MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  logdivsum Structured version   Visualization version   GIF version

Theorem logdivsum 27559
Description: Asymptotic analysis of Σ𝑛𝑥, log𝑛 / 𝑛 = (log𝑥)↑2 / 2 + 𝐿 + 𝑂(log𝑥 / 𝑥). (Contributed by Mario Carneiro, 18-May-2016.)
Hypothesis
Ref Expression
logdivsum.1 𝐹 = (𝑦 ∈ ℝ+ ↦ (Σ𝑖 ∈ (1...(⌊‘𝑦))((log‘𝑖) / 𝑖) − (((log‘𝑦)↑2) / 2)))
Assertion
Ref Expression
logdivsum (𝐹:ℝ+⟶ℝ ∧ 𝐹 ∈ dom ⇝𝑟 ∧ ((𝐹𝑟 𝐿𝐴 ∈ ℝ+ ∧ e ≤ 𝐴) → (abs‘((𝐹𝐴) − 𝐿)) ≤ ((log‘𝐴) / 𝐴)))
Distinct variable group:   𝑦,𝑖,𝐴
Allowed substitution hints:   𝐹(𝑦,𝑖)   𝐿(𝑦,𝑖)

Proof of Theorem logdivsum
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ioorp 13450 . . . 4 (0(,)+∞) = ℝ+
21eqcomi 2735 . . 3 + = (0(,)+∞)
3 nnuz 12911 . . 3 ℕ = (ℤ‘1)
4 1zzd 12639 . . 3 (⊤ → 1 ∈ ℤ)
5 ere 16086 . . . 4 e ∈ ℝ
65a1i 11 . . 3 (⊤ → e ∈ ℝ)
7 0re 11257 . . . . . 6 0 ∈ ℝ
8 epos 16204 . . . . . 6 0 < e
97, 5, 8ltleii 11378 . . . . 5 0 ≤ e
109a1i 11 . . . 4 (⊤ → 0 ≤ e)
11 1re 11255 . . . . 5 1 ∈ ℝ
12 addge02 11766 . . . . 5 ((1 ∈ ℝ ∧ e ∈ ℝ) → (0 ≤ e ↔ 1 ≤ (e + 1)))
1311, 5, 12mp2an 690 . . . 4 (0 ≤ e ↔ 1 ≤ (e + 1))
1410, 13sylib 217 . . 3 (⊤ → 1 ≤ (e + 1))
157a1i 11 . . 3 (⊤ → 0 ∈ ℝ)
16 relogcl 26599 . . . . . 6 (𝑦 ∈ ℝ+ → (log‘𝑦) ∈ ℝ)
1716adantl 480 . . . . 5 ((⊤ ∧ 𝑦 ∈ ℝ+) → (log‘𝑦) ∈ ℝ)
1817resqcld 14138 . . . 4 ((⊤ ∧ 𝑦 ∈ ℝ+) → ((log‘𝑦)↑2) ∈ ℝ)
1918rehalfcld 12505 . . 3 ((⊤ ∧ 𝑦 ∈ ℝ+) → (((log‘𝑦)↑2) / 2) ∈ ℝ)
20 rerpdivcl 13052 . . . . 5 (((log‘𝑦) ∈ ℝ ∧ 𝑦 ∈ ℝ+) → ((log‘𝑦) / 𝑦) ∈ ℝ)
2116, 20mpancom 686 . . . 4 (𝑦 ∈ ℝ+ → ((log‘𝑦) / 𝑦) ∈ ℝ)
2221adantl 480 . . 3 ((⊤ ∧ 𝑦 ∈ ℝ+) → ((log‘𝑦) / 𝑦) ∈ ℝ)
23 nnrp 13033 . . . 4 (𝑦 ∈ ℕ → 𝑦 ∈ ℝ+)
2423, 22sylan2 591 . . 3 ((⊤ ∧ 𝑦 ∈ ℕ) → ((log‘𝑦) / 𝑦) ∈ ℝ)
25 reelprrecn 11241 . . . . . 6 ℝ ∈ {ℝ, ℂ}
2625a1i 11 . . . . 5 (⊤ → ℝ ∈ {ℝ, ℂ})
27 cnelprrecn 11242 . . . . . 6 ℂ ∈ {ℝ, ℂ}
2827a1i 11 . . . . 5 (⊤ → ℂ ∈ {ℝ, ℂ})
2917recnd 11283 . . . . 5 ((⊤ ∧ 𝑦 ∈ ℝ+) → (log‘𝑦) ∈ ℂ)
