MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  logdivsum Structured version   Visualization version   GIF version

Theorem logdivsum 26586
Description: Asymptotic analysis of Σ𝑛𝑥, log𝑛 / 𝑛 = (log𝑥)↑2 / 2 + 𝐿 + 𝑂(log𝑥 / 𝑥). (Contributed by Mario Carneiro, 18-May-2016.)
Hypothesis
Ref Expression
logdivsum.1 𝐹 = (𝑦 ∈ ℝ+ ↦ (Σ𝑖 ∈ (1...(⌊‘𝑦))((log‘𝑖) / 𝑖) − (((log‘𝑦)↑2) / 2)))
Assertion
Ref Expression
logdivsum (𝐹:ℝ+⟶ℝ ∧ 𝐹 ∈ dom ⇝𝑟 ∧ ((𝐹𝑟 𝐿𝐴 ∈ ℝ+ ∧ e ≤ 𝐴) → (abs‘((𝐹𝐴) − 𝐿)) ≤ ((log‘𝐴) / 𝐴)))
Distinct variable group:   𝑦,𝑖,𝐴
Allowed substitution hints:   𝐹(𝑦,𝑖)   𝐿(𝑦,𝑖)

Proof of Theorem logdivsum
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ioorp 13086 . . . 4 (0(,)+∞) = ℝ+
21eqcomi 2747 . . 3 + = (0(,)+∞)
3 nnuz 12550 . . 3 ℕ = (ℤ‘1)
4 1zzd 12281 . . 3 (⊤ → 1 ∈ ℤ)
5 ere 15726 . . . 4 e ∈ ℝ
65a1i 11 . . 3 (⊤ → e ∈ ℝ)
7 0re 10908 . . . . . 6 0 ∈ ℝ
8 epos 15844 . . . . . 6 0 < e
97, 5, 8ltleii 11028 . . . . 5 0 ≤ e
109a1i 11 . . . 4 (⊤ → 0 ≤ e)
11 1re 10906 . . . . 5 1 ∈ ℝ
12 addge02 11416 . . . . 5 ((1 ∈ ℝ ∧ e ∈ ℝ) → (0 ≤ e ↔ 1 ≤ (e + 1)))
1311, 5, 12mp2an 688 . . . 4 (0 ≤ e ↔ 1 ≤ (e + 1))
1410, 13sylib 217 . . 3 (⊤ → 1 ≤ (e + 1))
157a1i 11 . . 3 (⊤ → 0 ∈ ℝ)
16 relogcl 25636 . . . . . 6 (𝑦 ∈ ℝ+ → (log‘𝑦) ∈ ℝ)
1716adantl 481 . . . . 5 ((⊤ ∧ 𝑦 ∈ ℝ+) → (log‘𝑦) ∈ ℝ)
1817resqcld 13893 . . . 4 ((⊤ ∧ 𝑦 ∈ ℝ+) → ((log‘𝑦)↑2) ∈ ℝ)
1918rehalfcld 12150 . . 3 ((⊤ ∧ 𝑦 ∈ ℝ+) → (((log‘𝑦)↑2) / 2) ∈ ℝ)
20 rerpdivcl 12689 . . . . 5 (((log‘𝑦) ∈ ℝ ∧ 𝑦 ∈ ℝ+) → ((log‘𝑦) / 𝑦) ∈ ℝ)
2116, 20mpancom 684 . . . 4 (𝑦 ∈ ℝ+ → ((log‘𝑦) / 𝑦) ∈ ℝ)
2221adantl 481 . . 3 ((⊤ ∧ 𝑦 ∈ ℝ+) → ((log‘𝑦) / 𝑦) ∈ ℝ)
23 nnrp 12670 . . . 4 (𝑦 ∈ ℕ → 𝑦 ∈ ℝ+)
2423, 22sylan2 592 . . 3 ((⊤ ∧ 𝑦 ∈ ℕ) → ((log‘𝑦) / 𝑦) ∈ ℝ)
25 reelprrecn 10894 . . . . . 6 ℝ ∈ {ℝ, ℂ}
2625a1i 11 . . . . 5 (⊤ → ℝ ∈ {ℝ, ℂ})
27 cnelprrecn 10895 . . . . . 6 ℂ ∈ {ℝ, ℂ}
2827a1i 11 . . . . 5 (⊤ → ℂ ∈ {ℝ, ℂ})
2917recnd 10934 . . . . 5 ((⊤ ∧ 𝑦 ∈ ℝ+) → (log‘𝑦) ∈ ℂ)
30 ovexd 7290 . . . . 5 ((⊤ ∧ 𝑦 ∈ ℝ+) → (1 / 𝑦) ∈ V)
