Step | Hyp | Ref
| Expression |
1 | | ioorp 13166 |
. . . 4
⊢
(0(,)+∞) = ℝ+ |
2 | 1 | eqcomi 2748 |
. . 3
⊢
ℝ+ = (0(,)+∞) |
3 | | nnuz 12630 |
. . 3
⊢ ℕ =
(ℤ≥‘1) |
4 | | 1zzd 12360 |
. . 3
⊢ (⊤
→ 1 ∈ ℤ) |
5 | | ere 15807 |
. . . 4
⊢ e ∈
ℝ |
6 | 5 | a1i 11 |
. . 3
⊢ (⊤
→ e ∈ ℝ) |
7 | | 0re 10986 |
. . . . . 6
⊢ 0 ∈
ℝ |
8 | | epos 15925 |
. . . . . 6
⊢ 0 <
e |
9 | 7, 5, 8 | ltleii 11107 |
. . . . 5
⊢ 0 ≤
e |
10 | 9 | a1i 11 |
. . . 4
⊢ (⊤
→ 0 ≤ e) |
11 | | 1re 10984 |
. . . . 5
⊢ 1 ∈
ℝ |
12 | | addge02 11495 |
. . . . 5
⊢ ((1
∈ ℝ ∧ e ∈ ℝ) → (0 ≤ e ↔ 1 ≤ (e +
1))) |
13 | 11, 5, 12 | mp2an 689 |
. . . 4
⊢ (0 ≤ e
↔ 1 ≤ (e + 1)) |
14 | 10, 13 | sylib 217 |
. . 3
⊢ (⊤
→ 1 ≤ (e + 1)) |
15 | 7 | a1i 11 |
. . 3
⊢ (⊤
→ 0 ∈ ℝ) |
16 | | relogcl 25740 |
. . . . . 6
⊢ (𝑦 ∈ ℝ+
→ (log‘𝑦) ∈
ℝ) |
17 | 16 | adantl 482 |
. . . . 5
⊢
((⊤ ∧ 𝑦
∈ ℝ+) → (log‘𝑦) ∈ ℝ) |
18 | 17 | resqcld 13974 |
. . . 4
⊢
((⊤ ∧ 𝑦
∈ ℝ+) → ((log‘𝑦)↑2) ∈ ℝ) |
19 | 18 | rehalfcld 12229 |
. . 3
⊢
((⊤ ∧ 𝑦
∈ ℝ+) → (((log‘𝑦)↑2) / 2) ∈
ℝ) |
20 | | rerpdivcl 12769 |
. . . . 5
⊢
(((log‘𝑦)
∈ ℝ ∧ 𝑦
∈ ℝ+) → ((log‘𝑦) / 𝑦) ∈ ℝ) |
21 | 16, 20 | mpancom 685 |
. . . 4
⊢ (𝑦 ∈ ℝ+
→ ((log‘𝑦) /
𝑦) ∈
ℝ) |
22 | 21 | adantl 482 |
. . 3
⊢
((⊤ ∧ 𝑦
∈ ℝ+) → ((log‘𝑦) / 𝑦) ∈ ℝ) |
23 | | nnrp 12750 |
. . . 4
⊢ (𝑦 ∈ ℕ → 𝑦 ∈
ℝ+) |
24 | 23, 22 | sylan2 593 |
. . 3
⊢
((⊤ ∧ 𝑦
∈ ℕ) → ((log‘𝑦) / 𝑦) ∈ ℝ) |
25 | | reelprrecn 10972 |
. . . . . 6
⊢ ℝ
∈ {ℝ, ℂ} |
26 | 25 | a1i 11 |
. . . . 5
⊢ (⊤
→ ℝ ∈ {ℝ, ℂ}) |
27 | | cnelprrecn 10973 |
. . . . . 6
⊢ ℂ
∈ {ℝ, ℂ} |
28 | 27 | a1i 11 |
. . . . 5
⊢ (⊤
→ ℂ ∈ {ℝ, ℂ}) |