30 ovexd 7451 . . . . 5 ((⊤ ∧ 𝑦 ∈ ℝ+) → (1 / 𝑦) ∈ V)
31 sqcl 14131 . . . . . . 7 (𝑥 ∈ ℂ → (𝑥↑2) ∈ ℂ)
3231adantl 480 . . . . . 6 ((⊤ ∧ 𝑥 ∈ ℂ) → (𝑥↑2) ∈ ℂ)
3332halfcld 12503 . . . . 5 ((⊤ ∧ 𝑥 ∈ ℂ) → ((𝑥↑2) / 2) ∈ ℂ)
34 simpr 483 . . . . 5 ((⊤ ∧ 𝑥 ∈ ℂ) → 𝑥 ∈ ℂ)
35 relogf1o 26590 . . . . . . . . . 10 (log ↾ ℝ+):ℝ+1-1-onto→ℝ
36 f1of 6835 . . . . . . . . . 10 ((log ↾ ℝ+):ℝ+1-1-onto→ℝ → (log ↾ ℝ+):ℝ+⟶ℝ)
3735, 36mp1i 13 . . . . . . . . 9 (⊤ → (log ↾ ℝ+):ℝ+⟶ℝ)
3837feqmptd 6963 . . . . . . . 8 (⊤ → (log ↾ ℝ+) = (𝑦 ∈ ℝ+ ↦ ((log ↾ ℝ+)‘𝑦)))
39 fvres 6912 . . . . . . . . 9 (𝑦 ∈ ℝ+ → ((log ↾ ℝ+)‘𝑦) = (log‘𝑦))
4039mpteq2ia 5248 . . . . . . . 8 (𝑦 ∈ ℝ+ ↦ ((log ↾ ℝ+)‘𝑦)) = (𝑦 ∈ ℝ+ ↦ (log‘𝑦))
4138, 40eqtrdi 2782 . . . . . . 7 (⊤ → (log ↾ ℝ+) = (𝑦 ∈ ℝ+ ↦ (log‘𝑦)))
4241oveq2d 7432 . . . . . 6 (⊤ → (ℝ D (log ↾ ℝ+)) = (ℝ D (𝑦 ∈ ℝ+ ↦ (log‘𝑦))))
43 dvrelog 26661 . . . . . 6 (ℝ D (log ↾ ℝ+)) = (𝑦 ∈ ℝ+ ↦ (1 / 𝑦))
4442, 43eqtr3di 2781 . . . . 5 (⊤ → (ℝ D (𝑦 ∈ ℝ+ ↦ (log‘𝑦))) = (𝑦 ∈ ℝ+ ↦ (1 / 𝑦)))
45 ovexd 7451 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ ℂ) → (2 · 𝑥) ∈ V)
46 2nn 12331 . . . . . . . . 9 2 ∈ ℕ
47 dvexp 25973 . . . . . . . . 9 (2 ∈ ℕ → (ℂ D (𝑥 ∈ ℂ ↦ (𝑥↑2))) = (𝑥 ∈ ℂ ↦ (2 · (𝑥↑(2 − 1)))))
4846, 47mp1i 13 . . . . . . . 8 (⊤ → (ℂ D (𝑥 ∈ ℂ ↦ (𝑥↑2))) = (𝑥 ∈ ℂ ↦ (2 · (𝑥↑(2 − 1)))))
49 2m1e1 12384 . . . . . . . . . . . 12 (2 − 1) = 1
5049oveq2i 7427 . . . . . . . . . . 11 (𝑥↑(2 − 1)) = (𝑥↑1)
51 exp1 14081 . . . . . . . . . . . 12 (𝑥 ∈ ℂ → (𝑥↑1) = 𝑥)
5251adantl 480 . . . . . . . . . . 11 ((⊤ ∧ 𝑥 ∈ ℂ) → (𝑥↑1) = 𝑥)
5350, 52eqtrid 2778 . . . . . . . . . 10 ((⊤ ∧ 𝑥 ∈ ℂ) → (𝑥↑(2 − 1)) = 𝑥)
5453oveq2d 7432 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ ℂ) → (2 · (𝑥↑(2 − 1))) = (2 · 𝑥))
5554mpteq2dva 5245 . . . . . . . 8 (⊤ → (𝑥 ∈ ℂ ↦ (2 · (𝑥↑(2 − 1)))) = (𝑥 ∈ ℂ ↦ (2 · 𝑥)))
5648, 55eqtrd 2766 . . . . . . 7 (⊤ → (ℂ D (𝑥 ∈ ℂ ↦ (𝑥↑2))) = (𝑥 ∈ ℂ ↦ (2 · 𝑥)))
