𝑦)↑2) / 2))) = (𝑦 ∈ ℝ+ ↦ ((log‘𝑦) / 𝑦)))
78 fveq2 6906 . . . 4 (𝑦 = 𝑖 → (log‘𝑦) = (log‘𝑖))
79 id 22 . . . 4 (𝑦 = 𝑖𝑦 = 𝑖)
8078, 79oveq12d 7449 . . 3 (𝑦 = 𝑖 → ((log‘𝑦) / 𝑦) = ((log‘𝑖) / 𝑖))
81 simp3r 1203 . . . 4 ((⊤ ∧ (𝑦 ∈ ℝ+𝑖 ∈ ℝ+) ∧ (e ≤ 𝑦𝑦𝑖)) → 𝑦𝑖)
82 simp2l 1200 . . . . . 6 ((⊤ ∧ (𝑦 ∈ ℝ+𝑖 ∈ ℝ+) ∧ (e ≤ 𝑦𝑦𝑖)) → 𝑦 ∈ ℝ+)
8382rpred 13077 . . . . 5 ((⊤ ∧ (𝑦 ∈ ℝ+𝑖 ∈ ℝ+) ∧ (e ≤ 𝑦𝑦𝑖)) → 𝑦 ∈ ℝ)
84 simp3l 1202 . . . . 5 ((⊤ ∧ (𝑦 ∈ ℝ+𝑖 ∈ ℝ+) ∧ (e ≤ 𝑦𝑦𝑖)) → e ≤ 𝑦)
85 simp2r 1201 . . . . . 6 ((⊤ ∧ (𝑦 ∈ ℝ+𝑖 ∈ ℝ+) ∧ (e ≤ 𝑦𝑦𝑖)) → 𝑖 ∈ ℝ+)
8685rpred 13077 . . . . 5 ((⊤ ∧ (𝑦 ∈ ℝ+𝑖 ∈ ℝ+) ∧ (e ≤ 𝑦𝑦𝑖)) → 𝑖 ∈ ℝ)
875a1i 11 . . . . . 6 ((⊤ ∧ (𝑦 ∈ ℝ+𝑖 ∈ ℝ+) ∧ (e ≤ 𝑦𝑦𝑖)) → e ∈ ℝ)
8887, 83, 86, 84, 81letrd 11418 . . . . 5 ((⊤ ∧ (𝑦 ∈ ℝ+𝑖 ∈ ℝ+) ∧ (e ≤ 𝑦𝑦𝑖)) → e ≤ 𝑖)
89 logdivle 26664 . . . . 5 (((𝑦 ∈ ℝ ∧ e ≤ 𝑦) ∧ (𝑖 ∈ ℝ ∧ e ≤ 𝑖)) → (𝑦𝑖 ↔ ((log‘𝑖) / 𝑖) ≤ ((log‘𝑦) / 𝑦)))
9083, 84, 86, 88, 89syl22anc 839 . . . 4 ((⊤ ∧ (𝑦 ∈ ℝ+𝑖 ∈ ℝ+) ∧ (e ≤ 𝑦𝑦𝑖)) → (𝑦𝑖 ↔ ((log‘𝑖) / 𝑖) ≤ ((log‘𝑦) / 𝑦)))
9181, 90mpbid 232 . . 3 ((⊤ ∧ (𝑦 ∈ ℝ+𝑖 ∈ ℝ+) ∧ (e ≤ 𝑦𝑦𝑖)) → ((log‘𝑖) / 𝑖) ≤ ((log‘𝑦) / 𝑦))
92 logdivsum.1 . . 3 𝐹 = (𝑦 ∈ ℝ+ ↦ (Σ𝑖 ∈ (1...(⌊‘𝑦))((log‘𝑖) / 𝑖) − (((log‘𝑦)↑2) / 2)))
9371cxp1d 26748 . . . . . 6 (𝑦 ∈ ℝ+ → (𝑦𝑐1) = 𝑦)
9493oveq2d 7447 . . . . 5 (𝑦 ∈ ℝ+ → ((log‘𝑦) / (𝑦𝑐1)) = ((log‘𝑦) / 𝑦))
9594mpteq2ia 5245 . . . 4 (𝑦 ∈ ℝ+ ↦ ((log‘𝑦) / (𝑦𝑐1))) = (𝑦 ∈ ℝ+ ↦ ((log‘𝑦) / 𝑦))
96 1rp 13038 . . . . 5 1 ∈ ℝ+
97 cxploglim 27021 . . . . 5 (1 ∈ ℝ+ → (𝑦 ∈ ℝ+ ↦ ((log‘𝑦) / (𝑦𝑐1))) ⇝𝑟 0)
9896, 97mp1i 13 . . . 4 (⊤ → (𝑦 ∈ ℝ+ ↦ ((log‘𝑦) / (𝑦𝑐1))) ⇝𝑟 0)
9995, 98eqbrtrrid 5179 . . 3 (⊤ → (𝑦 ∈ ℝ+ ↦ ((log‘𝑦) / 𝑦)) ⇝𝑟 0)
100 fveq2 6906 . . . 4 (𝑦 = 𝐴 → (log‘𝑦) = (log‘𝐴))
101 id 22 . . . 4 (𝑦 = 𝐴𝑦 = 𝐴)
102100, 101oveq12d 7449 . . 3 (𝑦 = 𝐴 → ((log‘𝑦) / 𝑦) = ((log‘𝐴) / 𝐴))
1032, 3, 4, 6, 14, 15, 19, 22, 24, 77, 80, 91, 92, 99, 102dvfsumrlim3 26074 . 2 (⊤ → (𝐹:ℝ+⟶ℝ ∧ 𝐹 ∈ dom ⇝𝑟 ∧ ((𝐹𝑟 𝐿𝐴 ∈ ℝ+ ∧ e ≤ 𝐴) → (abs‘((𝐹𝐴) − 𝐿)) ≤ ((log‘𝐴) / 𝐴))))
104103mptru 1547 1 (𝐹:ℝ+⟶ℝ ∧ 𝐹 ∈ dom ⇝𝑟 ∧ ((𝐹𝑟 𝐿𝐴 ∈ ℝ+ ∧ e ≤ 𝐴) → (abs‘((𝐹𝐴) − 𝐿)) ≤ ((log‘𝐴) / 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1540  wtru 1541  wcel 2108  wne 2940  Vcvv 3480  {cpr 4628   class class class wbr 5143  cmpt 5225  dom cdm 5685  cres 5687  wf 6557  1-1-ontowf1o 6560  cfv 6561  (class class class)co 7431  cc 11153  cr 11154  0cc0 11155  1c1 11156   + caddc 11158   · cmul 11160  +∞cpnf 11292  cle 11296  cmin 11492   / cdiv 11920  cn 12266  2c2 12321  +crp 13034  (,)cioo 13387  ...cfz 13547  cfl 13830  cexp 14102  abscabs 15273  𝑟 crli 15521  Σcsu 15722  eceu 16098   D cdv 25898  logclog 26596  𝑐ccxp 26597