29 | 17 | recnd 11012 |
. . . . 5
⊢
((⊤ ∧ 𝑦
∈ ℝ+) → (log‘𝑦) ∈ ℂ) |
30 | | ovexd 7319 |
. . . . 5
⊢
((⊤ ∧ 𝑦
∈ ℝ+) → (1 / 𝑦) ∈ V) |
31 | | sqcl 13847 |
. . . . . . 7
⊢ (𝑥 ∈ ℂ → (𝑥↑2) ∈
ℂ) |
32 | 31 | adantl 482 |
. . . . . 6
⊢
((⊤ ∧ 𝑥
∈ ℂ) → (𝑥↑2) ∈ ℂ) |
33 | 32 | halfcld 12227 |
. . . . 5
⊢
((⊤ ∧ 𝑥
∈ ℂ) → ((𝑥↑2) / 2) ∈
ℂ) |
34 | | simpr 485 |
. . . . 5
⊢
((⊤ ∧ 𝑥
∈ ℂ) → 𝑥
∈ ℂ) |
35 | | relogf1o 25731 |
. . . . . . . . . 10
⊢ (log
↾ ℝ+):ℝ+–1-1-onto→ℝ |
36 | | f1of 6725 |
. . . . . . . . . 10
⊢ ((log
↾ ℝ+):ℝ+–1-1-onto→ℝ → (log ↾
ℝ+):ℝ+⟶ℝ) |
37 | 35, 36 | mp1i 13 |
. . . . . . . . 9
⊢ (⊤
→ (log ↾
ℝ+):ℝ+⟶ℝ) |
38 | 37 | feqmptd 6846 |
. . . . . . . 8
⊢ (⊤
→ (log ↾ ℝ+) = (𝑦 ∈ ℝ+ ↦ ((log
↾ ℝ+)‘𝑦))) |
39 | | fvres 6802 |
. . . . . . . . 9
⊢ (𝑦 ∈ ℝ+
→ ((log ↾ ℝ+)‘𝑦) = (log‘𝑦)) |
40 | 39 | mpteq2ia 5178 |
. . . . . . . 8
⊢ (𝑦 ∈ ℝ+
↦ ((log ↾ ℝ+)‘𝑦)) = (𝑦 ∈ ℝ+ ↦
(log‘𝑦)) |
41 | 38, 40 | eqtrdi 2795 |
. . . . . . 7
⊢ (⊤
→ (log ↾ ℝ+) = (𝑦 ∈ ℝ+ ↦
(log‘𝑦))) |
42 | 41 | oveq2d 7300 |
. . . . . 6
⊢ (⊤
→ (ℝ D (log ↾ ℝ+)) = (ℝ D (𝑦 ∈ ℝ+
↦ (log‘𝑦)))) |
43 | | dvrelog 25801 |
. . . . . 6
⊢ (ℝ
D (log ↾ ℝ+)) = (𝑦 ∈ ℝ+ ↦ (1 /
𝑦)) |
44 | 42, 43 | eqtr3di 2794 |
. . . . 5
⊢ (⊤
→ (ℝ D (𝑦 ∈
ℝ+ ↦ (log‘𝑦))) = (𝑦 ∈ ℝ+ ↦ (1 /
𝑦))) |
45 | | ovexd 7319 |
. . . . . . 7
⊢
((⊤ ∧ 𝑥
∈ ℂ) → (2 · 𝑥) ∈ V) |
46 | | 2nn 12055 |
. . . . . . . . 9
⊢ 2 ∈
ℕ |
47 | | dvexp 25126 |
. . . . . . . . 9
⊢ (2 ∈
ℕ → (ℂ D (𝑥 ∈ ℂ ↦ (𝑥↑2))) = (𝑥 ∈ ℂ ↦ (2 · (𝑥↑(2 −
1))))) |
48 | 46, 47 | mp1i 13 |
. . . . . . . 8
⊢ (⊤
→ (ℂ D (𝑥 ∈
ℂ ↦ (𝑥↑2))) = (𝑥 ∈ ℂ ↦ (2 · (𝑥↑(2 −
1))))) |
49 | | 2m1e1 12108 |