57 2cnd 12336 . . . . . . 7 (⊤ → 2 ∈ ℂ)
58 2ne0 12362 . . . . . . . 8 2 ≠ 0
5958a1i 11 . . . . . . 7 (⊤ → 2 ≠ 0)
6028, 32, 45, 56, 57, 59dvmptdivc 25985 . . . . . 6 (⊤ → (ℂ D (𝑥 ∈ ℂ ↦ ((𝑥↑2) / 2))) = (𝑥 ∈ ℂ ↦ ((2 · 𝑥) / 2)))
61 2cn 12333 . . . . . . . . 9 2 ∈ ℂ
62 divcan3 11940 . . . . . . . . 9 ((𝑥 ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0) → ((2 · 𝑥) / 2) = 𝑥)
6361, 58, 62mp3an23 1450 . . . . . . . 8 (𝑥 ∈ ℂ → ((2 · 𝑥) / 2) = 𝑥)
6463adantl 480 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ ℂ) → ((2 · 𝑥) / 2) = 𝑥)
6564mpteq2dva 5245 . . . . . 6 (⊤ → (𝑥 ∈ ℂ ↦ ((2 · 𝑥) / 2)) = (𝑥 ∈ ℂ ↦ 𝑥))
6660, 65eqtrd 2766 . . . . 5 (⊤ → (ℂ D (𝑥 ∈ ℂ ↦ ((𝑥↑2) / 2))) = (𝑥 ∈ ℂ ↦ 𝑥))
67 oveq1 7423 . . . . . 6 (𝑥 = (log‘𝑦) → (𝑥↑2) = ((log‘𝑦)↑2))
6867oveq1d 7431 . . . . 5 (𝑥 = (log‘𝑦) → ((𝑥↑2) / 2) = (((log‘𝑦)↑2) / 2))
69 id 22 . . . . 5 (𝑥 = (log‘𝑦) → 𝑥 = (log‘𝑦))
7026, 28, 29, 30, 33, 34, 44, 66, 68, 69dvmptco 25992 . . . 4 (⊤ → (ℝ D (𝑦 ∈ ℝ+ ↦ (((log‘𝑦)↑2) / 2))) = (𝑦 ∈ ℝ+ ↦ ((log‘𝑦) · (1 / 𝑦))))
71 rpcn 13032 . . . . . . 7 (𝑦 ∈ ℝ+𝑦 ∈ ℂ)
7271adantl 480 . . . . . 6 ((⊤ ∧ 𝑦 ∈ ℝ+) → 𝑦 ∈ ℂ)
73 rpne0 13038 . . . . . . 7 (𝑦 ∈ ℝ+𝑦 ≠ 0)
7473adantl 480 . . . . . 6 ((⊤ ∧ 𝑦 ∈ ℝ+) → 𝑦 ≠ 0)
7529, 72, 74divrecd 12038 . . . . 5 ((⊤ ∧ 𝑦 ∈ ℝ+) → ((log‘𝑦) / 𝑦) = ((log‘𝑦) · (1 / 𝑦)))
7675mpteq2dva 5245 . . . 4 (⊤ → (𝑦 ∈ ℝ+ ↦ ((log‘𝑦) / 𝑦)) = (𝑦 ∈ ℝ+ ↦ ((log‘𝑦) · (1 / 𝑦))))
7770, 76eqtr4d 2769 . . 3 (⊤ → (ℝ D (𝑦 ∈ ℝ+ ↦ (((log‘𝑦)↑2) / 2))) = (𝑦 ∈ ℝ+ ↦ ((log‘𝑦) / 𝑦)))
78 fveq2 6893 . . . 4 (𝑦 = 𝑖 → (log‘𝑦) = (log‘𝑖))
79 id 22 . . . 4 (𝑦 = 𝑖𝑦 = 𝑖)
8078, 79oveq12d 7434 . . 3 (𝑦 = 𝑖 → ((log‘𝑦) / 𝑦) = ((log‘𝑖) / 𝑖))
81 simp3r 1199 . . . 4 ((⊤ ∧ (𝑦 ∈ ℝ+𝑖 ∈ ℝ+) ∧ (e ≤ 𝑦𝑦𝑖)) → 𝑦𝑖)
82 simp2l 1196 . . . . . 6 ((⊤ ∧ (𝑦 ∈ ℝ+𝑖 ∈ ℝ+) ∧ (e ≤ 𝑦𝑦𝑖)) → 𝑦 ∈ ℝ+)
8382rpred 13064 . . . . 5 ((⊤ ∧ (𝑦 ∈ ℝ+𝑖 ∈ ℝ+) ∧ (e ≤ 𝑦𝑦𝑖)) → 𝑦 ∈ ℝ)
84 simp3l 1198 . . . . 5 ((⊤ ∧ (𝑦 ∈ ℝ+𝑖 ∈ ℝ+) ∧ (e ≤ 𝑦𝑦𝑖)) → e ≤ 𝑦)