31 sqcl 13766 . . . . . . 7 (𝑥 ∈ ℂ → (𝑥↑2) ∈ ℂ)
3231adantl 481 . . . . . 6 ((⊤ ∧ 𝑥 ∈ ℂ) → (𝑥↑2) ∈ ℂ)
3332halfcld 12148 . . . . 5 ((⊤ ∧ 𝑥 ∈ ℂ) → ((𝑥↑2) / 2) ∈ ℂ)
34 simpr 484 . . . . 5 ((⊤ ∧ 𝑥 ∈ ℂ) → 𝑥 ∈ ℂ)
35 relogf1o 25627 . . . . . . . . . 10 (log ↾ ℝ+):ℝ+1-1-onto→ℝ
36 f1of 6700 . . . . . . . . . 10 ((log ↾ ℝ+):ℝ+1-1-onto→ℝ → (log ↾ ℝ+):ℝ+⟶ℝ)
3735, 36mp1i 13 . . . . . . . . 9 (⊤ → (log ↾ ℝ+):ℝ+⟶ℝ)
3837feqmptd 6819 . . . . . . . 8 (⊤ → (log ↾ ℝ+) = (𝑦 ∈ ℝ+ ↦ ((log ↾ ℝ+)‘𝑦)))
39 fvres 6775 . . . . . . . . 9 (𝑦 ∈ ℝ+ → ((log ↾ ℝ+)‘𝑦) = (log‘𝑦))
4039mpteq2ia 5173 . . . . . . . 8 (𝑦 ∈ ℝ+ ↦ ((log ↾ ℝ+)‘𝑦)) = (𝑦 ∈ ℝ+ ↦ (log‘𝑦))
4138, 40eqtrdi 2795 . . . . . . 7 (⊤ → (log ↾ ℝ+) = (𝑦 ∈ ℝ+ ↦ (log‘𝑦)))
4241oveq2d 7271 . . . . . 6 (⊤ → (ℝ D (log ↾ ℝ+)) = (ℝ D (𝑦 ∈ ℝ+ ↦ (log‘𝑦))))
43 dvrelog 25697 . . . . . 6 (ℝ D (log ↾ ℝ+)) = (𝑦 ∈ ℝ+ ↦ (1 / 𝑦))
4442, 43eqtr3di 2794 . . . . 5 (⊤ → (ℝ D (𝑦 ∈ ℝ+ ↦ (log‘𝑦))) = (𝑦 ∈ ℝ+ ↦ (1 / 𝑦)))
45 ovexd 7290 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ ℂ) → (2 · 𝑥) ∈ V)
46 2nn 11976 . . . . . . . . 9 2 ∈ ℕ
47 dvexp 25022 . . . . . . . . 9 (2 ∈ ℕ → (ℂ D (𝑥 ∈ ℂ ↦ (𝑥↑2))) = (𝑥 ∈ ℂ ↦ (2 · (𝑥↑(2 − 1)))))
4846, 47mp1i 13 . . . . . . . 8 (⊤ → (ℂ D (𝑥 ∈ ℂ ↦ (𝑥↑2))) = (𝑥 ∈ ℂ ↦ (2 · (𝑥↑(2 − 1)))))
49 2m1e1 12029 . . . . . . . . . . . 12 (2 − 1) = 1
5049oveq2i 7266 . . . . . . . . . . 11 (𝑥↑(2 − 1)) = (𝑥↑1)
51 exp1 13716 . . . . . . . . . . . 12 (𝑥 ∈ ℂ → (𝑥↑1) = 𝑥)
5251adantl 481 . . . . . . . . . . 11 ((⊤ ∧ 𝑥 ∈ ℂ) → (𝑥↑1) = 𝑥)
5350, 52syl5eq 2791 . . . . . . . . . 10 ((⊤ ∧ 𝑥 ∈ ℂ) → (𝑥↑(2 − 1)) = 𝑥)
5453oveq2d 7271 . . . . . . . . 9 ((⊤ ∧ 𝑥 ∈ ℂ) → (2 · (𝑥↑(2 − 1))) = (2 · 𝑥))
5554mpteq2dva 5170 . . . . . . . 8 (⊤ → (𝑥 ∈ ℂ ↦ (2 · (𝑥↑(2 − 1)))) = (𝑥 ∈ ℂ ↦ (2 · 𝑥)))
5648, 55eqtrd 2778 . . . . . . 7 (⊤ → (ℂ D (𝑥 ∈ ℂ ↦ (𝑥↑2))) = (𝑥 ∈ ℂ ↦ (2 · 𝑥)))
57 2cnd 11981 . . . . . . 7 (⊤ → 2 ∈ ℂ)
58 2ne0 12007 . . . . . . . 8 2 ≠ 0
5958a1i 11 . . . . . . 7 (⊤ → 2 ≠ 0)