. . . . . . . . . . . 12
⊢ (2
− 1) = 1 |
50 | 49 | oveq2i 7295 |
. . . . . . . . . . 11
⊢ (𝑥↑(2 − 1)) = (𝑥↑1) |
51 | | exp1 13797 |
. . . . . . . . . . . 12
⊢ (𝑥 ∈ ℂ → (𝑥↑1) = 𝑥) |
52 | 51 | adantl 482 |
. . . . . . . . . . 11
⊢
((⊤ ∧ 𝑥
∈ ℂ) → (𝑥↑1) = 𝑥) |
53 | 50, 52 | eqtrid 2791 |
. . . . . . . . . 10
⊢
((⊤ ∧ 𝑥
∈ ℂ) → (𝑥↑(2 − 1)) = 𝑥) |
54 | 53 | oveq2d 7300 |
. . . . . . . . 9
⊢
((⊤ ∧ 𝑥
∈ ℂ) → (2 · (𝑥↑(2 − 1))) = (2 · 𝑥)) |
55 | 54 | mpteq2dva 5175 |
. . . . . . . 8
⊢ (⊤
→ (𝑥 ∈ ℂ
↦ (2 · (𝑥↑(2 − 1)))) = (𝑥 ∈ ℂ ↦ (2 · 𝑥))) |
56 | 48, 55 | eqtrd 2779 |
. . . . . . 7
⊢ (⊤
→ (ℂ D (𝑥 ∈
ℂ ↦ (𝑥↑2))) = (𝑥 ∈ ℂ ↦ (2 · 𝑥))) |
57 | | 2cnd 12060 |
. . . . . . 7
⊢ (⊤
→ 2 ∈ ℂ) |
58 | | 2ne0 12086 |
. . . . . . . 8
⊢ 2 ≠
0 |
59 | 58 | a1i 11 |
. . . . . . 7
⊢ (⊤
→ 2 ≠ 0) |
60 | 28, 32, 45, 56, 57, 59 | dvmptdivc 25138 |
. . . . . 6
⊢ (⊤
→ (ℂ D (𝑥 ∈
ℂ ↦ ((𝑥↑2)
/ 2))) = (𝑥 ∈ ℂ
↦ ((2 · 𝑥) /
2))) |
61 | | 2cn 12057 |
. . . . . . . . 9
⊢ 2 ∈
ℂ |
62 | | divcan3 11668 |
. . . . . . . . 9
⊢ ((𝑥 ∈ ℂ ∧ 2 ∈
ℂ ∧ 2 ≠ 0) → ((2 · 𝑥) / 2) = 𝑥) |
63 | 61, 58, 62 | mp3an23 1452 |
. . . . . . . 8
⊢ (𝑥 ∈ ℂ → ((2
· 𝑥) / 2) = 𝑥) |
64 | 63 | adantl 482 |
. . . . . . 7
⊢
((⊤ ∧ 𝑥
∈ ℂ) → ((2 · 𝑥) / 2) = 𝑥) |
65 | 64 | mpteq2dva 5175 |
. . . . . 6
⊢ (⊤
→ (𝑥 ∈ ℂ
↦ ((2 · 𝑥) /
2)) = (𝑥 ∈ ℂ
↦ 𝑥)) |
66 | 60, 65 | eqtrd 2779 |
. . . . 5
⊢ (⊤
→ (ℂ D (𝑥 ∈
ℂ ↦ ((𝑥↑2)
/ 2))) = (𝑥 ∈ ℂ
↦ 𝑥)) |
67 | | oveq1 7291 |
. . . . . 6
⊢ (𝑥 = (log‘𝑦) → (𝑥↑2) = ((log‘𝑦)↑2)) |
68 | 67 | oveq1d 7299 |
. . . . 5
⊢ (𝑥 = (log‘𝑦) → ((𝑥↑2) / 2) = (((log‘𝑦)↑2) / 2)) |
69 | | id 22 |
. . . . 5