85 simp2r 1197 . . . . . 6 ((⊤ ∧ (𝑦 ∈ ℝ+𝑖 ∈ ℝ+) ∧ (e ≤ 𝑦𝑦𝑖)) → 𝑖 ∈ ℝ+)
8685rpred 13064 . . . . 5 ((⊤ ∧ (𝑦 ∈ ℝ+𝑖 ∈ ℝ+) ∧ (e ≤ 𝑦𝑦𝑖)) → 𝑖 ∈ ℝ)
875a1i 11 . . . . . 6 ((⊤ ∧ (𝑦 ∈ ℝ+𝑖 ∈ ℝ+) ∧ (e ≤ 𝑦𝑦𝑖)) → e ∈ ℝ)
8887, 83, 86, 84, 81letrd 11412 . . . . 5 ((⊤ ∧ (𝑦 ∈ ℝ+𝑖 ∈ ℝ+) ∧ (e ≤ 𝑦𝑦𝑖)) → e ≤ 𝑖)
89 logdivle 26646 . . . . 5 (((𝑦 ∈ ℝ ∧ e ≤ 𝑦) ∧ (𝑖 ∈ ℝ ∧ e ≤ 𝑖)) → (𝑦𝑖 ↔ ((log‘𝑖) / 𝑖) ≤ ((log‘𝑦) / 𝑦)))
9083, 84, 86, 88, 89syl22anc 837 . . . 4 ((⊤ ∧ (𝑦 ∈ ℝ+𝑖 ∈ ℝ+) ∧ (e ≤ 𝑦𝑦𝑖)) → (𝑦𝑖 ↔ ((log‘𝑖) / 𝑖) ≤ ((log‘𝑦) / 𝑦)))
9181, 90mpbid 231 . . 3 ((⊤ ∧ (𝑦 ∈ ℝ+𝑖 ∈ ℝ+) ∧ (e ≤ 𝑦𝑦𝑖)) → ((log‘𝑖) / 𝑖) ≤ ((log‘𝑦) / 𝑦))
92 logdivsum.1 . . 3 𝐹 = (𝑦 ∈ ℝ+ ↦ (Σ𝑖 ∈ (1...(⌊‘𝑦))((log‘𝑖) / 𝑖) − (((log‘𝑦)↑2) / 2)))
9371cxp1d 26730 . . . . . 6 (𝑦 ∈ ℝ+ → (𝑦𝑐1) = 𝑦)
9493oveq2d 7432 . . . . 5 (𝑦 ∈ ℝ+ → ((log‘𝑦) / (𝑦𝑐1)) = ((log‘𝑦) / 𝑦))
9594mpteq2ia 5248 . . . 4 (𝑦 ∈ ℝ+ ↦ ((log‘𝑦) / (𝑦𝑐1))) = (𝑦 ∈ ℝ+ ↦ ((log‘𝑦) / 𝑦))
96 1rp 13026 . . . . 5 1 ∈ ℝ+
97 cxploglim 27003 . . . . 5 (1 ∈ ℝ+ → (𝑦 ∈ ℝ+ ↦ ((log‘𝑦) / (𝑦𝑐1))) ⇝𝑟 0)
9896, 97mp1i 13 . . . 4 (⊤ → (𝑦 ∈ ℝ+ ↦ ((log‘𝑦) / (𝑦𝑐1))) ⇝𝑟 0)
9995, 98eqbrtrrid 5181 . . 3 (⊤ → (𝑦 ∈ ℝ+ ↦ ((log‘𝑦) / 𝑦)) ⇝𝑟 0)
100 fveq2 6893 . . . 4 (𝑦 = 𝐴 → (log‘𝑦) = (log‘𝐴))
101 id 22 . . . 4 (𝑦 = 𝐴𝑦 = 𝐴)
102100, 101oveq12d 7434 . . 3 (𝑦 = 𝐴 → ((log‘𝑦) / 𝑦) = ((log‘𝐴) / 𝐴))
1032, 3, 4, 6, 14, 15, 19, 22, 24, 77, 80, 91, 92, 99, 102dvfsumrlim3 26056 . 2 (⊤ → (𝐹:ℝ+⟶ℝ ∧ 𝐹 ∈ dom ⇝𝑟 ∧ ((𝐹𝑟 𝐿𝐴 ∈ ℝ+ ∧ e ≤ 𝐴) → (abs‘((𝐹𝐴) − 𝐿)) ≤ ((log‘𝐴) / 𝐴))))
104103mptru 1541 1 (𝐹:ℝ+⟶ℝ ∧ 𝐹 ∈ dom ⇝𝑟 ∧ ((𝐹𝑟 𝐿𝐴 ∈ ℝ+ ∧ e ≤ 𝐴) → (abs‘((𝐹𝐴) − 𝐿)) ≤ ((log‘𝐴) / 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  w3a 1084   = wceq 1534  wtru 1535  wcel 2099  wne 2930  Vcvv 3462  {cpr 4625   class class class wbr 5145  cmpt 5228  dom cdm 5674  cres 5676  wf 6542  1-1-ontowf1o 6545  cfv 6546  (class class class)co 7416  cc 11147  cr 11148  0cc0 11149  1c1 11150   + caddc 11152   · cmul 11154  +∞cpnf 11286  cle 11290  cmin 11485   / cdiv 11912  cn 12258  2c2 12313  +crp 13022  (,)cioo 13372  ...cfz 13532  cfl 13804  cexp 14075  abscabs 15234  𝑟 crli 15482  Σcsu 15685  eceu 16059   D cdv 25880  logclog 26578  𝑐ccxp 26579