6028, 32, 45, 56, 57, 59dvmptdivc 25034 . . . . . 6 (⊤ → (ℂ D (𝑥 ∈ ℂ ↦ ((𝑥↑2) / 2))) = (𝑥 ∈ ℂ ↦ ((2 · 𝑥) / 2)))
61 2cn 11978 . . . . . . . . 9 2 ∈ ℂ
62 divcan3 11589 . . . . . . . . 9 ((𝑥 ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0) → ((2 · 𝑥) / 2) = 𝑥)
6361, 58, 62mp3an23 1451 . . . . . . . 8 (𝑥 ∈ ℂ → ((2 · 𝑥) / 2) = 𝑥)
6463adantl 481 . . . . . . 7 ((⊤ ∧ 𝑥 ∈ ℂ) → ((2 · 𝑥) / 2) = 𝑥)
6564mpteq2dva 5170 . . . . . 6 (⊤ → (𝑥 ∈ ℂ ↦ ((2 · 𝑥) / 2)) = (𝑥 ∈ ℂ ↦ 𝑥))
6660, 65eqtrd 2778 . . . . 5 (⊤ → (ℂ D (𝑥 ∈ ℂ ↦ ((𝑥↑2) / 2))) = (𝑥 ∈ ℂ ↦ 𝑥))
67 oveq1 7262 . . . . . 6 (𝑥 = (log‘𝑦) → (𝑥↑2) = ((log‘𝑦)↑2))
6867oveq1d 7270 . . . . 5 (𝑥 = (log‘𝑦) → ((𝑥↑2) / 2) = (((log‘𝑦)↑2) / 2))
69 id 22 . . . . 5 (𝑥 = (log‘𝑦) → 𝑥 = (log‘𝑦))
7026, 28, 29, 30, 33, 34, 44, 66, 68, 69dvmptco 25041 . . . 4 (⊤ → (ℝ D (𝑦 ∈ ℝ+ ↦ (((log‘𝑦)↑2) / 2))) = (𝑦 ∈ ℝ+ ↦ ((log‘𝑦) · (1 / 𝑦))))
71 rpcn 12669 . . . . . . 7 (𝑦 ∈ ℝ+𝑦 ∈ ℂ)
7271adantl 481 . . . . . 6 ((⊤ ∧ 𝑦 ∈ ℝ+) → 𝑦 ∈ ℂ)
73 rpne0 12675 . . . . . . 7 (𝑦 ∈ ℝ+𝑦 ≠ 0)
7473adantl 481 . . . . . 6 ((⊤ ∧ 𝑦 ∈ ℝ+) → 𝑦 ≠ 0)
7529, 72, 74divrecd 11684 . . . . 5 ((⊤ ∧ 𝑦 ∈ ℝ+) → ((log‘𝑦) / 𝑦) = ((log‘𝑦) · (1 / 𝑦)))
7675mpteq2dva 5170 . . . 4 (⊤ → (𝑦 ∈ ℝ+ ↦ ((log‘𝑦) / 𝑦)) = (𝑦 ∈ ℝ+ ↦ ((log‘𝑦) · (1 / 𝑦))))
7770, 76eqtr4d 2781 . . 3 (⊤ → (ℝ D (𝑦 ∈ ℝ+ ↦ (((log‘𝑦)↑2) / 2))) = (𝑦 ∈ ℝ+ ↦ ((log‘𝑦) / 𝑦)))
78 fveq2 6756 . . . 4 (𝑦 = 𝑖 → (log‘𝑦) = (log‘𝑖))
79 id 22 . . . 4 (𝑦 = 𝑖𝑦 = 𝑖)
8078, 79oveq12d 7273 . . 3 (𝑦 = 𝑖 → ((log‘𝑦) / 𝑦) = ((log‘𝑖) / 𝑖))
81 simp3r 1200 . . . 4 ((⊤ ∧ (𝑦 ∈ ℝ+𝑖 ∈ ℝ+) ∧ (e ≤ 𝑦𝑦𝑖)) → 𝑦𝑖)
82 simp2l 1197 . . . . . 6 ((⊤ ∧ (𝑦 ∈ ℝ+𝑖 ∈ ℝ+) ∧ (e ≤ 𝑦𝑦𝑖)) → 𝑦 ∈ ℝ+)
8382rpred 12701 . . . . 5 ((⊤ ∧ (𝑦 ∈ ℝ+𝑖 ∈ ℝ+) ∧ (e ≤ 𝑦𝑦𝑖)) → 𝑦 ∈ ℝ)
84 simp3l 1199 . . . . 5 ((⊤ ∧ (𝑦 ∈ ℝ+𝑖 ∈ ℝ+) ∧ (e ≤ 𝑦𝑦𝑖)) → e ≤ 𝑦)
85 simp2r 1198 . . . . . 6 ((⊤ ∧ (𝑦 ∈ ℝ+𝑖 ∈ ℝ+) ∧ (e ≤ 𝑦𝑦𝑖)) → 𝑖 ∈ ℝ+)
8685rpred 12701 . . . . 5 ((⊤ ∧ (𝑦 ∈ ℝ+𝑖 ∈ ℝ+) ∧ (e ≤ 𝑦𝑦𝑖)) → 𝑖 ∈ ℝ)
875a1i 11 . . . . . 6 ((⊤ ∧ (𝑦 ∈ ℝ+𝑖 ∈ ℝ+) ∧ (e ≤ 𝑦𝑦𝑖)) → e ∈ ℝ)
8887, 83, 86, 84, 81letrd 11062 . . . . 5 ((⊤ ∧ (𝑦 ∈ ℝ+𝑖 ∈ ℝ+) ∧ (e ≤ 𝑦𝑦𝑖)) → e ≤ 𝑖)