⊢ (𝑥 = (log‘𝑦) → 𝑥 = (log‘𝑦)) |
70 | 26, 28, 29, 30, 33, 34, 44, 66, 68, 69 | dvmptco 25145 |
. . . 4
⊢ (⊤
→ (ℝ D (𝑦 ∈
ℝ+ ↦ (((log‘𝑦)↑2) / 2))) = (𝑦 ∈ ℝ+ ↦
((log‘𝑦) · (1
/ 𝑦)))) |
71 | | rpcn 12749 |
. . . . . . 7
⊢ (𝑦 ∈ ℝ+
→ 𝑦 ∈
ℂ) |
72 | 71 | adantl 482 |
. . . . . 6
⊢
((⊤ ∧ 𝑦
∈ ℝ+) → 𝑦 ∈ ℂ) |
73 | | rpne0 12755 |
. . . . . . 7
⊢ (𝑦 ∈ ℝ+
→ 𝑦 ≠
0) |
74 | 73 | adantl 482 |
. . . . . 6
⊢
((⊤ ∧ 𝑦
∈ ℝ+) → 𝑦 ≠ 0) |
75 | 29, 72, 74 | divrecd 11763 |
. . . . 5
⊢
((⊤ ∧ 𝑦
∈ ℝ+) → ((log‘𝑦) / 𝑦) = ((log‘𝑦) · (1 / 𝑦))) |
76 | 75 | mpteq2dva 5175 |
. . . 4
⊢ (⊤
→ (𝑦 ∈
ℝ+ ↦ ((log‘𝑦) / 𝑦)) = (𝑦 ∈ ℝ+ ↦
((log‘𝑦) · (1
/ 𝑦)))) |
77 | 70, 76 | eqtr4d 2782 |
. . 3
⊢ (⊤
→ (ℝ D (𝑦 ∈
ℝ+ ↦ (((log‘𝑦)↑2) / 2))) = (𝑦 ∈ ℝ+ ↦
((log‘𝑦) / 𝑦))) |
78 | | fveq2 6783 |
. . . 4
⊢ (𝑦 = 𝑖 → (log‘𝑦) = (log‘𝑖)) |
79 | | id 22 |
. . . 4
⊢ (𝑦 = 𝑖 → 𝑦 = 𝑖) |
80 | 78, 79 | oveq12d 7302 |
. . 3
⊢ (𝑦 = 𝑖 → ((log‘𝑦) / 𝑦) = ((log‘𝑖) / 𝑖)) |
81 | | simp3r 1201 |
. . . 4
⊢
((⊤ ∧ (𝑦
∈ ℝ+ ∧ 𝑖 ∈ ℝ+) ∧ (e ≤
𝑦 ∧ 𝑦 ≤ 𝑖)) → 𝑦 ≤ 𝑖) |
82 | | simp2l 1198 |
. . . . . 6
⊢
((⊤ ∧ (𝑦
∈ ℝ+ ∧ 𝑖 ∈ ℝ+) ∧ (e ≤
𝑦 ∧ 𝑦 ≤ 𝑖)) → 𝑦 ∈ ℝ+) |
83 | 82 | rpred 12781 |
. . . . 5
⊢
((⊤ ∧ (𝑦
∈ ℝ+ ∧ 𝑖 ∈ ℝ+) ∧ (e ≤
𝑦 ∧ 𝑦 ≤ 𝑖)) → 𝑦 ∈ ℝ) |
84 | | simp3l 1200 |
. . . . 5
⊢
((⊤ ∧ (𝑦
∈ ℝ+ ∧ 𝑖 ∈ ℝ+) ∧ (e ≤
𝑦 ∧ 𝑦 ≤ 𝑖)) → e ≤ 𝑦) |
85 | | simp2r 1199 |
. . . . . 6
⊢
((⊤ ∧ (𝑦
∈ ℝ+ ∧ 𝑖 ∈ ℝ+) ∧ (e ≤
𝑦 ∧ 𝑦 ≤ 𝑖)) → 𝑖 ∈ ℝ+) |
86 | 85 | rpred 12781 |
. . . . 5
⊢
((⊤ ∧ (𝑦
∈ ℝ+ ∧ 𝑖 ∈ ℝ+) ∧ (e ≤
𝑦 ∧ 𝑦 ≤ 𝑖)) → 𝑖 ∈ ℝ) |
87 | 5 | a1i 11 |
. . . . . 6
⊢
((⊤ ∧ (𝑦
∈ ℝ+ ∧ 𝑖 ∈ ℝ+) ∧ (e ≤
𝑦 ∧ 𝑦 ≤ 𝑖)) → e ∈ ℝ) |
88 | 87, 83, 86, 84, 81 | letrd 11141 |