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5282  ax-sep 5296  ax-nul 5303  ax-pow 5361  ax-pr 5425  ax-un 7738  ax-inf2 9677  ax-cnex 11205  ax-resscn 11206  ax-1cn 11207  ax-icn 11208  ax-addcl 11209  ax-addrcl 11210  ax-mulcl 11211  ax-mulrcl 11212  ax-mulcom 11213  ax-addass 11214  ax-mulass 11215  ax-distr 11216  ax-i2m1 11217  ax-1ne0 11218  ax-1rid 11219  ax-rnegex 11220  ax-rrecex 11221  ax-cnre 11222  ax-pre-lttri 11223  ax-pre-lttrn 11224  ax-pre-ltadd 11225  ax-pre-mulgt0 11226  ax-pre-sup 11227  ax-addf 11228
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3776  df-csb 3892  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-pss 3966  df-nul 4323  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-tp 4628  df-op 4630  df-uni 4906  df-int 4947  df-iun 4995  df-iin 4996  df-br 5146  df-opab 5208  df-mpt 5229  df-tr 5263  df-id 5572  df-eprel 5578  df-po 5586  df-so 5587  df-fr 5629  df-se 5630  df-we 5631  df-xp 5680  df-rel 5681  df-cnv 5682  df-co 5683  df-dm 5684  df-rn 5685  df-res 5686  df-ima 5687  df-pred 6304  df-ord 6371  df-on 6372  df-lim 6373  df-suc 6374  df-iota 6498  df-fun 6548  df-fn 6549  df-f 6550  df-f1 6551  df-fo 6552  df-f1o 6553  df-fv 6554  df-isom 6555  df-riota 7372  df-ov 7419  df-oprab 7420  df-mpo 7421  df-of 7682  df-om 7869  df-1st 7995  df-2nd 7996  df-supp 8167  df-frecs 8288  df-wrecs 8319  df-recs 8393  df-rdg 8432  df-1o 8488  df-2o 8489  df-er 8726  df-map 8849  df-pm 8850  df-ixp 8919  df-en 8967  df-dom 8968  df-sdom 8969  df-fin 8970  df-fsupp 9399  df-fi 9447  df-sup 9478  df-inf 9479  df-oi 9546  df-card 9975  df-pnf 11291  df-mnf 11292  df-xr 11293  df-ltxr 11294  df-le 