89 logdivle 25682 . . . . 5 (((𝑦 ∈ ℝ ∧ e ≤ 𝑦) ∧ (𝑖 ∈ ℝ ∧ e ≤ 𝑖)) → (𝑦𝑖 ↔ ((log‘𝑖) / 𝑖) ≤ ((log‘𝑦) / 𝑦)))
9083, 84, 86, 88, 89syl22anc 835 . . . 4 ((⊤ ∧ (𝑦 ∈ ℝ+𝑖 ∈ ℝ+) ∧ (e ≤ 𝑦𝑦𝑖)) → (𝑦𝑖 ↔ ((log‘𝑖) / 𝑖) ≤ ((log‘𝑦) / 𝑦)))
9181, 90mpbid 231 . . 3 ((⊤ ∧ (𝑦 ∈ ℝ+𝑖 ∈ ℝ+) ∧ (e ≤ 𝑦𝑦𝑖)) → ((log‘𝑖) / 𝑖) ≤ ((log‘𝑦) / 𝑦))
92 logdivsum.1 . . 3 𝐹 = (𝑦 ∈ ℝ+ ↦ (Σ𝑖 ∈ (1...(⌊‘𝑦))((log‘𝑖) / 𝑖) − (((log‘𝑦)↑2) / 2)))
9371cxp1d 25766 . . . . . 6 (𝑦 ∈ ℝ+ → (𝑦𝑐1) = 𝑦)
9493oveq2d 7271 . . . . 5 (𝑦 ∈ ℝ+ → ((log‘𝑦) / (𝑦𝑐1)) = ((log‘𝑦) / 𝑦))
9594mpteq2ia 5173 . . . 4 (𝑦 ∈ ℝ+ ↦ ((log‘𝑦) / (𝑦𝑐1))) = (𝑦 ∈ ℝ+ ↦ ((log‘𝑦) / 𝑦))
96 1rp 12663 . . . . 5 1 ∈ ℝ+
97 cxploglim 26032 . . . . 5 (1 ∈ ℝ+ → (𝑦 ∈ ℝ+ ↦ ((log‘𝑦) / (𝑦𝑐1))) ⇝𝑟 0)
9896, 97mp1i 13 . . . 4 (⊤ → (𝑦 ∈ ℝ+ ↦ ((log‘𝑦) / (𝑦𝑐1))) ⇝𝑟 0)
9995, 98eqbrtrrid 5106 . . 3 (⊤ → (𝑦 ∈ ℝ+ ↦ ((log‘𝑦) / 𝑦)) ⇝𝑟 0)
100 fveq2 6756 . . . 4 (𝑦 = 𝐴 → (log‘𝑦) = (log‘𝐴))
101 id 22 . . . 4 (𝑦 = 𝐴𝑦 = 𝐴)
102100, 101oveq12d 7273 . . 3 (𝑦 = 𝐴 → ((log‘𝑦) / 𝑦) = ((log‘𝐴) / 𝐴))
1032, 3, 4, 6, 14, 15, 19, 22, 24, 77, 80, 91, 92, 99, 102dvfsumrlim3 25102 . 2 (⊤ → (𝐹:ℝ+⟶ℝ ∧ 𝐹 ∈ dom ⇝𝑟 ∧ ((𝐹𝑟 𝐿𝐴 ∈ ℝ+ ∧ e ≤ 𝐴) → (abs‘((𝐹𝐴) − 𝐿)) ≤ ((log‘𝐴) / 𝐴))))
104103mptru 1546 1 (𝐹:ℝ+⟶ℝ ∧ 𝐹 ∈ dom ⇝𝑟 ∧ ((𝐹𝑟 𝐿𝐴 ∈ ℝ+ ∧ e ≤ 𝐴) → (abs‘((𝐹𝐴) − 𝐿)) ≤ ((log‘𝐴) / 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wtru 1540  wcel 2108  wne 2942  Vcvv 3422  {cpr 4560   class class class wbr 5070  cmpt 5153  dom cdm 5580  cres 5582  wf 6414  1-1-ontowf1o 6417  cfv 6418  (class class class)co 7255  cc 10800  cr 10801  0cc0 10802  1c1 10803   + caddc 10805   · cmul 10807  +∞cpnf 10937  cle 10941  cmin 11135   / cdiv 11562  cn 11903  2c2 11958  +crp 12659  (,)cioo 13008  ...cfz 13168  cfl 13438  cexp 13710  abscabs 14873  𝑟 crli 15122  Σcsu 15325  eceu 15700   D cdv 24932  logclog 25615  𝑐ccxp 25616
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880  ax-addf 10881  ax-mulf 10882