. . . . 5
⊢
((⊤ ∧ (𝑦
∈ ℝ+ ∧ 𝑖 ∈ ℝ+) ∧ (e ≤
𝑦 ∧ 𝑦 ≤ 𝑖)) → e ≤ 𝑖) |
89 | | logdivle 25786 |
. . . . 5
⊢ (((𝑦 ∈ ℝ ∧ e ≤
𝑦) ∧ (𝑖 ∈ ℝ ∧ e ≤
𝑖)) → (𝑦 ≤ 𝑖 ↔ ((log‘𝑖) / 𝑖) ≤ ((log‘𝑦) / 𝑦))) |
90 | 83, 84, 86, 88, 89 | syl22anc 836 |
. . . 4
⊢
((⊤ ∧ (𝑦
∈ ℝ+ ∧ 𝑖 ∈ ℝ+) ∧ (e ≤
𝑦 ∧ 𝑦 ≤ 𝑖)) → (𝑦 ≤ 𝑖 ↔ ((log‘𝑖) / 𝑖) ≤ ((log‘𝑦) / 𝑦))) |
91 | 81, 90 | mpbid 231 |
. . 3
⊢
((⊤ ∧ (𝑦
∈ ℝ+ ∧ 𝑖 ∈ ℝ+) ∧ (e ≤
𝑦 ∧ 𝑦 ≤ 𝑖)) → ((log‘𝑖) / 𝑖) ≤ ((log‘𝑦) / 𝑦)) |
92 | | logdivsum.1 |
. . 3
⊢ 𝐹 = (𝑦 ∈ ℝ+ ↦
(Σ𝑖 ∈
(1...(⌊‘𝑦))((log‘𝑖) / 𝑖) − (((log‘𝑦)↑2) / 2))) |
93 | 71 | cxp1d 25870 |
. . . . . 6
⊢ (𝑦 ∈ ℝ+
→ (𝑦↑𝑐1) = 𝑦) |
94 | 93 | oveq2d 7300 |
. . . . 5
⊢ (𝑦 ∈ ℝ+
→ ((log‘𝑦) /
(𝑦↑𝑐1)) =
((log‘𝑦) / 𝑦)) |
95 | 94 | mpteq2ia 5178 |
. . . 4
⊢ (𝑦 ∈ ℝ+
↦ ((log‘𝑦) /
(𝑦↑𝑐1))) = (𝑦 ∈ ℝ+
↦ ((log‘𝑦) /
𝑦)) |
96 | | 1rp 12743 |
. . . . 5
⊢ 1 ∈
ℝ+ |
97 | | cxploglim 26136 |
. . . . 5
⊢ (1 ∈
ℝ+ → (𝑦 ∈ ℝ+ ↦
((log‘𝑦) / (𝑦↑𝑐1)))
⇝𝑟 0) |
98 | 96, 97 | mp1i 13 |
. . . 4
⊢ (⊤
→ (𝑦 ∈
ℝ+ ↦ ((log‘𝑦) / (𝑦↑𝑐1)))
⇝𝑟 0) |
99 | 95, 98 | eqbrtrrid 5111 |
. . 3
⊢ (⊤
→ (𝑦 ∈
ℝ+ ↦ ((log‘𝑦) / 𝑦)) ⇝𝑟
0) |
100 | | fveq2 6783 |
. . . 4
⊢ (𝑦 = 𝐴 → (log‘𝑦) = (log‘𝐴)) |
101 | | id 22 |
. . . 4
⊢ (𝑦 = 𝐴 → 𝑦 = 𝐴) |
102 | 100, 101 | oveq12d 7302 |
. . 3
⊢ (𝑦 = 𝐴 → ((log‘𝑦) / 𝑦) = ((log‘𝐴) / 𝐴)) |
103 | 2, 3, 4, 6, 14, 15, 19, 22, 24, 77, 80, 91, 92, 99, 102 | dvfsumrlim3 25206 |
. 2
⊢ (⊤
→ (𝐹:ℝ+⟶ℝ ∧
𝐹 ∈ dom
⇝𝑟 ∧ ((𝐹 ⇝𝑟 𝐿 ∧ 𝐴 ∈ ℝ+ ∧ e ≤
𝐴) →
(abs‘((𝐹‘𝐴) − 𝐿)) ≤ ((log‘𝐴) / 𝐴)))) |
104 | 103 | mptru 1546 |
1
⊢ (𝐹:ℝ+⟶ℝ ∧
𝐹 ∈ dom
⇝𝑟 ∧ ((𝐹 ⇝𝑟 𝐿 ∧ 𝐴 ∈ ℝ+ ∧ e ≤
𝐴) →
(abs‘((𝐹‘𝐴) − 𝐿)) ≤ ((log‘𝐴) / 𝐴))) |