11295  df-sub 11487  df-neg 11488  df-div 11913  df-nn 12259  df-2 12321  df-3 12322  df-4 12323  df-5 12324  df-6 12325  df-7 12326  df-8 12327  df-9 12328  df-n0 12519  df-z 12605  df-dec 12724  df-uz 12869  df-q 12979  df-rp 13023  df-xneg 13140  df-xadd 13141  df-xmul 13142  df-ioo 13376  df-ioc 13377  df-ico 13378  df-icc 13379  df-fz 13533  df-fzo 13676  df-fl 13806  df-mod 13884  df-seq 14016  df-exp 14076  df-fac 14286  df-bc 14315  df-hash 14343  df-shft 15067  df-cj 15099  df-re 15100  df-im 15101  df-sqrt 15235  df-abs 15236  df-limsup 15468  df-clim 15485  df-rlim 15486  df-sum 15686  df-ef 16064  df-e 16065  df-sin 16066  df-cos 16067  df-pi 16069  df-struct 17144  df-sets 17161  df-slot 17179  df-ndx 17191  df-base 17209  df-ress 17238  df-plusg 17274  df-mulr 17275  df-starv 17276  df-sca 17277  df-vsca 17278  df-ip 17279  df-tset 17280  df-ple 17281  df-ds 17283  df-unif 17284  df-hom 17285  df-cco 17286  df-rest 17432  df-topn 17433  df-0g 17451  df-gsum 17452  df-topgen 17453  df-pt 17454  df-prds 17457  df-xrs 17512  df-qtop 17517  df-imas 17518  df-xps 17520  df-mre 17594  df-mrc 17595  df-acs 17597  df-mgm 18628  df-sgrp 18707  df-mnd 18723  df-submnd 18769  df-mulg 19058  df-cntz 19307  df-cmn 19776  df-psmet 21331  df-xmet 21332  df-met 21333  df-bl 21334  df-mopn 21335  df-fbas 21336  df-fg 21337  df-cnfld 21340  df-top 22884  df-topon 22901  df-topsp 22923  df-bases 22937  df-cld 23011  df-ntr 23012  df-cls 23013  df-nei 23090  df-lp 23128  df-perf 23129  df-cn 23219  df-cnp 23220  df-haus 23307  df-cmp 23379  df-tx 23554  df-hmeo 23747  df-fil 23838  df-fm 23930  df-flim 23931  df-flf 23932  df-xms 24314  df-ms 24315  df-tms 24316  df-cncf 24886  df-limc 25883  df-dv 25884  df-log 26580  df-cxp 26581
This theorem is referenced by:  mulog2sumlem1  27560  mulog2sum  27563  vmalogdivsum2  27564
  Copyright terms: Public domain W3C validator