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-om 7688  df-1st 7804  df-2nd 7805  df-supp 7949  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-er 8456  df-map 8575  df-pm 8576  df-ixp 8644  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fsupp 9059  df-fi 9100  df-sup 9131  df-inf 9132  df-oi 9199  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-dec 12367  df-uz 12512  df-q 12618  df-rp 12660  df-xneg 12777  df-xadd 12778  df-xmul 12779  df-ioo 13012  df-ioc 13013  df-ico 13014  df-icc 13015  df-fz 13169  df-fzo 13312  df-fl 13440  df-mod 13518  df-seq 13650  df-exp 13711  df-fac 13916  df-bc 13945  df-hash 13973  df-shft 14706  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-limsup 15108  df-clim 15125  df-rlim 15126  df-sum 15326  df-ef 15705  df-e 15706  df-sin 15707  df-cos 15708  df-pi 15710  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-starv 16903  df-sca 16904  df-vsca 16905  df-ip 16906  df-tset 16907  df-ple 16908  df-ds 16910  df-unif 16911  df-hom 16912  df-cco 16913  df-rest 17050  df-topn 17051  df-0g 17069  df-gsum 17070  df-topgen 17071  df-pt 17072  df-prds 17075  df-xrs 17130  df-qtop 17135  df-imas 17136  df-xps 17138  df-mre 17212  df-mrc 17213  df-acs 17215  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-submnd 18346  df-mulg 18616  df-cntz 18838  df-cmn 19303  df-psmet 20502  df-xmet 20503  df-met 20504  df-bl 20505  df-mopn 20506  df-fbas 20507  df-fg 20508  df-cnfld 20511  df-top 21951  df-topon 21968  df-topsp 21990  df-bases 22004  df-cld 22078  df-ntr 22079  df-cls 22080  df-nei 22157  df-lp 22195  df-perf 22196  df-cn 22286  df-cnp 22287  df-haus 22374  df-cmp 22446  df-tx 22621  df-hmeo 22814  df-fil 22905  df-fm 22997  df-flim 22998  df-flf 22999  df-xms 23381  df-ms 23382  df-tms 23383  df-cncf 23947  df-limc 24935  df-dv 24936  df-log 25617  df-cxp 25618
This theorem is referenced by:  mulog2sumlem1  26587  mulog2sum  26590  vmalogdivsum2  26591
  Copyright terms: Public domain W3C validator