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-inf2 9681  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233  ax-addf 11234
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-iin 4994  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8014  df-2nd 8015  df-supp 8186  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-er 8745  df-map 8868  df-pm 8869  df-ixp 8938  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-fsupp 9402  df-fi 9451  df-sup 9482  df-inf 9483  df-oi 9550  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-z 12614  df-dec 12734  df-uz 12879  df-q 12991  df-rp 13035  df-xneg 13154  df-xadd 13155  df-xmul 13156  df-ioo 13391  df-ioc 13392  df-ico 13393  df-icc 13394  df-fz 13548  df-fzo 13695  df-fl 13832  df-mod 13910  df-seq 14043  df-exp 14103  df-fac 14313  df-bc 14342  df-hash 14370  df-shft 15106  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-limsup 15507  df-clim 15524  df-rlim 15525  df-sum 15723  df-ef 16103  df-e 16104  df-sin 16105  df-cos 16106  df-pi 16108  df-struct 17184  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-mulr 17311  df-starv 17312  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ds 17319  df-unif 17320  df-hom 17321  df-cco 17322  df-rest 17467  df-topn 17468  df-0g 17486  df-gsum 17487  df-topgen 17488  df-pt 17489  df-prds 17492  df-xrs 17547  df-qtop 17552  df-imas 17553  df-xps 17555  df-mre 17629  df-mrc 17630  df-acs 17632  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-submnd 18797  df-mulg 19086  df-cntz 19335  df-cmn 19800  df-psmet 21356  df-xmet 21357  df-met 21358  df-bl 21359  df-mopn 21360  df-fbas 21361  df-fg 21362  df-cnfld 21365  df-top 22900  df-topon 22917  df-topsp 22939  df-bases 22953  df-cld 23027  df-ntr 23028  df-cls 23029  df-nei 23106  df-lp 23144  df-perf 23145  df-cn 23235  df-cnp 23236  df-haus 23323  df-cmp 23395  df-tx 23570  df-hmeo 23763  df-fil 23854  df-fm 23946  df-flim 23947  df-flf 23948  df-xms 24330  df-ms 24331  df-tms 24332  df-cncf 24904  df-limc 25901  df-dv 25902  df-log 26598  df-cxp 26599
This theorem is referenced by:  mulog2sumlem1  27578  mulog2sum  27581  vmalogdivsum2  27582
  Copyright terms: Public domain W3C validator